Data-driven optimization for ride-sourcing vehicle dispatching and relocation under demand and travel time uncertainty
The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of...
Gespeichert in:
| Veröffentlicht in: | Transportation research. Part C, Emerging technologies Jg. 178; S. 105217 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2025
|
| Schlagworte: | |
| ISSN: | 0968-090X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of the problem. However, uncertain demand and dynamic travel time subject to traffic congestion can significantly affect optimal solutions. To meet these challenges, this article adopts a regional-level formulation and estimates network-level travel time with functional data analysis that captures the dynamics and stochasticity of travel time. We then propose a multi-stage decision model to address the dispatching and relocation decisions of a fleet of vehicles for a centralized platform. Furthermore, we formulate the problem as a stochastic programming model to account for spatial–temporal uncertainties in customer demand. We develop an Approximate Dynamic Programming (ADP) based approach to solve multi-stage decisions efficiently. To evaluate the effectiveness of our algorithm, we use a simulator based on New York City (NYC) yellow taxi data and the Manhattan road network. Numerical studies demonstrate that the incorporation of dynamic travel time is beneficial to improve system profit compared to using mean historical travel times. The ADP can significantly improve the total system profit compared to several popular decision practices.
•Model network-based congestion and estimate time-dependent travel times using FDA•Develop a multi-stage decision model for dispatching and relocation optimization•Data-driven approximate dynamic programming algorithm to approximate value function•Demonstrate the benefits of incorporating time-dependent travel time |
|---|---|
| AbstractList | The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature usually bases the design of dispatching and relocation strategies on the assumption of time-invariant traffic (speed) to reduce the dimension of the problem. However, uncertain demand and dynamic travel time subject to traffic congestion can significantly affect optimal solutions. To meet these challenges, this article adopts a regional-level formulation and estimates network-level travel time with functional data analysis that captures the dynamics and stochasticity of travel time. We then propose a multi-stage decision model to address the dispatching and relocation decisions of a fleet of vehicles for a centralized platform. Furthermore, we formulate the problem as a stochastic programming model to account for spatial–temporal uncertainties in customer demand. We develop an Approximate Dynamic Programming (ADP) based approach to solve multi-stage decisions efficiently. To evaluate the effectiveness of our algorithm, we use a simulator based on New York City (NYC) yellow taxi data and the Manhattan road network. Numerical studies demonstrate that the incorporation of dynamic travel time is beneficial to improve system profit compared to using mean historical travel times. The ADP can significantly improve the total system profit compared to several popular decision practices.
•Model network-based congestion and estimate time-dependent travel times using FDA•Develop a multi-stage decision model for dispatching and relocation optimization•Data-driven approximate dynamic programming algorithm to approximate value function•Demonstrate the benefits of incorporating time-dependent travel time |
| ArticleNumber | 105217 |
| Author | Hsu, Shu-Chien Huang, Yunping Liang, Enming Huang, Zheng Zheng, Nan Zhong, Renxin |
| Author_xml | – sequence: 1 givenname: Yunping orcidid: 0000-0002-5107-6887 surname: Huang fullname: Huang, Yunping email: yunping.huang@connect.polyu.hk organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China – sequence: 2 givenname: Nan surname: Zheng fullname: Zheng, Nan email: Nan.Zheng@monash.edu organization: Institute of Transport Studies, Department of Civil Engineering, Monash University, Australia – sequence: 3 givenname: Zheng surname: Huang fullname: Huang, Zheng email: huangzh227@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China – sequence: 4 givenname: Enming orcidid: 0000-0003-0283-0676 surname: Liang fullname: Liang, Enming email: eliang4-c@my.cityu.edu.hk organization: School of Data Science, City University of Hong Kong, Hong Kong Special Administrative Region of China – sequence: 5 givenname: Shu-Chien orcidid: 0000-0002-7232-9839 surname: Hsu fullname: Hsu, Shu-Chien email: mark.hsu@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China – sequence: 6 givenname: Renxin orcidid: 0000-0003-1559-7287 surname: Zhong fullname: Zhong, Renxin email: zhrenxin@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China |
| BookMark | eNp9kE1qwzAQhbVIoUnaA3SnCziVZMux6aqkPykEummhOyFLo0bBkYKkGNLTV8ZdF2YY5g3f8HgLNHPeAUJ3lKwoofX9YZWCWjHCeN45o-sZmpO2bgrSkq9rtIjxQAihLV_P0fAkkyx0sAM47E_JHu2PTNY7bHzAwWoooj8HZd03HmBvVQ9Y23iSSe1HTTqNA_ReTdDZaQhYw3HUx05BDtDj_BfyUUFI0rp0uUFXRvYRbv_mEn2-PH9stsXu_fVt87grFOM0Fcyw0lScdK0iRipWQVcxaHRTGwDedCUvNSekbU0u1RpWdbQEXhta0o6UqlwiOv1VwccYwIhTsEcZLoISMYYlDiKHJcawxBRWZh4mBrKxwUIQUVnI3rUNoJLQ3v5D_wJXPnlg |
| Cites_doi | 10.1016/j.trc.2022.103759 10.1016/j.trc.2021.103157 10.1016/j.asoc.2021.107663 10.1145/3357384.3357978 10.1016/j.jue.2013.01.001 10.1016/j.trb.2019.05.005 10.1016/j.trb.2019.01.017 10.1016/j.tre.2024.103754 10.1016/j.trc.2017.08.021 10.1016/j.tre.2022.102835 10.1016/j.trb.2017.08.023 10.1016/j.trb.2017.04.004 10.1016/j.trb.2017.12.003 10.1145/3219819.3219824 10.1016/j.ejtl.2020.100008 10.1016/j.trc.2021.103505 10.1287/trsc.2023.0091 10.1016/j.trc.2024.104717 10.1016/j.trc.2017.08.011 10.1109/TNNLS.2021.3060187 10.1016/j.trb.2017.04.002 10.1016/j.trc.2019.12.005 10.1016/j.ecotra.2015.08.001 10.1016/j.trb.2019.11.002 10.1016/j.trc.2020.102725 10.1016/j.trc.2023.104158 10.1016/j.trc.2021.103190 10.1016/j.ecotra.2016.11.001 10.1016/j.trb.2021.01.004 10.1016/j.trc.2021.103076 10.1109/TITS.2020.2994347 10.1109/TBDATA.2018.2875524 10.1016/j.trc.2023.104159 10.1109/TCST.2023.3286330 10.1016/j.trc.2020.102890 10.1177/0361198119843472 10.1016/j.eastsj.2022.100081 10.1177/0042098020919323 10.1016/j.trb.2019.07.009 10.1016/j.trc.2022.103852 10.1016/j.trb.2019.02.014 10.1016/j.physa.2024.129691 10.1145/2735960.2735961 10.1016/j.trb.2018.12.013 10.1016/j.trb.2023.102821 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.trc.2025.105217 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | 10_1016_j_trc_2025_105217 S0968090X25002219 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABLJU ABMAC ABMMH ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APLSM APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-2f23f450b9c0fac24eb42e8d86fee58b353d50099f99fc9f24b13e56f131b03c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Sat Nov 29 07:34:24 EST 2025 Sat Oct 04 17:00:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Approximate dynamic programming Uncertain demand Time-dependent travel time Dispatching and relocation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-2f23f450b9c0fac24eb42e8d86fee58b353d50099f99fc9f24b13e56f131b03c3 |
| ORCID | 0000-0002-7232-9839 0000-0002-5107-6887 0000-0003-0283-0676 0000-0003-1559-7287 |
| ParticipantIDs | crossref_primary_10_1016_j_trc_2025_105217 elsevier_sciencedirect_doi_10_1016_j_trc_2025_105217 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Maljkovic, Nilsson, Geroliminis (b31) 2023; 31 Zhong, Xiong, Huang, Zheng, Lam, Pan, He (b55) 2021; 128 Zhong, Sumalee, Pan, Lam (b52) 2014; 10 Li, Lam, Tam, Zhong, Ma (b27) 2022; 8 Sirmatel, Tsitsokas, Kouvelas, Geroliminis (b42) 2021; 128 Zhong, Xiong, Huang, Sumalee, Chow, Pan (b54) 2020; 21 Ulmer, Goodson, Mattfeld, Thomas (b44) 2020; 9 Arnott (b3) 2013; 76 Arnott, Buli (b4) 2018; 109 Beojone, Geroliminis (b8) 2023; 177 Zhang, Rossi, Pavone (b50) 2016 Ramezani, Valadkhani (b40) 2023; 152 Zhu, Sirmatel, Ferrari-Trecate, Geroliminis (b58) 2024 Yu, Gao, Hu, Park (b49) 2019; 121 Liu, Miller (b29) 2021; 58 Huang, Zheng, Zhang (b20) 2019; 2673 Chen, Huang, Lam, Pan, Hsu, Sumalee, Zhong (b12) 2021 Chen, Huang, Lam, Pan, Hsu, Sumalee, Zhong (b13) 2022; 142 Huang, Chen, Su, Chen, Sumalee, Pan, Zhong (b17) 2021; 111 Alisoltani, Leclercq, Zargayouna (b1) 2021; 145 Fu, Wang, Tang, Zheng, Geroliminis (b15) 2020; 118 Powell (b37) 2022 Huang, Xiong, Sumalee, Zheng, Lam, He, Zhong (b19) 2020; 131 Zhong, Xie, Luo, Pan, Lam, Sumalee (b53) 2020; 132 Fosgerau (b14) 2015; 4 Valadkhani, Ramezani (b45) 2023; 152 Beojone, Geroliminis (b7) 2021; 124 Ramezani, Nourinejad (b39) 2018; 94 Vezhnevets, Osindero, Schaul, Heess, Jaderberg, Silver, Kavukcuoglu (b46) 2017 Miao, F., Lin, S., Munir, S., Stankovic, J.A., Huang, H., Zhang, D., He, T., Pappas, G.J., 2015. Taxi dispatch with real-time sensing data in metropolitan areas: A receding horizon control approach. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. pp. 100–109. Qin, Zhu, Ye (b38) 2022; 144 Huang, Xiong, Hsu, Sumalee, Lam, Zhong (b18) 2024 Bongiovanni, Kaspi, Cordeau, Geroliminis (b10) 2022; 165 Nguyen, Kumar, Lau (b35) 2018; 31 Batista, Leclercq, Menéndez (b6) 2021; 127 Huang, Zhu, Zhong, Geroliminis (b21) 2024; 192 Wang, Yang (b47) 2019; 129 Zhou, Rong, Yang, Zhang, Khezerlou, Zheng, Shafiq, Liu (b56) 2020; 6 Oda, Joe-Wong (b36) 2018 Zhong, Luo, Cai, Sumalee, Yuan, Chow (b51) 2017; 85 Tang, Qin, Zhang, Wang, Xu, Ma, Zhu, Ye (b43) 2019 Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye, J., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 905–913. Arnott, Kokoza, Naji (b5) 2016; 7 Mariotte, Leclercq, Laval (b33) 2017; 101 Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1983–1992. Lee, Jiang, Ceder, Dauwels, Su, Nielsen (b25) 2022; 136 Hildebrandt, Thomas, Ulmer (b16) 2021 Lei, Jiang, Ouyang (b26) 2020; 132 Ma, Huang, Jin, Zhong (b30) 2024; 640 Beojone, Zhu, Sirmatel, Geroliminis (b9) 2024 Zhu, Ferrari-Trecate, Geroliminis (b57) 2024 Shou, Di, Ye, Zhu, Zhang, Hampshire (b41) 2020; 111 Lamotte, Geroliminis (b23) 2018; 117 Chen, Geroliminis, Zhong (b11) 2024; 58 Alisoltani, Zargayouna, Leclercq (b2) 2020; 12 Leclercq, Sénécat, Mariotte (b24) 2017; 101 Liang, Wen, Lam, Sumalee, Zhong (b28) 2021; 33 Mariotte, Leclercq (b32) 2019; 122 Lei (10.1016/j.trc.2025.105217_b26) 2020; 132 Liang (10.1016/j.trc.2025.105217_b28) 2021; 33 Leclercq (10.1016/j.trc.2025.105217_b24) 2017; 101 Vezhnevets (10.1016/j.trc.2025.105217_b46) 2017 Qin (10.1016/j.trc.2025.105217_b38) 2022; 144 Arnott (10.1016/j.trc.2025.105217_b3) 2013; 76 Zhong (10.1016/j.trc.2025.105217_b51) 2017; 85 Arnott (10.1016/j.trc.2025.105217_b4) 2018; 109 Arnott (10.1016/j.trc.2025.105217_b5) 2016; 7 Maljkovic (10.1016/j.trc.2025.105217_b31) 2023; 31 Batista (10.1016/j.trc.2025.105217_b6) 2021; 127 Beojone (10.1016/j.trc.2025.105217_b7) 2021; 124 Zhong (10.1016/j.trc.2025.105217_b54) 2020; 21 10.1016/j.trc.2025.105217_b22 Ramezani (10.1016/j.trc.2025.105217_b40) 2023; 152 Lamotte (10.1016/j.trc.2025.105217_b23) 2018; 117 Alisoltani (10.1016/j.trc.2025.105217_b1) 2021; 145 Oda (10.1016/j.trc.2025.105217_b36) 2018 Shou (10.1016/j.trc.2025.105217_b41) 2020; 111 Valadkhani (10.1016/j.trc.2025.105217_b45) 2023; 152 Bongiovanni (10.1016/j.trc.2025.105217_b10) 2022; 165 Huang (10.1016/j.trc.2025.105217_b21) 2024; 192 Mariotte (10.1016/j.trc.2025.105217_b32) 2019; 122 Zhong (10.1016/j.trc.2025.105217_b53) 2020; 132 Fosgerau (10.1016/j.trc.2025.105217_b14) 2015; 4 Yu (10.1016/j.trc.2025.105217_b49) 2019; 121 Chen (10.1016/j.trc.2025.105217_b12) 2021 Huang (10.1016/j.trc.2025.105217_b19) 2020; 131 Huang (10.1016/j.trc.2025.105217_b17) 2021; 111 Sirmatel (10.1016/j.trc.2025.105217_b42) 2021; 128 Zhong (10.1016/j.trc.2025.105217_b55) 2021; 128 Huang (10.1016/j.trc.2025.105217_b18) 2024 Zhu (10.1016/j.trc.2025.105217_b57) 2024 Powell (10.1016/j.trc.2025.105217_b37) 2022 Huang (10.1016/j.trc.2025.105217_b20) 2019; 2673 Hildebrandt (10.1016/j.trc.2025.105217_b16) 2021 Lee (10.1016/j.trc.2025.105217_b25) 2022; 136 Ma (10.1016/j.trc.2025.105217_b30) 2024; 640 Liu (10.1016/j.trc.2025.105217_b29) 2021; 58 Wang (10.1016/j.trc.2025.105217_b47) 2019; 129 Ramezani (10.1016/j.trc.2025.105217_b39) 2018; 94 10.1016/j.trc.2025.105217_b48 Beojone (10.1016/j.trc.2025.105217_b9) 2024 Li (10.1016/j.trc.2025.105217_b27) 2022; 8 Alisoltani (10.1016/j.trc.2025.105217_b2) 2020; 12 Zhong (10.1016/j.trc.2025.105217_b52) 2014; 10 Zhang (10.1016/j.trc.2025.105217_b50) 2016 Fu (10.1016/j.trc.2025.105217_b15) 2020; 118 Tang (10.1016/j.trc.2025.105217_b43) 2019 Nguyen (10.1016/j.trc.2025.105217_b35) 2018; 31 Zhu (10.1016/j.trc.2025.105217_b58) 2024 Zhou (10.1016/j.trc.2025.105217_b56) 2020; 6 Mariotte (10.1016/j.trc.2025.105217_b33) 2017; 101 Chen (10.1016/j.trc.2025.105217_b13) 2022; 142 10.1016/j.trc.2025.105217_b34 Beojone (10.1016/j.trc.2025.105217_b8) 2023; 177 Chen (10.1016/j.trc.2025.105217_b11) 2024; 58 Ulmer (10.1016/j.trc.2025.105217_b44) 2020; 9 |
| References_xml | – volume: 101 start-page: 245 year: 2017 end-page: 267 ident: b33 article-title: Macroscopic urban dynamics: analytical and numerical comparisons of existing models publication-title: Transp. Res. Part B: Methodol. – volume: 145 start-page: 212 year: 2021 end-page: 246 ident: b1 article-title: Can dynamic ride-sharing reduce traffic congestion? publication-title: Transp. Res. Part B: Methodol. – volume: 76 start-page: 110 year: 2013 end-page: 121 ident: b3 article-title: A bathtub model of downtown traffic congestion publication-title: J. Urban Econ. – volume: 165 year: 2022 ident: b10 article-title: A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 9 year: 2020 ident: b44 article-title: On modeling stochastic dynamic vehicle routing problems publication-title: EURO J. Transp. Logist. – volume: 129 start-page: 122 year: 2019 end-page: 155 ident: b47 article-title: Ridesourcing systems: A framework and review publication-title: Transp. Res. Part B: Methodol. – reference: Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1983–1992. – volume: 31 year: 2018 ident: b35 article-title: Credit assignment for collective multiagent RL with global rewards publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2708 year: 2018 end-page: 2716 ident: b36 article-title: MOVI: A model-free approach to dynamic fleet management publication-title: IEEE INFOCOM 2018-IEEE Conference on Computer Communications – volume: 117 start-page: 794 year: 2018 end-page: 810 ident: b23 article-title: The morning commute in urban areas with heterogeneous trip lengths publication-title: Transp. Res. Part B: Methodol. – volume: 94 start-page: 203 year: 2018 end-page: 219 ident: b39 article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach publication-title: Transp. Res. Part C: Emerg. Technol. – year: 2024 ident: b9 article-title: A hierarchical control framework for vehicle repositioning in ride-hailing systems publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 144 year: 2022 ident: b38 article-title: Reinforcement learning for ridesharing: An extended survey publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 131 start-page: 1 year: 2020 end-page: 25 ident: b19 article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays publication-title: Transp. Res. Part B: Methodol. – volume: 33 start-page: 4742 year: 2021 end-page: 4756 ident: b28 article-title: An integrated reinforcement learning and centralized programming approach for online taxi dispatching publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 128 year: 2021 ident: b55 article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 152 year: 2023 ident: b45 article-title: Dynamic ride-sourcing systems for city-scale networks, part II: Proactive vehicle repositioning publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye, J., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 905–913. – volume: 101 start-page: 268 year: 2017 end-page: 282 ident: b24 article-title: Dynamic macroscopic simulation of on-street parking search: A trip-based approach publication-title: Transp. Res. Part B: Methodol. – volume: 31 start-page: 2728 year: 2023 end-page: 2743 ident: b31 article-title: Hierarchical pricing game for balancing the charging of ride-hailing electric fleets publication-title: IEEE Trans. Control Syst. Technol. – volume: 128 year: 2021 ident: b42 article-title: Modeling, estimation, and control in large-scale urban road networks with remaining travel distance dynamics publication-title: Transp. Res. Part C: Emerg. Technol. – year: 2024 ident: b58 article-title: A coverage control-based idle vehicle rebalancing approach for autonomous mobility-on-demand systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 12 start-page: 169 year: 2020 end-page: 181 ident: b2 article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics publication-title: IEEE Intell. Transp. Syst. Mag. – start-page: 1382 year: 2016 end-page: 1389 ident: b50 article-title: Model predictive control of autonomous mobility-on-demand systems publication-title: 2016 IEEE International Conference on Robotics and Automation – volume: 177 year: 2023 ident: b8 article-title: A dynamic multi-region MFD model for ride-sourcing with ridesplitting publication-title: Transp. Res. Part B: Methodol. – volume: 121 start-page: 114 year: 2019 end-page: 134 ident: b49 article-title: A Markov decision process approach to vacant taxi routing with e-hailing publication-title: Transp. Res. Part B: Methodol. – volume: 6 start-page: 145 year: 2020 end-page: 158 ident: b56 article-title: Optimizing taxi driver profit efficiency: A spatial network-based Markov decision process approach publication-title: IEEE Trans. Big Data – reference: Miao, F., Lin, S., Munir, S., Stankovic, J.A., Huang, H., Zhang, D., He, T., Pappas, G.J., 2015. Taxi dispatch with real-time sensing data in metropolitan areas: A receding horizon control approach. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. pp. 100–109. – volume: 152 year: 2023 ident: b40 article-title: Dynamic ride-sourcing systems for city-scale networks-part I: Matching design and model formulation and validation publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 10 start-page: 849 year: 2014 end-page: 877 ident: b52 article-title: Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: An overview and general theory publication-title: Transp. A: Transp. Sci. – volume: 132 start-page: 60 year: 2020 end-page: 75 ident: b26 article-title: Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers publication-title: Transp. Res. Part B: Methodol. – volume: 7 start-page: 38 year: 2016 end-page: 52 ident: b5 article-title: Equilibrium traffic dynamics in a bathtub model: A special case publication-title: Econ. Transp. – volume: 109 start-page: 150 year: 2018 end-page: 175 ident: b4 article-title: Solving for equilibrium in the basic bathtub model publication-title: Transp. Res. Part B: Methodol. – volume: 124 year: 2021 ident: b7 article-title: On the inefficiency of ride-sourcing services towards urban congestion publication-title: Transp. Res. Part C: Emerg. Technol. – start-page: 3540 year: 2017 end-page: 3549 ident: b46 article-title: Feudal networks for hierarchical reinforcement learning publication-title: International Conference on Machine Learning – volume: 4 start-page: 241 year: 2015 end-page: 255 ident: b14 article-title: Congestion in the bathtub publication-title: Econ. Transp. – year: 2021 ident: b16 article-title: Where the action is: Let’s make reinforcement learning for stochastic dynamic vehicle routing problems work! – volume: 58 start-page: 896 year: 2024 end-page: 918 ident: b11 article-title: An iterative adaptive dynamic programming approach for macroscopic fundamental diagram-based perimeter control and route guidance publication-title: Transp. Sci. – year: 2021 ident: b12 article-title: Learning the macroscopic traffic dynamics for adaptive optimal perimeter control with integral reinforcement learning publication-title: 24th Int. Symp. Transp. Traffic Theory ( ISTTT24) – volume: 136 year: 2022 ident: b25 article-title: Path-oriented synchronized transit scheduling using time-dependent data publication-title: Transp. Res. Part C: Emerg. Technol. – year: 2024 ident: b57 article-title: Hierarchical control for vehicle repositioning in autonomous mobility-on-demand systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 111 start-page: 91 year: 2020 end-page: 113 ident: b41 article-title: Optimal passenger-seeking policies on E-hailing platforms using Markov decision process and imitation learning publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 58 start-page: 3140 year: 2021 end-page: 3156 ident: b29 article-title: Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data publication-title: Urban Stud. – volume: 118 year: 2020 ident: b15 article-title: Empirical analysis of large-scale multimodal traffic with multi-sensor data publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 111 year: 2021 ident: b17 article-title: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and Bayesian support vector regression publication-title: Appl. Soft Comput. – volume: 85 start-page: 292 year: 2017 end-page: 311 ident: b51 article-title: Forecasting journey time distribution with consideration to abnormal traffic conditions publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 192 year: 2024 ident: b21 article-title: A bi-level approach for optimal vehicle relocating in mobility-on-demand systems with approximate dynamic programming and coverage control publication-title: Transp. Res. Part E: Logist. Transp. Rev. – start-page: 1780 year: 2019 end-page: 1790 ident: b43 article-title: A deep value-network based approach for multi-driver order dispatching publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – start-page: 1 year: 2024 end-page: 37 ident: b18 article-title: A comparison of the accumulation-based, trip-based and time delay macroscopic fundamental diagram models publication-title: Transp. A: Transp. Sci. – volume: 640 year: 2024 ident: b30 article-title: Functional form selection and calibration of macroscopic fundamental diagrams publication-title: Phys. A – volume: 8 year: 2022 ident: b27 article-title: Prediction of travel time on urban road links with and without point detectors publication-title: Asian Transp. Stud. – volume: 2673 start-page: 114 year: 2019 end-page: 128 ident: b20 article-title: Investigation of bimodal macroscopic fundamental diagrams in large-scale urban networks: empirical study with GPS data for shenzhen city publication-title: Transp. Res. Rec. – year: 2022 ident: b37 article-title: Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions – volume: 132 start-page: 228 year: 2020 end-page: 248 ident: b53 article-title: Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems publication-title: Transp. Res. Part B: Methodol. – volume: 127 year: 2021 ident: b6 article-title: Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 142 year: 2022 ident: b13 article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 122 start-page: 327 year: 2019 end-page: 349 ident: b32 article-title: Flow exchanges in multi-reservoir systems with spillbacks publication-title: Transp. Res. Part B: Methodol. – volume: 21 start-page: 4000 year: 2020 end-page: 4016 ident: b54 article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 142 year: 2022 ident: 10.1016/j.trc.2025.105217_b13 article-title: Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2022.103759 – volume: 128 year: 2021 ident: 10.1016/j.trc.2025.105217_b42 article-title: Modeling, estimation, and control in large-scale urban road networks with remaining travel distance dynamics publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2021.103157 – year: 2021 ident: 10.1016/j.trc.2025.105217_b12 article-title: Learning the macroscopic traffic dynamics for adaptive optimal perimeter control with integral reinforcement learning publication-title: 24th Int. Symp. Transp. Traffic Theory ( ISTTT24) – volume: 111 year: 2021 ident: 10.1016/j.trc.2025.105217_b17 article-title: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and Bayesian support vector regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107663 – ident: 10.1016/j.trc.2025.105217_b22 doi: 10.1145/3357384.3357978 – start-page: 2708 year: 2018 ident: 10.1016/j.trc.2025.105217_b36 article-title: MOVI: A model-free approach to dynamic fleet management – volume: 76 start-page: 110 issue: 4 year: 2013 ident: 10.1016/j.trc.2025.105217_b3 article-title: A bathtub model of downtown traffic congestion publication-title: J. Urban Econ. doi: 10.1016/j.jue.2013.01.001 – volume: 132 start-page: 228 year: 2020 ident: 10.1016/j.trc.2025.105217_b53 article-title: Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.05.005 – volume: 132 start-page: 60 issue: C year: 2020 ident: 10.1016/j.trc.2025.105217_b26 article-title: Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.01.017 – year: 2024 ident: 10.1016/j.trc.2025.105217_b58 article-title: A coverage control-based idle vehicle rebalancing approach for autonomous mobility-on-demand systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 10 start-page: 849 issue: 10 year: 2014 ident: 10.1016/j.trc.2025.105217_b52 article-title: Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: An overview and general theory publication-title: Transp. A: Transp. Sci. – volume: 192 year: 2024 ident: 10.1016/j.trc.2025.105217_b21 article-title: A bi-level approach for optimal vehicle relocating in mobility-on-demand systems with approximate dynamic programming and coverage control publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2024.103754 – volume: 85 start-page: 292 year: 2017 ident: 10.1016/j.trc.2025.105217_b51 article-title: Forecasting journey time distribution with consideration to abnormal traffic conditions publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.08.021 – volume: 165 year: 2022 ident: 10.1016/j.trc.2025.105217_b10 article-title: A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2022.102835 – volume: 117 start-page: 794 year: 2018 ident: 10.1016/j.trc.2025.105217_b23 article-title: The morning commute in urban areas with heterogeneous trip lengths publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.08.023 – volume: 12 start-page: 169 issue: 4 year: 2020 ident: 10.1016/j.trc.2025.105217_b2 article-title: A sequential clustering method for the taxi-dispatching problem considering traffic dynamics publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 101 start-page: 268 year: 2017 ident: 10.1016/j.trc.2025.105217_b24 article-title: Dynamic macroscopic simulation of on-street parking search: A trip-based approach publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.04.004 – volume: 109 start-page: 150 year: 2018 ident: 10.1016/j.trc.2025.105217_b4 article-title: Solving for equilibrium in the basic bathtub model publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.12.003 – ident: 10.1016/j.trc.2025.105217_b48 doi: 10.1145/3219819.3219824 – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.trc.2025.105217_b44 article-title: On modeling stochastic dynamic vehicle routing problems publication-title: EURO J. Transp. Logist. doi: 10.1016/j.ejtl.2020.100008 – year: 2022 ident: 10.1016/j.trc.2025.105217_b37 – volume: 136 year: 2022 ident: 10.1016/j.trc.2025.105217_b25 article-title: Path-oriented synchronized transit scheduling using time-dependent data publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2021.103505 – start-page: 3540 year: 2017 ident: 10.1016/j.trc.2025.105217_b46 article-title: Feudal networks for hierarchical reinforcement learning – volume: 58 start-page: 896 issue: 4 year: 2024 ident: 10.1016/j.trc.2025.105217_b11 article-title: An iterative adaptive dynamic programming approach for macroscopic fundamental diagram-based perimeter control and route guidance publication-title: Transp. Sci. doi: 10.1287/trsc.2023.0091 – volume: 31 year: 2018 ident: 10.1016/j.trc.2025.105217_b35 article-title: Credit assignment for collective multiagent RL with global rewards publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: 10.1016/j.trc.2025.105217_b9 article-title: A hierarchical control framework for vehicle repositioning in ride-hailing systems publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2024.104717 – volume: 94 start-page: 203 year: 2018 ident: 10.1016/j.trc.2025.105217_b39 article-title: Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.08.011 – volume: 33 start-page: 4742 issue: 9 year: 2021 ident: 10.1016/j.trc.2025.105217_b28 article-title: An integrated reinforcement learning and centralized programming approach for online taxi dispatching publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3060187 – volume: 101 start-page: 245 year: 2017 ident: 10.1016/j.trc.2025.105217_b33 article-title: Macroscopic urban dynamics: analytical and numerical comparisons of existing models publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.04.002 – volume: 111 start-page: 91 year: 2020 ident: 10.1016/j.trc.2025.105217_b41 article-title: Optimal passenger-seeking policies on E-hailing platforms using Markov decision process and imitation learning publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2019.12.005 – volume: 4 start-page: 241 issue: 4 year: 2015 ident: 10.1016/j.trc.2025.105217_b14 article-title: Congestion in the bathtub publication-title: Econ. Transp. doi: 10.1016/j.ecotra.2015.08.001 – volume: 131 start-page: 1 year: 2020 ident: 10.1016/j.trc.2025.105217_b19 article-title: A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.11.002 – volume: 118 year: 2020 ident: 10.1016/j.trc.2025.105217_b15 article-title: Empirical analysis of large-scale multimodal traffic with multi-sensor data publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2020.102725 – volume: 152 year: 2023 ident: 10.1016/j.trc.2025.105217_b40 article-title: Dynamic ride-sourcing systems for city-scale networks-part I: Matching design and model formulation and validation publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2023.104158 – volume: 128 year: 2021 ident: 10.1016/j.trc.2025.105217_b55 article-title: Dynamic user equilibrium for departure time choice in the basic trip-based model publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2021.103190 – volume: 7 start-page: 38 year: 2016 ident: 10.1016/j.trc.2025.105217_b5 article-title: Equilibrium traffic dynamics in a bathtub model: A special case publication-title: Econ. Transp. doi: 10.1016/j.ecotra.2016.11.001 – volume: 145 start-page: 212 year: 2021 ident: 10.1016/j.trc.2025.105217_b1 article-title: Can dynamic ride-sharing reduce traffic congestion? publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2021.01.004 – volume: 127 year: 2021 ident: 10.1016/j.trc.2025.105217_b6 article-title: Dynamic traffic assignment for regional networks with traffic-dependent trip lengths and regional paths publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2021.103076 – volume: 21 start-page: 4000 year: 2020 ident: 10.1016/j.trc.2025.105217_b54 article-title: Dynamic system optimum analysis of multi-region macroscopic fundamental diagram systems with state-dependent time-varying delays publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2994347 – volume: 6 start-page: 145 issue: 1 year: 2020 ident: 10.1016/j.trc.2025.105217_b56 article-title: Optimizing taxi driver profit efficiency: A spatial network-based Markov decision process approach publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2018.2875524 – start-page: 1 year: 2024 ident: 10.1016/j.trc.2025.105217_b18 article-title: A comparison of the accumulation-based, trip-based and time delay macroscopic fundamental diagram models publication-title: Transp. A: Transp. Sci. – volume: 152 year: 2023 ident: 10.1016/j.trc.2025.105217_b45 article-title: Dynamic ride-sourcing systems for city-scale networks, part II: Proactive vehicle repositioning publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2023.104159 – volume: 31 start-page: 2728 issue: 6 year: 2023 ident: 10.1016/j.trc.2025.105217_b31 article-title: Hierarchical pricing game for balancing the charging of ride-hailing electric fleets publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2023.3286330 – volume: 124 year: 2021 ident: 10.1016/j.trc.2025.105217_b7 article-title: On the inefficiency of ride-sourcing services towards urban congestion publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2020.102890 – volume: 2673 start-page: 114 issue: 6 year: 2019 ident: 10.1016/j.trc.2025.105217_b20 article-title: Investigation of bimodal macroscopic fundamental diagrams in large-scale urban networks: empirical study with GPS data for shenzhen city publication-title: Transp. Res. Rec. doi: 10.1177/0361198119843472 – volume: 8 year: 2022 ident: 10.1016/j.trc.2025.105217_b27 article-title: Prediction of travel time on urban road links with and without point detectors publication-title: Asian Transp. Stud. doi: 10.1016/j.eastsj.2022.100081 – volume: 58 start-page: 3140 issue: 15 year: 2021 ident: 10.1016/j.trc.2025.105217_b29 article-title: Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data publication-title: Urban Stud. doi: 10.1177/0042098020919323 – volume: 129 start-page: 122 year: 2019 ident: 10.1016/j.trc.2025.105217_b47 article-title: Ridesourcing systems: A framework and review publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.07.009 – volume: 144 year: 2022 ident: 10.1016/j.trc.2025.105217_b38 article-title: Reinforcement learning for ridesharing: An extended survey publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2022.103852 – volume: 122 start-page: 327 year: 2019 ident: 10.1016/j.trc.2025.105217_b32 article-title: Flow exchanges in multi-reservoir systems with spillbacks publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.02.014 – year: 2024 ident: 10.1016/j.trc.2025.105217_b57 article-title: Hierarchical control for vehicle repositioning in autonomous mobility-on-demand systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 640 year: 2024 ident: 10.1016/j.trc.2025.105217_b30 article-title: Functional form selection and calibration of macroscopic fundamental diagrams publication-title: Phys. A doi: 10.1016/j.physa.2024.129691 – ident: 10.1016/j.trc.2025.105217_b34 doi: 10.1145/2735960.2735961 – volume: 121 start-page: 114 year: 2019 ident: 10.1016/j.trc.2025.105217_b49 article-title: A Markov decision process approach to vacant taxi routing with e-hailing publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2018.12.013 – year: 2021 ident: 10.1016/j.trc.2025.105217_b16 – volume: 177 year: 2023 ident: 10.1016/j.trc.2025.105217_b8 article-title: A dynamic multi-region MFD model for ride-sourcing with ridesplitting publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2023.102821 – start-page: 1780 year: 2019 ident: 10.1016/j.trc.2025.105217_b43 article-title: A deep value-network based approach for multi-driver order dispatching – start-page: 1382 year: 2016 ident: 10.1016/j.trc.2025.105217_b50 article-title: Model predictive control of autonomous mobility-on-demand systems |
| SSID | ssj0001957 |
| Score | 2.441286 |
| Snippet | The imbalance between vehicle supply and on-demand customers has been a long-standing challenge for central ride-sourcing platforms. The current literature... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105217 |
| SubjectTerms | Approximate dynamic programming Dispatching and relocation Time-dependent travel time Uncertain demand |
| Title | Data-driven optimization for ride-sourcing vehicle dispatching and relocation under demand and travel time uncertainty |
| URI | https://dx.doi.org/10.1016/j.trc.2025.105217 |
| Volume | 178 |
| WOSCitedRecordID | wos001531551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001957 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBehHWx7GFu30e4LPexpxcWWpdh6LF1GN0oYrIPsyViyRFIaN7iO6d_Rv7inL8fpNtgGg2CCFClB98vpdLrfHULvOdWZ5nkVUZ7oiIqYRTmjMhLM0CQFKWVl88yeZdNpPpvxr6PRbeDCdJdZXec3N3z1X0UNbSBsQ539C3H3k0IDvAehwxPEDs8_EvzHsi2jqjFa7PAKFMLSMy1tQGGzqFRkHfbGRdCpuRltbmlWoJLngbDYKLPF2UGGY2ZqiC99UldTU6JTl7YmPXRKF1HQbl0O9wnT3RQ-n9D8CMzVpj08serXsD4tUyu49gfBjKdr78T-sa5XYWu1zm3l2qcbSPeftZ2h9WzhWyf1MkzgXRuE9bFb3t8WODebACfruBybgI14tqXDXR2gn_YD55q4OGobk66SMFPWmDiy6L0029_MvGZasAnBrjGZZHdJxjhoyt3jz5PZl35_T7jLHxt-R7grt1GD977o19bOwII5f4qe-KMHPnaQeYZGqt5DDwMz_XoPPR4kp3yOugGQ8BBIGICEt4CEPZDwAEgYwII3QMIWSNgByfY5IGEDJDwA0gv0_dPk_OQ08lU6Igl_5zYimqSaslhwGetSEqoEJSqv8rFWiuUiZWnFzEFEw0tyTahIUsXGOkkTEacyfYl26qta7SMMxwHBhchLRgVVORe50DQTqVSVTKSuDtCHsJrFyiVjKUKU4kUBS1-YpS_c0h8gGta78NaksxILAMfvh736t2Gv0aMNgt-gnbZZq7fogezaxXXzzkPoDi85oR0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+optimization+for+ride-sourcing+vehicle+dispatching+and+relocation+under+demand+and+travel+time+uncertainty&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Huang%2C+Yunping&rft.au=Zheng%2C+Nan&rft.au=Huang%2C+Zheng&rft.au=Liang%2C+Enming&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.volume=178&rft_id=info:doi/10.1016%2Fj.trc.2025.105217&rft.externalDocID=S0968090X25002219 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |