Data-driven optimization for ride-sourcing vehicle dispatching and relocation under demand and travel time uncertainty

The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part C, Emerging technologies Jg. 178; S. 105217
Hauptverfasser: Huang, Yunping, Zheng, Nan, Huang, Zheng, Liang, Enming, Hsu, Shu-Chien, Zhong, Renxin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:0968-090X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of the problem. However, uncertain demand and dynamic travel time subject to traffic congestion can significantly affect optimal solutions. To meet these challenges, this article adopts a regional-level formulation and estimates network-level travel time with functional data analysis that captures the dynamics and stochasticity of travel time. We then propose a multi-stage decision model to address the dispatching and relocation decisions of a fleet of vehicles for a centralized platform. Furthermore, we formulate the problem as a stochastic programming model to account for spatial–temporal uncertainties in customer demand. We develop an Approximate Dynamic Programming (ADP) based approach to solve multi-stage decisions efficiently. To evaluate the effectiveness of our algorithm, we use a simulator based on New York City (NYC) yellow taxi data and the Manhattan road network. Numerical studies demonstrate that the incorporation of dynamic travel time is beneficial to improve system profit compared to using mean historical travel times. The ADP can significantly improve the total system profit compared to several popular decision practices. •Model network-based congestion and estimate time-dependent travel times using FDA•Develop a multi-stage decision model for dispatching and relocation optimization•Data-driven approximate dynamic programming algorithm to approximate value function•Demonstrate the benefits of incorporating time-dependent travel time
AbstractList The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of the problem. However, uncertain demand and dynamic travel time subject to traffic congestion can significantly affect optimal solutions. To meet these challenges, this article adopts a regional-level formulation and estimates network-level travel time with functional data analysis that captures the dynamics and stochasticity of travel time. We then propose a multi-stage decision model to address the dispatching and relocation decisions of a fleet of vehicles for a centralized platform. Furthermore, we formulate the problem as a stochastic programming model to account for spatial–temporal uncertainties in customer demand. We develop an Approximate Dynamic Programming (ADP) based approach to solve multi-stage decisions efficiently. To evaluate the effectiveness of our algorithm, we use a simulator based on New York City (NYC) yellow taxi data and the Manhattan road network. Numerical studies demonstrate that the incorporation of dynamic travel time is beneficial to improve system profit compared to using mean historical travel times. The ADP can significantly improve the total system profit compared to several popular decision practices. •Model network-based congestion and estimate time-dependent travel times using FDA•Develop a multi-stage decision model for dispatching and relocation optimization•Data-driven approximate dynamic programming algorithm to approximate value function•Demonstrate the benefits of incorporating time-dependent travel time
ArticleNumber 105217
Author Hsu, Shu-Chien
Huang, Yunping
Liang, Enming
Huang, Zheng
Zheng, Nan
Zhong, Renxin
Author_xml – sequence: 1
  givenname: Yunping
  orcidid: 0000-0002-5107-6887
  surname: Huang
  fullname: Huang, Yunping
  email: yunping.huang@connect.polyu.hk
  organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
– sequence: 2
  givenname: Nan
  surname: Zheng
  fullname: Zheng, Nan
  email: Nan.Zheng@monash.edu
  organization: Institute of Transport Studies, Department of Civil Engineering, Monash University, Australia
– sequence: 3
  givenname: Zheng
  surname: Huang
  fullname: Huang, Zheng
  email: huangzh227@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
– sequence: 4
  givenname: Enming
  orcidid: 0000-0003-0283-0676
  surname: Liang
  fullname: Liang, Enming
  email: eliang4-c@my.cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong, Hong Kong Special Administrative Region of China
– sequence: 5
  givenname: Shu-Chien
  orcidid: 0000-0002-7232-9839
  surname: Hsu
  fullname: Hsu, Shu-Chien
  email: mark.hsu@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
– sequence: 6
  givenname: Renxin
  orcidid: 0000-0003-1559-7287
  surname: Zhong
  fullname: Zhong, Renxin
  email: zhrenxin@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
BookMark eNp9kE1qwzAQhbVIoUnaA3SnCziVZMux6aqkPykEummhOyFLo0bBkYKkGNLTV8ZdF2YY5g3f8HgLNHPeAUJ3lKwoofX9YZWCWjHCeN45o-sZmpO2bgrSkq9rtIjxQAihLV_P0fAkkyx0sAM47E_JHu2PTNY7bHzAwWoooj8HZd03HmBvVQ9Y23iSSe1HTTqNA_ReTdDZaQhYw3HUx05BDtDj_BfyUUFI0rp0uUFXRvYRbv_mEn2-PH9stsXu_fVt87grFOM0Fcyw0lScdK0iRipWQVcxaHRTGwDedCUvNSekbU0u1RpWdbQEXhta0o6UqlwiOv1VwccYwIhTsEcZLoISMYYlDiKHJcawxBRWZh4mBrKxwUIQUVnI3rUNoJLQ3v5D_wJXPnlg
Cites_doi 10.1016/j.trc.2022.103759
10.1016/j.trc.2021.103157
10.1016/j.asoc.2021.107663
10.1145/3357384.3357978
10.1016/j.jue.2013.01.001
10.1016/j.trb.2019.05.005
10.1016/j.trb.2019.01.017
10.1016/j.tre.2024.103754
10.1016/j.trc.2017.08.021
10.1016/j.tre.2022.102835
10.1016/j.trb.2017.08.023
10.1016/j.trb.2017.04.004
10.1016/j.trb.2017.12.003
10.1145/3219819.3219824
10.1016/j.ejtl.2020.100008
10.1016/j.trc.2021.103505
10.1287/trsc.2023.0091
10.1016/j.trc.2024.104717
10.1016/j.trc.2017.08.011
10.1109/TNNLS.2021.3060187
10.1016/j.trb.2017.04.002
10.1016/j.trc.2019.12.005
10.1016/j.ecotra.2015.08.001
10.1016/j.trb.2019.11.002
10.1016/j.trc.2020.102725
10.1016/j.trc.2023.104158
10.1016/j.trc.2021.103190
10.1016/j.ecotra.2016.11.001
10.1016/j.trb.2021.01.004
10.1016/j.trc.2021.103076
10.1109/TITS.2020.2994347
10.1109/TBDATA.2018.2875524
10.1016/j.trc.2023.104159
10.1109/TCST.2023.3286330
10.1016/j.trc.2020.102890
10.1177/0361198119843472
10.1016/j.eastsj.2022.100081
10.1177/0042098020919323
10.1016/j.trb.2019.07.009
10.1016/j.trc.2022.103852
10.1016/j.trb.2019.02.014
10.1016/j.physa.2024.129691
10.1145/2735960.2735961
10.1016/j.trb.2018.12.013
10.1016/j.trb.2023.102821
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2025.105217
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_trc_2025_105217
S0968090X25002219
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AOUOD
APLSM
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-2f23f450b9c0fac24eb42e8d86fee58b353d50099f99fc9f24b13e56f131b03c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Sat Nov 29 07:34:24 EST 2025
Sat Oct 04 17:00:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Approximate dynamic programming
Uncertain demand
Time-dependent travel time
Dispatching and relocation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-2f23f450b9c0fac24eb42e8d86fee58b353d50099f99fc9f24b13e56f131b03c3
ORCID 0000-0002-7232-9839
0000-0002-5107-6887
0000-0003-0283-0676
0000-0003-1559-7287
ParticipantIDs crossref_primary_10_1016_j_trc_2025_105217
elsevier_sciencedirect_doi_10_1016_j_trc_2025_105217
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maljkovic, Nilsson, Geroliminis (b31) 2023; 31
Zhong, Xiong, Huang, Zheng, Lam, Pan, He (b55) 2021; 128
Zhong, Sumalee, Pan, Lam (b52) 2014; 10
Li, Lam, Tam, Zhong, Ma (b27) 2022; 8
Sirmatel, Tsitsokas, Kouvelas, Geroliminis (b42) 2021; 128
Zhong, Xiong, Huang, Sumalee, Chow, Pan (b54) 2020; 21
Ulmer, Goodson, Mattfeld, Thomas (b44) 2020; 9
Arnott (b3) 2013; 76
Arnott, Buli (b4) 2018; 109
Beojone, Geroliminis (b8) 2023; 177
Zhang, Rossi, Pavone (b50) 2016
Ramezani, Valadkhani (b40) 2023; 152
Zhu, Sirmatel, Ferrari-Trecate, Geroliminis (b58) 2024
Yu, Gao, Hu, Park (b49) 2019; 121
Liu, Miller (b29) 2021; 58
Huang, Zheng, Zhang (b20) 2019; 2673
Chen, Huang, Lam, Pan, Hsu, Sumalee, Zhong (b12) 2021
Chen, Huang, Lam, Pan, Hsu, Sumalee, Zhong (b13) 2022; 142
Huang, Chen, Su, Chen, Sumalee, Pan, Zhong (b17) 2021; 111
Alisoltani, Leclercq, Zargayouna (b1) 2021; 145
Fu, Wang, Tang, Zheng, Geroliminis (b15) 2020; 118
Powell (b37) 2022
Huang, Xiong, Sumalee, Zheng, Lam, He, Zhong (b19) 2020; 131
Zhong, Xie, Luo, Pan, Lam, Sumalee (b53) 2020; 132
Fosgerau (b14) 2015; 4
Valadkhani, Ramezani (b45) 2023; 152
Beojone, Geroliminis (b7) 2021; 124
Ramezani, Nourinejad (b39) 2018; 94
Vezhnevets, Osindero, Schaul, Heess, Jaderberg, Silver, Kavukcuoglu (b46) 2017
Miao, F., Lin, S., Munir, S., Stankovic, J.A., Huang, H., Zhang, D., He, T., Pappas, G.J., 2015. Taxi dispatch with real-time sensing data in metropolitan areas: A receding horizon control approach. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. pp. 100–109.
Qin, Zhu, Ye (b38) 2022; 144
Huang, Xiong, Hsu, Sumalee, Lam, Zhong (b18) 2024
Bongiovanni, Kaspi, Cordeau, Geroliminis (b10) 2022; 165
Nguyen, Kumar, Lau (b35) 2018; 31
Batista, Leclercq, Menéndez (b6) 2021; 127
Huang, Zhu, Zhong, Geroliminis (b21) 2024; 192
Wang, Yang (b47) 2019; 129
Zhou, Rong, Yang, Zhang, Khezerlou, Zheng, Shafiq, Liu (b56) 2020; 6
Oda, Joe-Wong (b36) 2018
Zhong, Luo, Cai, Sumalee, Yuan, Chow (b51) 2017; 85
Tang, Qin, Zhang, Wang, Xu, Ma, Zhu, Ye (b43) 2019
Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye, J., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 905–913.
Arnott, Kokoza, Naji (b5) 2016; 7
Mariotte, Leclercq, Laval (b33) 2017; 101
Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1983–1992.
Lee, Jiang, Ceder, Dauwels, Su, Nielsen (b25) 2022; 136
Hildebrandt, Thomas, Ulmer (b16) 2021
Lei, Jiang, Ouyang (b26) 2020; 132
Ma, Huang, Jin, Zhong (b30) 2024; 640
Beojone, Zhu, Sirmatel, Geroliminis (b9) 2024
Zhu, Ferrari-Trecate, Geroliminis (b57) 2024
Shou, Di, Ye, Zhu, Zhang, Hampshire (b41) 2020; 111
Lamotte, Geroliminis (b23) 2018; 117
Chen, Geroliminis, Zhong (b11) 2024; 58
Alisoltani, Zargayouna, Leclercq (b2) 2020; 12
Leclercq, Sénécat, Mariotte (b24) 2017; 101
Liang, Wen, Lam, Sumalee, Zhong (b28) 2021; 33
Mariotte, Leclercq (b32) 2019; 122
Lei (10.1016/j.trc.2025.105217_b26) 2020; 132
Liang (10.1016/j.trc.2025.105217_b28) 2021; 33
Leclercq (10.1016/j.trc.2025.105217_b24) 2017; 101
Vezhnevets (10.1016/j.trc.2025.105217_b46) 2017
Qin (10.1016/j.trc.2025.105217_b38) 2022; 144
Arnott (10.1016/j.trc.2025.105217_b3) 2013; 76
Zhong (10.1016/j.trc.2025.105217_b51) 2017; 85
Arnott (10.1016/j.trc.2025.105217_b4) 2018; 109
Arnott (10.1016/j.trc.2025.105217_b5) 2016; 7
Maljkovic (10.1016/j.trc.2025.105217_b31) 2023; 31
Batista (10.1016/j.trc.2025.105217_b6) 2021; 127
Beojone (10.1016/j.trc.2025.105217_b7) 2021; 124
Zhong (10.1016/j.trc.2025.105217_b54) 2020; 21
10.1016/j.trc.2025.105217_b22
Ramezani (10.1016/j.trc.2025.105217_b40) 2023; 152
Lamotte (10.1016/j.trc.2025.105217_b23) 2018; 117
Alisoltani (10.1016/j.trc.2025.105217_b1) 2021; 145
Oda (10.1016/j.trc.2025.105217_b36) 2018
Shou (10.1016/j.trc.2025.105217_b41) 2020; 111
Valadkhani (10.1016/j.trc.2025.105217_b45) 2023; 152
Bongiovanni (10.1016/j.trc.2025.105217_b10) 2022; 165
Huang (10.1016/j.trc.2025.105217_b21) 2024; 192
Mariotte (10.1016/j.trc.2025.105217_b32) 2019; 122
Zhong (10.1016/j.trc.2025.105217_b53) 2020; 132
Fosgerau (10.1016/j.trc.2025.105217_b14) 2015; 4
Yu (10.1016/j.trc.2025.105217_b49) 2019; 121
Chen (10.1016/j.trc.2025.105217_b12) 2021
Huang (10.1016/j.trc.2025.105217_b19) 2020; 131
Huang (10.1016/j.trc.2025.105217_b17) 2021; 111
Sirmatel (10.1016/j.trc.2025.105217_b42) 2021; 128
Zhong (10.1016/j.trc.2025.105217_b55) 2021; 128
Huang (10.1016/j.trc.2025.105217_b18) 2024
Zhu (10.1016/j.trc.2025.105217_b57) 2024
Powell (10.1016/j.trc.2025.105217_b37) 2022
Huang (10.1016/j.trc.2025.105217_b20) 2019; 2673
Hildebrandt (10.1016/j.trc.2025.105217_b16) 2021
Lee (10.1016/j.trc.2025.105217_b25) 2022; 136
Ma (10.1016/j.trc.2025.105217_b30) 2024; 640
Liu (10.1016/j.trc.2025.105217_b29) 2021; 58
Wang (10.1016/j.trc.2025.105217_b47) 2019; 129
Ramezani (10.1016/j.trc.2025.105217_b39) 2018; 94
10.1016/j.trc.2025.105217_b48
Beojone (10.1016/j.trc.2025.105217_b9) 2024
Li (10.1016/j.trc.2025.105217_b27) 2022; 8
Alisoltani (10.1016/j.trc.2025.105217_b2) 2020; 12
Zhong (10.1016/j.trc.2025.105217_b52) 2014; 10
Zhang (10.1016/j.trc.2025.105217_b50) 2016
Fu (10.1016/j.trc.2025.105217_b15) 2020; 118
Tang (10.1016/j.trc.2025.105217_b43) 2019
Nguyen (10.1016/j.trc.2025.105217_b35) 2018; 31
Zhu (10.1016/j.trc.2025.105217_b58) 2024
Zhou (10.1016/j.trc.2025.105217_b56) 2020; 6
Mariotte (10.1016/j.trc.2025.105217_b33) 2017; 101
Chen (10.1016/j.trc.2025.105217_b13) 2022; 142
10.1016/j.trc.2025.105217_b34
Beojone (10.1016/j.trc.2025.105217_b8) 2023; 177
Chen (10.1016/j.trc.2025.105217_b11) 2024; 58
Ulmer (10.1016/j.trc.2025.105217_b44) 2020; 9
References_xml – volume: 101
  start-page: 245
  year: 2017
  end-page: 267
  ident: b33
  article-title: Macroscopic urban dynamics: analytical and numerical comparisons of existing models
  publication-title: Transp. Res. Part B: Methodol.
– volume: 145
  start-page: 212
  year: 2021
  end-page: 246
  ident: b1
  article-title: Can dynamic ride-sharing reduce traffic congestion?
  publication-title: Transp. Res. Part B: Methodol.
– volume: 76
  start-page: 110
  year: 2013
  end-page: 121
  ident: b3
  article-title: A bathtub model of downtown traffic congestion
  publication-title: J. Urban Econ.
– volume: 165
  year: 2022
  ident: b10
  article-title: A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– volume: 9
  year: 2020
  ident: b44
  article-title: On modeling stochastic dynamic vehicle routing problems
  publication-title: EURO J. Transp. Logist.
– volume: 129
  start-page: 122
  year: 2019
  end-page: 155
  ident: b47
  article-title: Ridesourcing systems: A framework and review
  publication-title: Transp. Res. Part B: Methodol.
– reference: Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1983–1992.
– volume: 31
  year: 2018
  ident: b35
  article-title: Credit assignment for collective multiagent RL with global rewards
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2708
  year: 2018
  end-page: 2716
  ident: b36
  article-title: MOVI: A model-free approach to dynamic fleet management
  publication-title: IEEE INFOCOM 2018-IEEE Conference on Computer Communications
– volume: 117
  start-page: 794
  year: 2018
  end-page: 810
  ident: b23
  article-title: The morning commute in urban areas with heterogeneous trip lengths
  publication-title: Transp. Res. Part B: Methodol.
– volume: 94
  start-page: 203
  year: 2018
  end-page: 219
  ident: b39
  article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
– year: 2024
  ident: b9
  article-title: A hierarchical control framework for vehicle repositioning in ride-hailing systems
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 144
  year: 2022
  ident: b38
  article-title: Reinforcement learning for ridesharing: An extended survey
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 131
  start-page: 1
  year: 2020
  end-page: 25
  ident: b19
  article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays
  publication-title: Transp. Res. Part B: Methodol.
– volume: 33
  start-page: 4742
  year: 2021
  end-page: 4756
  ident: b28
  article-title: An integrated reinforcement learning and centralized programming approach for online taxi dispatching
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 128
  year: 2021
  ident: b55
  article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 152
  year: 2023
  ident: b45
  article-title: Dynamic ride-sourcing systems for city-scale networks, part II: Proactive vehicle repositioning
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye, J., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 905–913.
– volume: 101
  start-page: 268
  year: 2017
  end-page: 282
  ident: b24
  article-title: Dynamic macroscopic simulation of on-street parking search: A trip-based approach
  publication-title: Transp. Res. Part B: Methodol.
– volume: 31
  start-page: 2728
  year: 2023
  end-page: 2743
  ident: b31
  article-title: Hierarchical pricing game for balancing the charging of ride-hailing electric fleets
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 128
  year: 2021
  ident: b42
  article-title: Modeling, estimation, and control in large-scale urban road networks with remaining travel distance dynamics
  publication-title: Transp. Res. Part C: Emerg. Technol.
– year: 2024
  ident: b58
  article-title: A coverage control-based idle vehicle rebalancing approach for autonomous mobility-on-demand systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 12
  start-page: 169
  year: 2020
  end-page: 181
  ident: b2
  article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics
  publication-title: IEEE Intell. Transp. Syst. Mag.
– start-page: 1382
  year: 2016
  end-page: 1389
  ident: b50
  article-title: Model predictive control of autonomous mobility-on-demand systems
  publication-title: 2016 IEEE International Conference on Robotics and Automation
– volume: 177
  year: 2023
  ident: b8
  article-title: A dynamic multi-region MFD model for ride-sourcing with ridesplitting
  publication-title: Transp. Res. Part B: Methodol.
– volume: 121
  start-page: 114
  year: 2019
  end-page: 134
  ident: b49
  article-title: A Markov decision process approach to vacant taxi routing with e-hailing
  publication-title: Transp. Res. Part B: Methodol.
– volume: 6
  start-page: 145
  year: 2020
  end-page: 158
  ident: b56
  article-title: Optimizing taxi driver profit efficiency: A spatial network-based Markov decision process approach
  publication-title: IEEE Trans. Big Data
– reference: Miao, F., Lin, S., Munir, S., Stankovic, J.A., Huang, H., Zhang, D., He, T., Pappas, G.J., 2015. Taxi dispatch with real-time sensing data in metropolitan areas: A receding horizon control approach. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. pp. 100–109.
– volume: 152
  year: 2023
  ident: b40
  article-title: Dynamic ride-sourcing systems for city-scale networks-part I: Matching design and model formulation and validation
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 10
  start-page: 849
  year: 2014
  end-page: 877
  ident: b52
  article-title: Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: An overview and general theory
  publication-title: Transp. A: Transp. Sci.
– volume: 132
  start-page: 60
  year: 2020
  end-page: 75
  ident: b26
  article-title: Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers
  publication-title: Transp. Res. Part B: Methodol.
– volume: 7
  start-page: 38
  year: 2016
  end-page: 52
  ident: b5
  article-title: Equilibrium traffic dynamics in a bathtub model: A special case
  publication-title: Econ. Transp.
– volume: 109
  start-page: 150
  year: 2018
  end-page: 175
  ident: b4
  article-title: Solving for equilibrium in the basic bathtub model
  publication-title: Transp. Res. Part B: Methodol.
– volume: 124
  year: 2021
  ident: b7
  article-title: On the inefficiency of ride-sourcing services towards urban congestion
  publication-title: Transp. Res. Part C: Emerg. Technol.
– start-page: 3540
  year: 2017
  end-page: 3549
  ident: b46
  article-title: Feudal networks for hierarchical reinforcement learning
  publication-title: International Conference on Machine Learning
– volume: 4
  start-page: 241
  year: 2015
  end-page: 255
  ident: b14
  article-title: Congestion in the bathtub
  publication-title: Econ. Transp.
– year: 2021
  ident: b16
  article-title: Where the action is: Let’s make reinforcement learning for stochastic dynamic vehicle routing problems work!
– volume: 58
  start-page: 896
  year: 2024
  end-page: 918
  ident: b11
  article-title: An iterative adaptive dynamic programming approach for macroscopic fundamental diagram-based perimeter control and route guidance
  publication-title: Transp. Sci.
– year: 2021
  ident: b12
  article-title: Learning the macroscopic traffic dynamics for adaptive optimal perimeter control with integral reinforcement learning
  publication-title: 24th Int. Symp. Transp. Traffic Theory ( ISTTT24)
– volume: 136
  year: 2022
  ident: b25
  article-title: Path-oriented synchronized transit scheduling using time-dependent data
  publication-title: Transp. Res. Part C: Emerg. Technol.
– year: 2024
  ident: b57
  article-title: Hierarchical control for vehicle repositioning in autonomous mobility-on-demand systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 111
  start-page: 91
  year: 2020
  end-page: 113
  ident: b41
  article-title: Optimal passenger-seeking policies on E-hailing platforms using Markov decision process and imitation learning
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 58
  start-page: 3140
  year: 2021
  end-page: 3156
  ident: b29
  article-title: Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data
  publication-title: Urban Stud.
– volume: 118
  year: 2020
  ident: b15
  article-title: Empirical analysis of large-scale multimodal traffic with multi-sensor data
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 111
  year: 2021
  ident: b17
  article-title: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and Bayesian support vector regression
  publication-title: Appl. Soft Comput.
– volume: 85
  start-page: 292
  year: 2017
  end-page: 311
  ident: b51
  article-title: Forecasting journey time distribution with consideration to abnormal traffic conditions
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 192
  year: 2024
  ident: b21
  article-title: A bi-level approach for optimal vehicle relocating in mobility-on-demand systems with approximate dynamic programming and coverage control
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– start-page: 1780
  year: 2019
  end-page: 1790
  ident: b43
  article-title: A deep value-network based approach for multi-driver order dispatching
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 1
  year: 2024
  end-page: 37
  ident: b18
  article-title: A comparison of the accumulation-based, trip-based and time delay macroscopic fundamental diagram models
  publication-title: Transp. A: Transp. Sci.
– volume: 640
  year: 2024
  ident: b30
  article-title: Functional form selection and calibration of macroscopic fundamental diagrams
  publication-title: Phys. A
– volume: 8
  year: 2022
  ident: b27
  article-title: Prediction of travel time on urban road links with and without point detectors
  publication-title: Asian Transp. Stud.
– volume: 2673
  start-page: 114
  year: 2019
  end-page: 128
  ident: b20
  article-title: Investigation of bimodal macroscopic fundamental diagrams in large-scale urban networks: empirical study with GPS data for shenzhen city
  publication-title: Transp. Res. Rec.
– year: 2022
  ident: b37
  article-title: Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions
– volume: 132
  start-page: 228
  year: 2020
  end-page: 248
  ident: b53
  article-title: Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems
  publication-title: Transp. Res. Part B: Methodol.
– volume: 127
  year: 2021
  ident: b6
  article-title: Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 142
  year: 2022
  ident: b13
  article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 122
  start-page: 327
  year: 2019
  end-page: 349
  ident: b32
  article-title: Flow exchanges in multi-reservoir systems with spillbacks
  publication-title: Transp. Res. Part B: Methodol.
– volume: 21
  start-page: 4000
  year: 2020
  end-page: 4016
  ident: b54
  article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 142
  year: 2022
  ident: 10.1016/j.trc.2025.105217_b13
  article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2022.103759
– volume: 128
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b42
  article-title: Modeling, estimation, and control in large-scale urban road networks with remaining travel distance dynamics
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2021.103157
– year: 2021
  ident: 10.1016/j.trc.2025.105217_b12
  article-title: Learning the macroscopic traffic dynamics for adaptive optimal perimeter control with integral reinforcement learning
  publication-title: 24th Int. Symp. Transp. Traffic Theory ( ISTTT24)
– volume: 111
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b17
  article-title: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and Bayesian support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107663
– ident: 10.1016/j.trc.2025.105217_b22
  doi: 10.1145/3357384.3357978
– start-page: 2708
  year: 2018
  ident: 10.1016/j.trc.2025.105217_b36
  article-title: MOVI: A model-free approach to dynamic fleet management
– volume: 76
  start-page: 110
  issue: 4
  year: 2013
  ident: 10.1016/j.trc.2025.105217_b3
  article-title: A bathtub model of downtown traffic congestion
  publication-title: J. Urban Econ.
  doi: 10.1016/j.jue.2013.01.001
– volume: 132
  start-page: 228
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b53
  article-title: Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.05.005
– volume: 132
  start-page: 60
  issue: C
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b26
  article-title: Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.01.017
– year: 2024
  ident: 10.1016/j.trc.2025.105217_b58
  article-title: A coverage control-based idle vehicle rebalancing approach for autonomous mobility-on-demand systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 10
  start-page: 849
  issue: 10
  year: 2014
  ident: 10.1016/j.trc.2025.105217_b52
  article-title: Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: An overview and general theory
  publication-title: Transp. A: Transp. Sci.
– volume: 192
  year: 2024
  ident: 10.1016/j.trc.2025.105217_b21
  article-title: A bi-level approach for optimal vehicle relocating in mobility-on-demand systems with approximate dynamic programming and coverage control
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2024.103754
– volume: 85
  start-page: 292
  year: 2017
  ident: 10.1016/j.trc.2025.105217_b51
  article-title: Forecasting journey time distribution with consideration to abnormal traffic conditions
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.08.021
– volume: 165
  year: 2022
  ident: 10.1016/j.trc.2025.105217_b10
  article-title: A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2022.102835
– volume: 117
  start-page: 794
  year: 2018
  ident: 10.1016/j.trc.2025.105217_b23
  article-title: The morning commute in urban areas with heterogeneous trip lengths
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.08.023
– volume: 12
  start-page: 169
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b2
  article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 101
  start-page: 268
  year: 2017
  ident: 10.1016/j.trc.2025.105217_b24
  article-title: Dynamic macroscopic simulation of on-street parking search: A trip-based approach
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.04.004
– volume: 109
  start-page: 150
  year: 2018
  ident: 10.1016/j.trc.2025.105217_b4
  article-title: Solving for equilibrium in the basic bathtub model
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.12.003
– ident: 10.1016/j.trc.2025.105217_b48
  doi: 10.1145/3219819.3219824
– volume: 9
  issue: 2
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b44
  article-title: On modeling stochastic dynamic vehicle routing problems
  publication-title: EURO J. Transp. Logist.
  doi: 10.1016/j.ejtl.2020.100008
– year: 2022
  ident: 10.1016/j.trc.2025.105217_b37
– volume: 136
  year: 2022
  ident: 10.1016/j.trc.2025.105217_b25
  article-title: Path-oriented synchronized transit scheduling using time-dependent data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2021.103505
– start-page: 3540
  year: 2017
  ident: 10.1016/j.trc.2025.105217_b46
  article-title: Feudal networks for hierarchical reinforcement learning
– volume: 58
  start-page: 896
  issue: 4
  year: 2024
  ident: 10.1016/j.trc.2025.105217_b11
  article-title: An iterative adaptive dynamic programming approach for macroscopic fundamental diagram-based perimeter control and route guidance
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2023.0091
– volume: 31
  year: 2018
  ident: 10.1016/j.trc.2025.105217_b35
  article-title: Credit assignment for collective multiagent RL with global rewards
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.trc.2025.105217_b9
  article-title: A hierarchical control framework for vehicle repositioning in ride-hailing systems
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2024.104717
– volume: 94
  start-page: 203
  year: 2018
  ident: 10.1016/j.trc.2025.105217_b39
  article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.08.011
– volume: 33
  start-page: 4742
  issue: 9
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b28
  article-title: An integrated reinforcement learning and centralized programming approach for online taxi dispatching
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3060187
– volume: 101
  start-page: 245
  year: 2017
  ident: 10.1016/j.trc.2025.105217_b33
  article-title: Macroscopic urban dynamics: analytical and numerical comparisons of existing models
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.04.002
– volume: 111
  start-page: 91
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b41
  article-title: Optimal passenger-seeking policies on E-hailing platforms using Markov decision process and imitation learning
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2019.12.005
– volume: 4
  start-page: 241
  issue: 4
  year: 2015
  ident: 10.1016/j.trc.2025.105217_b14
  article-title: Congestion in the bathtub
  publication-title: Econ. Transp.
  doi: 10.1016/j.ecotra.2015.08.001
– volume: 131
  start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b19
  article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.11.002
– volume: 118
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b15
  article-title: Empirical analysis of large-scale multimodal traffic with multi-sensor data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2020.102725
– volume: 152
  year: 2023
  ident: 10.1016/j.trc.2025.105217_b40
  article-title: Dynamic ride-sourcing systems for city-scale networks-part I: Matching design and model formulation and validation
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2023.104158
– volume: 128
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b55
  article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2021.103190
– volume: 7
  start-page: 38
  year: 2016
  ident: 10.1016/j.trc.2025.105217_b5
  article-title: Equilibrium traffic dynamics in a bathtub model: A special case
  publication-title: Econ. Transp.
  doi: 10.1016/j.ecotra.2016.11.001
– volume: 145
  start-page: 212
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b1
  article-title: Can dynamic ride-sharing reduce traffic congestion?
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2021.01.004
– volume: 127
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b6
  article-title: Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2021.103076
– volume: 21
  start-page: 4000
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b54
  article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2994347
– volume: 6
  start-page: 145
  issue: 1
  year: 2020
  ident: 10.1016/j.trc.2025.105217_b56
  article-title: Optimizing taxi driver profit efficiency: A spatial network-based Markov decision process approach
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2875524
– start-page: 1
  year: 2024
  ident: 10.1016/j.trc.2025.105217_b18
  article-title: A comparison of the accumulation-based, trip-based and time delay macroscopic fundamental diagram models
  publication-title: Transp. A: Transp. Sci.
– volume: 152
  year: 2023
  ident: 10.1016/j.trc.2025.105217_b45
  article-title: Dynamic ride-sourcing systems for city-scale networks, part II: Proactive vehicle repositioning
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2023.104159
– volume: 31
  start-page: 2728
  issue: 6
  year: 2023
  ident: 10.1016/j.trc.2025.105217_b31
  article-title: Hierarchical pricing game for balancing the charging of ride-hailing electric fleets
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2023.3286330
– volume: 124
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b7
  article-title: On the inefficiency of ride-sourcing services towards urban congestion
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2020.102890
– volume: 2673
  start-page: 114
  issue: 6
  year: 2019
  ident: 10.1016/j.trc.2025.105217_b20
  article-title: Investigation of bimodal macroscopic fundamental diagrams in large-scale urban networks: empirical study with GPS data for shenzhen city
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119843472
– volume: 8
  year: 2022
  ident: 10.1016/j.trc.2025.105217_b27
  article-title: Prediction of travel time on urban road links with and without point detectors
  publication-title: Asian Transp. Stud.
  doi: 10.1016/j.eastsj.2022.100081
– volume: 58
  start-page: 3140
  issue: 15
  year: 2021
  ident: 10.1016/j.trc.2025.105217_b29
  article-title: Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data
  publication-title: Urban Stud.
  doi: 10.1177/0042098020919323
– volume: 129
  start-page: 122
  year: 2019
  ident: 10.1016/j.trc.2025.105217_b47
  article-title: Ridesourcing systems: A framework and review
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.07.009
– volume: 144
  year: 2022
  ident: 10.1016/j.trc.2025.105217_b38
  article-title: Reinforcement learning for ridesharing: An extended survey
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2022.103852
– volume: 122
  start-page: 327
  year: 2019
  ident: 10.1016/j.trc.2025.105217_b32
  article-title: Flow exchanges in multi-reservoir systems with spillbacks
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.02.014
– year: 2024
  ident: 10.1016/j.trc.2025.105217_b57
  article-title: Hierarchical control for vehicle repositioning in autonomous mobility-on-demand systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 640
  year: 2024
  ident: 10.1016/j.trc.2025.105217_b30
  article-title: Functional form selection and calibration of macroscopic fundamental diagrams
  publication-title: Phys. A
  doi: 10.1016/j.physa.2024.129691
– ident: 10.1016/j.trc.2025.105217_b34
  doi: 10.1145/2735960.2735961
– volume: 121
  start-page: 114
  year: 2019
  ident: 10.1016/j.trc.2025.105217_b49
  article-title: A Markov decision process approach to vacant taxi routing with e-hailing
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2018.12.013
– year: 2021
  ident: 10.1016/j.trc.2025.105217_b16
– volume: 177
  year: 2023
  ident: 10.1016/j.trc.2025.105217_b8
  article-title: A dynamic multi-region MFD model for ride-sourcing with ridesplitting
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2023.102821
– start-page: 1780
  year: 2019
  ident: 10.1016/j.trc.2025.105217_b43
  article-title: A deep value-network based approach for multi-driver order dispatching
– start-page: 1382
  year: 2016
  ident: 10.1016/j.trc.2025.105217_b50
  article-title: Model predictive control of autonomous mobility-on-demand systems
SSID ssj0001957
Score 2.441286
Snippet The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105217
SubjectTerms Approximate dynamic programming
Dispatching and relocation
Time-dependent travel time
Uncertain demand
Title Data-driven optimization for ride-sourcing vehicle dispatching and relocation under demand and travel time uncertainty
URI https://dx.doi.org/10.1016/j.trc.2025.105217
Volume 178
WOSCitedRecordID wos001531551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBehHWx7GFu30e4LPexpxcWWpdh6LF1GN0oYrIPsyViyRFIaN7iO6d_Rv7inL8fpNtgGg2CCFClB98vpdLrfHULvOdWZ5nkVUZ7oiIqYRTmjMhLM0CQFKWVl88yeZdNpPpvxr6PRbeDCdJdZXec3N3z1X0UNbSBsQ539C3H3k0IDvAehwxPEDs8_EvzHsi2jqjFa7PAKFMLSMy1tQGGzqFRkHfbGRdCpuRltbmlWoJLngbDYKLPF2UGGY2ZqiC99UldTU6JTl7YmPXRKF1HQbl0O9wnT3RQ-n9D8CMzVpj08serXsD4tUyu49gfBjKdr78T-sa5XYWu1zm3l2qcbSPeftZ2h9WzhWyf1MkzgXRuE9bFb3t8WODebACfruBybgI14tqXDXR2gn_YD55q4OGobk66SMFPWmDiy6L0029_MvGZasAnBrjGZZHdJxjhoyt3jz5PZl35_T7jLHxt-R7grt1GD977o19bOwII5f4qe-KMHPnaQeYZGqt5DDwMz_XoPPR4kp3yOugGQ8BBIGICEt4CEPZDwAEgYwII3QMIWSNgByfY5IGEDJDwA0gv0_dPk_OQ08lU6Igl_5zYimqSaslhwGetSEqoEJSqv8rFWiuUiZWnFzEFEw0tyTahIUsXGOkkTEacyfYl26qta7SMMxwHBhchLRgVVORe50DQTqVSVTKSuDtCHsJrFyiVjKUKU4kUBS1-YpS_c0h8gGta78NaksxILAMfvh736t2Gv0aMNgt-gnbZZq7fogezaxXXzzkPoDi85oR0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+optimization+for+ride-sourcing+vehicle+dispatching+and+relocation+under+demand+and+travel+time+uncertainty&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Huang%2C+Yunping&rft.au=Zheng%2C+Nan&rft.au=Huang%2C+Zheng&rft.au=Liang%2C+Enming&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.volume=178&rft_id=info:doi/10.1016%2Fj.trc.2025.105217&rft.externalDocID=S0968090X25002219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon