Efficient fuel-optimal multi-impulse orbital transfer via contrastive pre-trained reinforcement learning

Multi-impulse transfers between noncoplanar orbits are significant for on-orbit service spacecraft. This paper investigates the complex optimization problem of multi-impulse orbital transfer involving a chaser and a target. The chaser is subject to constraints on impulse magnitude and time, while th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in space research Ročník 75; číslo 10; s. 7377 - 7396
Hlavní autoři: Ren, He, Gui, Haichao, Zhong, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.05.2025
Témata:
ISSN:0273-1177
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-impulse transfers between noncoplanar orbits are significant for on-orbit service spacecraft. This paper investigates the complex optimization problem of multi-impulse orbital transfer involving a chaser and a target. The chaser is subject to constraints on impulse magnitude and time, while the target may experience uncertain disturbances, causing it to deviate from the nominal orbit. The complexity of this problem imposes a significant computational burden on numerical methods, making it challenging for spacecraft to autonomously plan trajectory transfers in real time. To mitigate this burden, we propose a robust, fast, and autonomous algorithm for the optimization challenge, which can rapid plan transfer trajectories. Even if the terminal conditions suddenly change, our algorithm can quickly adjust the trajectory based on observed states without the need to completely re-plan. The algorithm comprises an intelligent trajectory generator and a Lambert transfer algorithm. The intelligent generator is based on a reinforcement learning (RL) method called contrastive-pre-trained Reinforcement Learning (CPRL), which emulates human learning habits to avoid the temporal credit assignment with long time horizons and sparse rewards during the training phase. When the chaser reaches an admissible range, determined by the impulse constraints and geometric relations of the conic curve, the algorithm adopts the Lambert transfer to complete the mission. Compared to traditional genetic and particle swarm algorithms, our method achieves a significant improvement in computational speed. Even with deviations, the average mission success rate remains at 96.8%. Numerical simulations confirm that our algorithm processes data quickly, can be deployed online, and is capable of handling various tasks in real time.
AbstractList Multi-impulse transfers between noncoplanar orbits are significant for on-orbit service spacecraft. This paper investigates the complex optimization problem of multi-impulse orbital transfer involving a chaser and a target. The chaser is subject to constraints on impulse magnitude and time, while the target may experience uncertain disturbances, causing it to deviate from the nominal orbit. The complexity of this problem imposes a significant computational burden on numerical methods, making it challenging for spacecraft to autonomously plan trajectory transfers in real time. To mitigate this burden, we propose a robust, fast, and autonomous algorithm for the optimization challenge, which can rapid plan transfer trajectories. Even if the terminal conditions suddenly change, our algorithm can quickly adjust the trajectory based on observed states without the need to completely re-plan. The algorithm comprises an intelligent trajectory generator and a Lambert transfer algorithm. The intelligent generator is based on a reinforcement learning (RL) method called contrastive-pre-trained Reinforcement Learning (CPRL), which emulates human learning habits to avoid the temporal credit assignment with long time horizons and sparse rewards during the training phase. When the chaser reaches an admissible range, determined by the impulse constraints and geometric relations of the conic curve, the algorithm adopts the Lambert transfer to complete the mission. Compared to traditional genetic and particle swarm algorithms, our method achieves a significant improvement in computational speed. Even with deviations, the average mission success rate remains at 96.8%. Numerical simulations confirm that our algorithm processes data quickly, can be deployed online, and is capable of handling various tasks in real time.
Author Zhong, Rui
Ren, He
Gui, Haichao
Author_xml – sequence: 1
  givenname: He
  surname: Ren
  fullname: Ren, He
  email: renhe_email@163.com
– sequence: 2
  givenname: Haichao
  surname: Gui
  fullname: Gui, Haichao
  email: hcgui@buaa.edu.cn
– sequence: 3
  givenname: Rui
  surname: Zhong
  fullname: Zhong, Rui
  email: zhongruia@163.com
BookMark eNp9kE1LAzEQhnOoYKv-AG_7B3bNJN3NFk9S6gcUvOg5pMlEU3aTJUkL_nuz1LOn4R14XmaeFVn44JGQe6ANUOgejo1KsWGUtQ1lDV1vFmRJmeA1gBDXZJXSkVJgQtAl-d5Z67RDnyt7wqEOU3ajGqrxNGRXu3E6DQmrEA8ul22OyieLsTo7VengS07ZnbGaItYlOI-miui8DVHjOLcOqKJ3_uuWXFlVuu7-5g35fN59bF_r_fvL2_ZpX2vWQq45E7oXXQ-GCw4ALba65Yb3ClGtaSeQ9xpMz7Swa9NBC5ZxBVofNpQyo_gNgUuvjiGliFZOsXwUfyRQOeuRR1n0yFmPpEwWPYV5vDBYDjs7jDLNSjQaF1FnaYL7h_4FjLV0Bw
Cites_doi 10.1016/j.asr.2023.06.015
10.1016/j.ast.2019.105400
10.1002/rnc.6270
10.1007/978-981-19-6613-2_514
10.2514/1.G006091
10.1016/j.dt.2021.02.006
10.1016/j.ast.2019.105529
10.2514/1.G001198
10.1016/j.asr.2015.09.014
10.34133/space.0086
10.2514/1.A34946
10.2514/1.24701
10.1016/j.asr.2022.08.002
10.1016/j.cja.2023.03.021
10.34133/space.0047
10.1016/j.asr.2018.09.023
10.1109/AERO58975.2024.10521334
10.1016/j.actaastro.2024.08.029
10.2514/1.49683
10.1016/j.actaastro.2021.05.002
10.1016/j.ast.2018.01.003
10.1109/MCS.2022.3187542
10.1007/s40295-015-0073-x
10.2514/3.21786
10.2514/1.55592
10.1016/j.actaastro.2016.11.012
10.1016/j.asr.2023.03.014
10.1243/0954410041321998
10.2514/1.8392
10.2514/1.G001598
10.1023/B:COSM.0000033300.18460.a4
10.1016/j.ast.2005.12.007
10.1016/j.asr.2023.07.028
10.1061/(ASCE)AS.1943-5525.0001464
10.1109/TNNLS.2022.3185949
10.2514/3.56656
10.1016/j.asr.2023.03.050
10.1016/j.ast.2017.11.025
ContentType Journal Article
Copyright 2025 COSPAR
Copyright_xml – notice: 2025 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2025.02.049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EndPage 7396
ExternalDocumentID 10_1016_j_asr_2025_02_049
S027311772500184X
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSH
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SHN
SSE
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c251t-327c87681d3731115e5c53d38aeea4067e38c1d82c7f4d6151f23a1ccb9002da3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488478700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1177
IngestDate Sat Nov 29 07:59:33 EST 2025
Sat Jun 07 17:01:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Contrastive-pretrained reinforcement learning
Efficient orbital transfer
Trajectory optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-327c87681d3731115e5c53d38aeea4067e38c1d82c7f4d6151f23a1ccb9002da3
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_asr_2025_02_049
elsevier_sciencedirect_doi_10_1016_j_asr_2025_02_049
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References doi: 10.1016/j.asr.2015.09.014.
Poozhiyil, M., Nair, M.H., Rai, M.C. et al. (2023). Active debris removal: A review and case study on leopard phase 0-a mission. Advances in Space Research, 72(8), 3386–3413. URL: https://www.sciencedirect.com/science/article/pii/S0273117723004453. doi: 10.1016/j.asr.2023.06.015.
Xu, L., Zhang, G., Qiu, S. et al., 2023. Optimal multi-impulse linear rendezvous via reinforcement learning. Space: Science & Technology, 3, 0047. URL
doi: 10.1016/j.ast.2018.01.003.
Liang, H., Wang, J., Liu, J. et al., 2020. Guidance strategies for interceptor against active defense spacecraft in two-on-two engagement. Aerospace Science and Technology, 96, 105529. URL: https://www.sciencedirect.com/science/article/pii/S1270963819311964. doi: 10.1016/j.ast.2019.105529.
doi: 10.1016/j.actaastro.2021.05.002.
Zhang, Ma, Liu (b0270) 2022; 35
Lyu, B., Yue, X., & Liu, C. (2022). Constrained multi-observer-based fault-tolerant disturbance-rejection control for rigid spacecraft. International Journal of Robust and Nonlinear Control, 32(14), 8102–8133. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6270. doi: 10.1002/rnc.6270. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6270.
Hu, J., Yang, H., Li, S. et al., 2023. Densely rewarded reinforcement learning for robust low-thrust trajectory optimization. Adv. Space Res., 72(4), 964–981. URL
Zhang, G., Mortari, D., Zhou, D., 2010. Constrained multiple-revolution lambert’s problem. J. Guidance, Control, Dynam., 33(6), 1779–1786. URL: doi: 10.2514/1.49683. arXiv:https://doi.org/10.2514/1.49683.
Hong, Y., Xin-hong, L., & Wen-zhe, D. (2022). Interception time and uncertainty optimization for tangent-impulse orbit interception problem. Defence Technol., 18(3), 418–440. URL
Lu, Li, Dong (b0120) 2024
doi: 10.1016/j.asr.2023.03.014.
Guffanti, T., Gammelli, D., D’Amico, S. et al., 2024. Transformers for trajectory optimization with application to spacecraft rendezvous. (pp. 1–13). doi:10.1109/AERO58975.2024.10521334.
Li, Luo (b0100) 2024
Yang, B., Li, S., Feng, J. et al. (2022a). Fast solver for j2-perturbed lambert problem using deep neural network. J. Guidance, Control, Dynam., 45(5), 875–884. URL: doi: 10.2514/1.G006091. doi:10.2514/1.G006091. arXiv:https://doi.org/10.2514/1.G006091.
Ryoo, C.-K., Cho, H., & Tahk, M.-J. (2005). Optimal guidance laws with terminal impact angle constraint. Journal of Guidance, Control, and Dynamics, 28(4), 724–732. URL: doi: 10.2514/1.8392. doi:10.2514/1.8392. arXiv:https://doi.org/10.2514/1.8392.
Battin, R.H., 1987. An introduction to the mathematics and methods of astrodynamics. URL
Zhang, Ma (b0265) 2023; 1–13
Oghim, S., Leeghim, H., & Kim, D. (2019). Real-time spacecraft intercept strategy on j2-perturbed orbits. Advances in Space Research, 63(2), 1007–1016. URL: https://www.sciencedirect.com/science/article/pii/S027311771830721X. doi: 10.1016/j.asr.2018.09.023.
Shen, Casalino, zhong Luo (b0195) 2015; 62
Espeholt, Soyer, Munos (b0045) 2018
Chen, Z., Tang, S., 2018. Neighboring optimal control for open-time multiburn orbital transfers. Aerospace Sci. Technol., 74, 37–45. URL
Kaplanis, C., Shanahan, M., Clopath, C., 2019. Policy consolidation for continual reinforcement learning. arXiv preprint arXiv:1902.00255.
arXiv:https://spj.science.org/doi/pdf/10.34133/space.0086.
.
Jiang, R., Ye, D., Xiao, Y. et al. (2023). Orbital interception pursuit strategy for random evasion using deep reinforcement learning. Space: Sci. Technol., 3, 0086. URL
Tang, D., & Gong, S. (2023). Trajectory optimization of rocket recovery based on neural network and genetic algorithm. Advances in Space Research, 72(8), 3344–3356. URL: https://www.sciencedirect.com/science/article/pii/S027311772300563X. doi: 10.1016/j.asr.2023.07.028.
Khadka, Tumer (b0095) 2018
Peloni, A., Rao, A.V., & Ceriotti, M. (2018). Automated trajectory optimizer for solar sailing (atoss). Aerospace Science and Technology, 72, 465–475. URL: https://www.sciencedirect.com/science/article/pii/S1270963817315869. doi: 10.1016/j.ast.2017.11.025.
Luo, Y.-Z., Tang, G.-J., & yang Li, H. (2006). Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm. Aerospace Science and Technology, 10(6), 534–540. URL: https://www.sciencedirect.com/science/article/pii/S1270963806000162. doi: 10.1016/j.ast.2005.12.007.
Ellery (b0040) 2004; 218
doi: 10.1016/j.asr.2023.03.050.
Pontani, M., Ghosh, P., & Conway, B.A. (2012). Particle swarm optimization of multiple-burn rendezvous trajectories. Journal of Guidance, Control, and Dynamics, 35(4), 1192–1207. URL: doi: 10.2514/1.55592. doi:10.2514/1.55592. arXiv:https://doi.org/10.2514/1.55592.
Lyu, Liu, Yue (b0130) 2024
Xu, L., Zhang, G., Qiu, S. et al. (2024). Reinforcement learning-based multi-impulse rendezvous approach for satellite constellation reconfiguration. Acta Astronautica, 224, 325–337. URL
Ying, Wang, Hu (b0255) 2024
Lillicrap, T.P., Hunt, J.J., Pritzel, A. et al. (2015). Continuous control with deep reinforcement learning. CoRR, abs/1509.02971. URL: https://api.semanticscholar.org/CorpusID:16326763.
Wenzel, R.S., & Prussing, J.E., 1996. Preliminary study of optimal thrust-limited path-constrained maneuvers. J. Guidance, Control, Dynam., 19(6), 1303–1309. URL: doi: 10.2514/3.21786. arXiv:https://doi.org/10.2514/3.21786.
doi: 10.1016/j.asr.2022.08.002.
Yang, Z., Luo, Y.-Z., Zhang, J. et al. (2015). Homotopic perturbed lambert algorithm for long-duration rendezvous optimization. Journal of Guidance, Control, and Dynamics, 38(11), 2215–2223. URL: doi: 10.2514/1.G001198. doi:10.2514/1.G001198. arXiv:https://doi.org/10.2514/1.G001198.
Barth, Roach, Ma (b0015) 2025
Cong, Liu, Wei (b0035) 2024
Malyuta, Reynolds, Szmuk (b0150) 2022; 42
arXiv:https://spj.science.org/doi/pdf/10.34133/space.0047.
Gong, M., Zhou, D., Shao, C. et al., 2022. Optimal multiple-impulse time-fixed rendezvous using evolutionary algorithms. J. Spacecr. Rock., 59(2), 697–703. URL: doi: 10.2514/1.A34946. arXiv:https://doi.org/10.2514/1.A34946.
Scorsoglio, A., Furfaro, R., Linares, R. et al., 2023. Relative motion guidance for near-rectilinear lunar orbits with path constraints via actor-critic reinforcement learning. Advances in Space Research, 71(1), 316–335. URL
doi: 10.1016/j.actaastro.2024.08.029.
Avendaño, M., Martín-Molina, V., Martín-Morales, J. et al., 2016. Algebraic approach to the minimum-cost multi-impulse orbit-transfer problem. J. Guidance, Control, Dynam., 39(8), 1734–1743. URL: doi: 10.2514/1.G001598. arXiv:https://doi.org/10.2514/1.G001598.
Taur, D.-R., Coverstone-Carroll, V., & Prussing, J.E. (1995). Optimal impulsive time-fixed orbital rendezvous and interception with path constraints. Journal of Guidance, Control, and Dynamics, 18(1), 54–60. URL: doi: 10.2514/3.56656. doi:10.2514/3.56656. arXiv:https://doi.org/10.2514/3.56656.
Shirazi, A., Ceberio, J., & Lozano, J.A. (2019). An evolutionary discretized lambert approach for optimal long-range rendezvous considering impulse limit. Aerospace Science and Technology, 94, 105400. URL: https://www.sciencedirect.com/science/article/pii/S127096381931586X. doi: 10.1016/j.ast.2019.105400.
Zhao, L., Zhang, Y., Dang, Z., 2023. Prd-maddpg: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers. Adv. Space Res., 72(2), 211–230. URL
Garg, Setlur, Lipton (b0050) 2024; 36
doi: 10.1016/j.dt.2021.02.006.
Wang, Z., Bapst, V., Heess, N. et al., 2016. Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224.
Harutyunyan, Bellemare, Stepleton (b0070) 2016
Butikov, E.I., 2015. Orbital maneuvers and space rendezvous. Adv. Space Res., 56(11), 2582–2594. URL
Małkiński, Mańdziuk (b0145) 2022; 35
Lidtke, A.A., Lewis, H.G., Armellin, R. et al., 2017. Considering the collision probability of active debris removal missions. Acta Astronautica, 131, 10–17. URL: https://www.sciencedirect.com/science/article/pii/S0094576516305434. doi: 10.1016/j.actaastro.2016.11.012.
Petukhov (b0165) 2004; 42
Ma, Zhang (b0140) 2023
Schulman, J., Wolski, F., Dhariwal, P. et al., 2017. Proximal policy optimization algorithms. arXiv:1707.06347.
Yue, Y., Shan, H., Zhou, Z. et al., 2021. A fast calculation method for asteroid exploration window based on optimal and sub-optimal two-impulse transfer orbits. Acta Astronautica, 186, 171–182. URL
Abdelkhalik, O., Mortari, D., 2007. N-impulse orbit transfer using genetic algorithms. J. Spacecr. Rock., 44(2), 456–460. doi:10.2514/1.24701. arXiv:https://doi.org/10.2514/1.24701.
Haarnoja, Zhou, Abbeel (b0065) 2018
Yang, L., Li, H., Li, X. et al. (2022b). A reinforcement learning method to trajectory design for manned lunar mission via reshaping rewards. In International Conference on Guidance, Navigation and Control (pp. 5318–5329). Springer.
Wu, Tan, Li (b0225) 2019; 21
10.1016/j.asr.2025.02.049_b0215
Cong (10.1016/j.asr.2025.02.049_b0035) 2024
Espeholt (10.1016/j.asr.2025.02.049_b0045) 2018
Malyuta (10.1016/j.asr.2025.02.049_b0150) 2022; 42
10.1016/j.asr.2025.02.049_b0090
10.1016/j.asr.2025.02.049_b0170
10.1016/j.asr.2025.02.049_b0250
10.1016/j.asr.2025.02.049_b0055
10.1016/j.asr.2025.02.049_b0010
10.1016/j.asr.2025.02.049_b0175
10.1016/j.asr.2025.02.049_b0210
Khadka (10.1016/j.asr.2025.02.049_b0095) 2018
10.1016/j.asr.2025.02.049_b0135
10.1016/j.asr.2025.02.049_b0105
Wu (10.1016/j.asr.2025.02.049_b0225) 2019; 21
Garg (10.1016/j.asr.2025.02.049_b0050) 2024; 36
Zhang (10.1016/j.asr.2025.02.049_b0265) 2023; 1–13
10.1016/j.asr.2025.02.049_b0060
Petukhov (10.1016/j.asr.2025.02.049_b0165) 2004; 42
10.1016/j.asr.2025.02.049_b0180
Li (10.1016/j.asr.2025.02.049_b0100) 2024
10.1016/j.asr.2025.02.049_b0260
10.1016/j.asr.2025.02.049_b0020
10.1016/j.asr.2025.02.049_b0185
10.1016/j.asr.2025.02.049_b0220
10.1016/j.asr.2025.02.049_b0025
10.1016/j.asr.2025.02.049_b0115
Lu (10.1016/j.asr.2025.02.049_b0120) 2024
Barth (10.1016/j.asr.2025.02.049_b0015) 2025
10.1016/j.asr.2025.02.049_b0190
10.1016/j.asr.2025.02.049_b0075
10.1016/j.asr.2025.02.049_b0030
10.1016/j.asr.2025.02.049_b0110
10.1016/j.asr.2025.02.049_b0275
10.1016/j.asr.2025.02.049_b0230
10.1016/j.asr.2025.02.049_b0155
10.1016/j.asr.2025.02.049_b0235
10.1016/j.asr.2025.02.049_b0005
10.1016/j.asr.2025.02.049_b0205
Zhang (10.1016/j.asr.2025.02.049_b0270) 2022; 35
Ellery (10.1016/j.asr.2025.02.049_b0040) 2004; 218
Haarnoja (10.1016/j.asr.2025.02.049_b0065) 2018
Ying (10.1016/j.asr.2025.02.049_b0255) 2024
Małkiński (10.1016/j.asr.2025.02.049_b0145) 2022; 35
Shen (10.1016/j.asr.2025.02.049_b0195) 2015; 62
10.1016/j.asr.2025.02.049_b0080
10.1016/j.asr.2025.02.049_b0280
Lyu (10.1016/j.asr.2025.02.049_b0130) 2024
10.1016/j.asr.2025.02.049_b0160
10.1016/j.asr.2025.02.049_b0240
10.1016/j.asr.2025.02.049_b0085
10.1016/j.asr.2025.02.049_b0200
Harutyunyan (10.1016/j.asr.2025.02.049_b0070) 2016
10.1016/j.asr.2025.02.049_b0125
Ma (10.1016/j.asr.2025.02.049_b0140) 2023
10.1016/j.asr.2025.02.049_b0245
References_xml – volume: 218
  start-page: 79
  year: 2004
  end-page: 98
  ident: b0040
  article-title: An engineering approach to the dynamic control of space robotic on-orbit servicers
  publication-title: Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
– reference: Yue, Y., Shan, H., Zhou, Z. et al., 2021. A fast calculation method for asteroid exploration window based on optimal and sub-optimal two-impulse transfer orbits. Acta Astronautica, 186, 171–182. URL:
– volume: 36
  year: 2024
  ident: b0050
  article-title: Complementary benefits of contrastive learning and self-training under distribution shift
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 35
  start-page: 1941
  year: 2022
  end-page: 1953
  ident: b0145
  article-title: Multi-label contrastive learning for abstract visual reasoning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– reference: Taur, D.-R., Coverstone-Carroll, V., & Prussing, J.E. (1995). Optimal impulsive time-fixed orbital rendezvous and interception with path constraints. Journal of Guidance, Control, and Dynamics, 18(1), 54–60. URL: doi: 10.2514/3.56656. doi:10.2514/3.56656. arXiv:https://doi.org/10.2514/3.56656.
– reference: Yang, B., Li, S., Feng, J. et al. (2022a). Fast solver for j2-perturbed lambert problem using deep neural network. J. Guidance, Control, Dynam., 45(5), 875–884. URL: doi: 10.2514/1.G006091. doi:10.2514/1.G006091. arXiv:https://doi.org/10.2514/1.G006091.
– reference: Zhao, L., Zhang, Y., Dang, Z., 2023. Prd-maddpg: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers. Adv. Space Res., 72(2), 211–230. URL:
– reference: Wenzel, R.S., & Prussing, J.E., 1996. Preliminary study of optimal thrust-limited path-constrained maneuvers. J. Guidance, Control, Dynam., 19(6), 1303–1309. URL: doi: 10.2514/3.21786. arXiv:https://doi.org/10.2514/3.21786.
– reference: Scorsoglio, A., Furfaro, R., Linares, R. et al., 2023. Relative motion guidance for near-rectilinear lunar orbits with path constraints via actor-critic reinforcement learning. Advances in Space Research, 71(1), 316–335. URL:
– reference: . arXiv:https://spj.science.org/doi/pdf/10.34133/space.0086.
– reference: Luo, Y.-Z., Tang, G.-J., & yang Li, H. (2006). Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm. Aerospace Science and Technology, 10(6), 534–540. URL: https://www.sciencedirect.com/science/article/pii/S1270963806000162. doi: 10.1016/j.ast.2005.12.007.
– reference: Shirazi, A., Ceberio, J., & Lozano, J.A. (2019). An evolutionary discretized lambert approach for optimal long-range rendezvous considering impulse limit. Aerospace Science and Technology, 94, 105400. URL: https://www.sciencedirect.com/science/article/pii/S127096381931586X. doi: 10.1016/j.ast.2019.105400.
– start-page: 1
  year: 2024
  end-page: 12
  ident: b0130
  article-title: Integrated predictor-observer feedback control for vibration mitigation of large-scale spacecraft with unbounded input time delay
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– reference: Yang, Z., Luo, Y.-Z., Zhang, J. et al. (2015). Homotopic perturbed lambert algorithm for long-duration rendezvous optimization. Journal of Guidance, Control, and Dynamics, 38(11), 2215–2223. URL: doi: 10.2514/1.G001198. doi:10.2514/1.G001198. arXiv:https://doi.org/10.2514/1.G001198.
– reference: Yang, L., Li, H., Li, X. et al. (2022b). A reinforcement learning method to trajectory design for manned lunar mission via reshaping rewards. In International Conference on Guidance, Navigation and Control (pp. 5318–5329). Springer.
– reference: Hong, Y., Xin-hong, L., & Wen-zhe, D. (2022). Interception time and uncertainty optimization for tangent-impulse orbit interception problem. Defence Technol., 18(3), 418–440. URL:
– volume: 1–13
  year: 2023
  ident: b0265
  article-title: Covariance analysis of the optimal orbital interception with navigation errors
  publication-title: IEEE Trans. Aerospace Electron. Syst., PP
– reference: Wang, Z., Bapst, V., Heess, N. et al., 2016. Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224.
– reference: Lyu, B., Yue, X., & Liu, C. (2022). Constrained multi-observer-based fault-tolerant disturbance-rejection control for rigid spacecraft. International Journal of Robust and Nonlinear Control, 32(14), 8102–8133. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6270. doi: 10.1002/rnc.6270. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6270.
– volume: 62
  start-page: 212
  year: 2015
  end-page: 232
  ident: b0195
  article-title: Global search capabilities of indirect methods for impulsive transfers
  publication-title: J. Astronaut. Sci.
– reference: Kaplanis, C., Shanahan, M., Clopath, C., 2019. Policy consolidation for continual reinforcement learning. arXiv preprint arXiv:1902.00255.
– reference: Battin, R.H., 1987. An introduction to the mathematics and methods of astrodynamics. URL:
– volume: 42
  start-page: 250
  year: 2004
  end-page: 268
  ident: b0165
  article-title: Optimization of multi-orbit transfers between noncoplanar elliptic orbits
  publication-title: Cosm. Res.
– reference: Guffanti, T., Gammelli, D., D’Amico, S. et al., 2024. Transformers for trajectory optimization with application to spacecraft rendezvous. (pp. 1–13). doi:10.1109/AERO58975.2024.10521334.
– start-page: 1
  year: 2024
  end-page: 15
  ident: b0100
  article-title: Deep reinforcement learning for nash equilibrium of differential games
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Xu, L., Zhang, G., Qiu, S. et al., 2023. Optimal multi-impulse linear rendezvous via reinforcement learning. Space: Science & Technology, 3, 0047. URL:
– reference: Avendaño, M., Martín-Molina, V., Martín-Morales, J. et al., 2016. Algebraic approach to the minimum-cost multi-impulse orbit-transfer problem. J. Guidance, Control, Dynam., 39(8), 1734–1743. URL: doi: 10.2514/1.G001598. arXiv:https://doi.org/10.2514/1.G001598.
– start-page: 1
  year: 2024
  end-page: 17
  ident: b0120
  article-title: Intelligent decision-making approach for contingency return trajectory based on production rule base and deep learning
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– reference: . doi: 10.1016/j.ast.2018.01.003.
– reference: Lidtke, A.A., Lewis, H.G., Armellin, R. et al., 2017. Considering the collision probability of active debris removal missions. Acta Astronautica, 131, 10–17. URL: https://www.sciencedirect.com/science/article/pii/S0094576516305434. doi: 10.1016/j.actaastro.2016.11.012.
– reference: Schulman, J., Wolski, F., Dhariwal, P. et al., 2017. Proximal policy optimization algorithms. arXiv:1707.06347.
– reference: Zhang, G., Mortari, D., Zhou, D., 2010. Constrained multiple-revolution lambert’s problem. J. Guidance, Control, Dynam., 33(6), 1779–1786. URL: doi: 10.2514/1.49683. arXiv:https://doi.org/10.2514/1.49683.
– start-page: 31
  year: 2018
  ident: b0095
  article-title: Evolution-guided policy gradient in reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– reference: . doi: 10.1016/j.asr.2022.08.002.
– start-page: 3966
  year: 2024
  end-page: 3976
  ident: b0255
  article-title: Unsupervised generative feature transformation via graph contrastive pre-training and multi-objective fine-tuning
  publication-title: In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– reference: . doi: 10.1016/j.asr.2023.03.050.
– reference: Liang, H., Wang, J., Liu, J. et al., 2020. Guidance strategies for interceptor against active defense spacecraft in two-on-two engagement. Aerospace Science and Technology, 96, 105529. URL: https://www.sciencedirect.com/science/article/pii/S1270963819311964. doi: 10.1016/j.ast.2019.105529.
– reference: Chen, Z., Tang, S., 2018. Neighboring optimal control for open-time multiburn orbital transfers. Aerospace Sci. Technol., 74, 37–45. URL:
– reference: Butikov, E.I., 2015. Orbital maneuvers and space rendezvous. Adv. Space Res., 56(11), 2582–2594. URL:
– year: 2023
  ident: b0140
  article-title: Fast calculation method for mission opportunities in orbital interception and rendezvous problems
  publication-title: Chin. J. Aeronaut.
– reference: . doi: 10.1016/j.dt.2021.02.006.
– reference: . doi: 10.1016/j.actaastro.2021.05.002.
– reference: Ryoo, C.-K., Cho, H., & Tahk, M.-J. (2005). Optimal guidance laws with terminal impact angle constraint. Journal of Guidance, Control, and Dynamics, 28(4), 724–732. URL: doi: 10.2514/1.8392. doi:10.2514/1.8392. arXiv:https://doi.org/10.2514/1.8392.
– reference: . doi: 10.1016/j.asr.2015.09.014.
– reference: Peloni, A., Rao, A.V., & Ceriotti, M. (2018). Automated trajectory optimizer for solar sailing (atoss). Aerospace Science and Technology, 72, 465–475. URL: https://www.sciencedirect.com/science/article/pii/S1270963817315869. doi: 10.1016/j.ast.2017.11.025.
– start-page: 1
  year: 2024
  end-page: 24
  ident: b0035
  article-title: Observation method for autonomous maneuver of spacecraft under emergency conditions
  publication-title: Dynamic Games Appl.
– reference: Oghim, S., Leeghim, H., & Kim, D. (2019). Real-time spacecraft intercept strategy on j2-perturbed orbits. Advances in Space Research, 63(2), 1007–1016. URL: https://www.sciencedirect.com/science/article/pii/S027311771830721X. doi: 10.1016/j.asr.2018.09.023.
– start-page: 305
  year: 2016
  end-page: 320
  ident: b0070
  article-title: Q ( ) with off-policy corrections
  publication-title: In International Conference on Algorithmic Learning Theory
– volume: 21
  year: 2019
  ident: b0225
  article-title: Multi-objective optimization for time-open lambert rendezvous between non-coplanar orbits
  publication-title: Int. J. Aeronaut. Space Sci.
– reference: . doi: 10.1016/j.asr.2023.03.014.
– reference: Xu, L., Zhang, G., Qiu, S. et al. (2024). Reinforcement learning-based multi-impulse rendezvous approach for satellite constellation reconfiguration. Acta Astronautica, 224, 325–337. URL:
– start-page: 1861
  year: 2018
  end-page: 1870
  ident: b0065
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
  publication-title: International conference on machine learning
– start-page: 1003
  year: 2025
  ident: b0015
  article-title: Machine learning-based optimal trajectory planning for spacecraft passively flying around a satellite for proximity operations
  publication-title: AIAA SCITECH 2025 Forum
– start-page: 1407
  year: 2018
  end-page: 1416
  ident: b0045
  article-title: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures
  publication-title: International conference on machine learning
– volume: 42
  start-page: 40
  year: 2022
  end-page: 113
  ident: b0150
  article-title: Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently
  publication-title: IEEE Control Syst. Mag.
– reference: Tang, D., & Gong, S. (2023). Trajectory optimization of rocket recovery based on neural network and genetic algorithm. Advances in Space Research, 72(8), 3344–3356. URL: https://www.sciencedirect.com/science/article/pii/S027311772300563X. doi: 10.1016/j.asr.2023.07.028.
– reference: .
– reference: Jiang, R., Ye, D., Xiao, Y. et al. (2023). Orbital interception pursuit strategy for random evasion using deep reinforcement learning. Space: Sci. Technol., 3, 0086. URL:
– reference: Lillicrap, T.P., Hunt, J.J., Pritzel, A. et al. (2015). Continuous control with deep reinforcement learning. CoRR, abs/1509.02971. URL: https://api.semanticscholar.org/CorpusID:16326763.
– reference: Abdelkhalik, O., Mortari, D., 2007. N-impulse orbit transfer using genetic algorithms. J. Spacecr. Rock., 44(2), 456–460. doi:10.2514/1.24701. arXiv:https://doi.org/10.2514/1.24701.
– reference: Poozhiyil, M., Nair, M.H., Rai, M.C. et al. (2023). Active debris removal: A review and case study on leopard phase 0-a mission. Advances in Space Research, 72(8), 3386–3413. URL: https://www.sciencedirect.com/science/article/pii/S0273117723004453. doi: 10.1016/j.asr.2023.06.015.
– reference: . doi: 10.1016/j.actaastro.2024.08.029.
– reference: Gong, M., Zhou, D., Shao, C. et al., 2022. Optimal multiple-impulse time-fixed rendezvous using evolutionary algorithms. J. Spacecr. Rock., 59(2), 697–703. URL: doi: 10.2514/1.A34946. arXiv:https://doi.org/10.2514/1.A34946.
– volume: 35
  start-page: 04022066
  year: 2022
  ident: b0270
  article-title: Lambert’s problem with multiple constraints
  publication-title: J. Aerospace Eng.
– reference: . arXiv:https://spj.science.org/doi/pdf/10.34133/space.0047.
– reference: Hu, J., Yang, H., Li, S. et al., 2023. Densely rewarded reinforcement learning for robust low-thrust trajectory optimization. Adv. Space Res., 72(4), 964–981. URL:
– reference: Pontani, M., Ghosh, P., & Conway, B.A. (2012). Particle swarm optimization of multiple-burn rendezvous trajectories. Journal of Guidance, Control, and Dynamics, 35(4), 1192–1207. URL: doi: 10.2514/1.55592. doi:10.2514/1.55592. arXiv:https://doi.org/10.2514/1.55592.
– ident: 10.1016/j.asr.2025.02.049_b0175
  doi: 10.1016/j.asr.2023.06.015
– ident: 10.1016/j.asr.2025.02.049_b0215
– ident: 10.1016/j.asr.2025.02.049_b0200
  doi: 10.1016/j.ast.2019.105400
– ident: 10.1016/j.asr.2025.02.049_b0135
  doi: 10.1002/rnc.6270
– ident: 10.1016/j.asr.2025.02.049_b0245
  doi: 10.1007/978-981-19-6613-2_514
– volume: 21
  year: 2019
  ident: 10.1016/j.asr.2025.02.049_b0225
  article-title: Multi-objective optimization for time-open lambert rendezvous between non-coplanar orbits
  publication-title: Int. J. Aeronaut. Space Sci.
– start-page: 1
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0100
  article-title: Deep reinforcement learning for nash equilibrium of differential games
– ident: 10.1016/j.asr.2025.02.049_b0240
  doi: 10.2514/1.G006091
– ident: 10.1016/j.asr.2025.02.049_b0075
  doi: 10.1016/j.dt.2021.02.006
– ident: 10.1016/j.asr.2025.02.049_b0105
  doi: 10.1016/j.ast.2019.105529
– ident: 10.1016/j.asr.2025.02.049_b0250
  doi: 10.2514/1.G001198
– start-page: 1
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0035
  article-title: Observation method for autonomous maneuver of spacecraft under emergency conditions
  publication-title: Dynamic Games Appl.
– ident: 10.1016/j.asr.2025.02.049_b0025
  doi: 10.1016/j.asr.2015.09.014
– ident: 10.1016/j.asr.2025.02.049_b0085
  doi: 10.34133/space.0086
– start-page: 1003
  year: 2025
  ident: 10.1016/j.asr.2025.02.049_b0015
  article-title: Machine learning-based optimal trajectory planning for spacecraft passively flying around a satellite for proximity operations
– volume: 1–13
  year: 2023
  ident: 10.1016/j.asr.2025.02.049_b0265
  article-title: Covariance analysis of the optimal orbital interception with navigation errors
  publication-title: IEEE Trans. Aerospace Electron. Syst., PP
– volume: 36
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0050
  article-title: Complementary benefits of contrastive learning and self-training under distribution shift
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.asr.2025.02.049_b0055
  doi: 10.2514/1.A34946
– ident: 10.1016/j.asr.2025.02.049_b0005
  doi: 10.2514/1.24701
– ident: 10.1016/j.asr.2025.02.049_b0115
– ident: 10.1016/j.asr.2025.02.049_b0190
  doi: 10.1016/j.asr.2022.08.002
– year: 2023
  ident: 10.1016/j.asr.2025.02.049_b0140
  article-title: Fast calculation method for mission opportunities in orbital interception and rendezvous problems
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2023.03.021
– ident: 10.1016/j.asr.2025.02.049_b0230
  doi: 10.34133/space.0047
– ident: 10.1016/j.asr.2025.02.049_b0155
  doi: 10.1016/j.asr.2018.09.023
– ident: 10.1016/j.asr.2025.02.049_b0060
  doi: 10.1109/AERO58975.2024.10521334
– ident: 10.1016/j.asr.2025.02.049_b0235
  doi: 10.1016/j.actaastro.2024.08.029
– ident: 10.1016/j.asr.2025.02.049_b0275
  doi: 10.2514/1.49683
– ident: 10.1016/j.asr.2025.02.049_b0260
  doi: 10.1016/j.actaastro.2021.05.002
– ident: 10.1016/j.asr.2025.02.049_b0185
– ident: 10.1016/j.asr.2025.02.049_b0030
  doi: 10.1016/j.ast.2018.01.003
– volume: 42
  start-page: 40
  issue: 5
  year: 2022
  ident: 10.1016/j.asr.2025.02.049_b0150
  article-title: Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2022.3187542
– volume: 62
  start-page: 212
  year: 2015
  ident: 10.1016/j.asr.2025.02.049_b0195
  article-title: Global search capabilities of indirect methods for impulsive transfers
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/s40295-015-0073-x
– start-page: 31
  year: 2018
  ident: 10.1016/j.asr.2025.02.049_b0095
  article-title: Evolution-guided policy gradient in reinforcement learning
– start-page: 1
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0130
  article-title: Integrated predictor-observer feedback control for vibration mitigation of large-scale spacecraft with unbounded input time delay
– ident: 10.1016/j.asr.2025.02.049_b0220
  doi: 10.2514/3.21786
– ident: 10.1016/j.asr.2025.02.049_b0170
  doi: 10.2514/1.55592
– ident: 10.1016/j.asr.2025.02.049_b0020
– start-page: 3966
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0255
  article-title: Unsupervised generative feature transformation via graph contrastive pre-training and multi-objective fine-tuning
– start-page: 1407
  year: 2018
  ident: 10.1016/j.asr.2025.02.049_b0045
  article-title: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures
– ident: 10.1016/j.asr.2025.02.049_b0110
  doi: 10.1016/j.actaastro.2016.11.012
– ident: 10.1016/j.asr.2025.02.049_b0280
  doi: 10.1016/j.asr.2023.03.014
– volume: 218
  start-page: 79
  issue: 2
  year: 2004
  ident: 10.1016/j.asr.2025.02.049_b0040
  article-title: An engineering approach to the dynamic control of space robotic on-orbit servicers
  publication-title: Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
  doi: 10.1243/0954410041321998
– ident: 10.1016/j.asr.2025.02.049_b0180
  doi: 10.2514/1.8392
– start-page: 305
  year: 2016
  ident: 10.1016/j.asr.2025.02.049_b0070
  article-title: Q ( ) with off-policy corrections
– ident: 10.1016/j.asr.2025.02.049_b0010
  doi: 10.2514/1.G001598
– start-page: 1861
  year: 2018
  ident: 10.1016/j.asr.2025.02.049_b0065
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– volume: 42
  start-page: 250
  year: 2004
  ident: 10.1016/j.asr.2025.02.049_b0165
  article-title: Optimization of multi-orbit transfers between noncoplanar elliptic orbits
  publication-title: Cosm. Res.
  doi: 10.1023/B:COSM.0000033300.18460.a4
– ident: 10.1016/j.asr.2025.02.049_b0125
  doi: 10.1016/j.ast.2005.12.007
– ident: 10.1016/j.asr.2025.02.049_b0090
– ident: 10.1016/j.asr.2025.02.049_b0205
  doi: 10.1016/j.asr.2023.07.028
– volume: 35
  start-page: 04022066
  issue: 5
  year: 2022
  ident: 10.1016/j.asr.2025.02.049_b0270
  article-title: Lambert’s problem with multiple constraints
  publication-title: J. Aerospace Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0001464
– volume: 35
  start-page: 1941
  issue: 2
  year: 2022
  ident: 10.1016/j.asr.2025.02.049_b0145
  article-title: Multi-label contrastive learning for abstract visual reasoning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2022.3185949
– ident: 10.1016/j.asr.2025.02.049_b0210
  doi: 10.2514/3.56656
– ident: 10.1016/j.asr.2025.02.049_b0080
  doi: 10.1016/j.asr.2023.03.050
– start-page: 1
  year: 2024
  ident: 10.1016/j.asr.2025.02.049_b0120
  article-title: Intelligent decision-making approach for contingency return trajectory based on production rule base and deep learning
– ident: 10.1016/j.asr.2025.02.049_b0160
  doi: 10.1016/j.ast.2017.11.025
SSID ssj0012770
Score 2.4331164
Snippet Multi-impulse transfers between noncoplanar orbits are significant for on-orbit service spacecraft. This paper investigates the complex optimization problem of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 7377
SubjectTerms Contrastive-pretrained reinforcement learning
Efficient orbital transfer
Trajectory optimization
Title Efficient fuel-optimal multi-impulse orbital transfer via contrastive pre-trained reinforcement learning
URI https://dx.doi.org/10.1016/j.asr.2025.02.049
Volume 75
WOSCitedRecordID wos001488478700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0273-1177
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012770
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZgAwkOCApoGz_kA-IAMmrsuE6OFSoMDtMEQ-otchwHOq1p1TTT-O_3nu203gYSIHGJXKtJLb-vL5-fn99HyCtgxMmwhj-gKWvD0mwkGbyGJNMy4zqt8qRMtRObUEdH2XSaH4ftgtbJCaimyS4u8uV_NTX0gbHx6OxfmHvzUOiANhgdrmB2uP6R4SeuKISrudTZM7YAnzDHIyKYOchm82V35sScSlQLQYUI4K129fZ8pn3aum5dMhFmhzj5CIvHW1x5VeMiib3OxPeY1o59JoHLrQUXZVCLJQqT4YaOd2-HGxx97Lxetsa8_cU2fh1ShL90szggAXbFWqZyGyW7cVLGOTOgSQw3iGPP6zVTeoQNIz-qRPimDR-97O0Nf-9DD6fvdIu1Xbl09Vd9DdRrZbS_4ghwAMD5hrCsnd4mu1zJHDzh7vjTZPp5s_fElfKRuTDifi_cZQVe-6Ffs5mIoZw8JA_C0oKOPSQekVu2GZC9cYubHYv5T_qauraPZbUDcj-qRTkgd499_2PyY4MgGiOIXkEQDQiiPYIoIIhGCKIRgugVBNEeQU_Itw-Tk_eHLAhyMAM0eM0EVwbenrDEETiXibTSSFGJTFurgRkqKzKTVBk3qk4r5Mo1FzoxpszhxVtp8ZTsNIvG7hEqSlvrcjRSeV6lKTRrneETlYYFCq_KffKmn9hi6euuFH1C4mkBVijQCsWQF2CFfZL2U18E4ugJYQE4-f1tB_922zNybwv752RnversC3LHnK9n7eplQNMloY6V_Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+fuel-optimal+multi-impulse+orbital+transfer+via+contrastive+pre-trained+reinforcement+learning&rft.jtitle=Advances+in+space+research&rft.au=Ren%2C+He&rft.au=Gui%2C+Haichao&rft.au=Zhong%2C+Rui&rft.date=2025-05-15&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.volume=75&rft.issue=10&rft.spage=7377&rft.epage=7396&rft_id=info:doi/10.1016%2Fj.asr.2025.02.049&rft.externalDocID=S027311772500184X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon