Digital twin enabled real-time advanced control of TBM operation using deep learning methods

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 158; p. 105240
Main Authors: Zhang, Limao, Guo, Jing, Fu, Xianlei, Tiong, Robert Lee Kong, Zhang, Penghui
Format: Journal Article
Language:English
Published: 01.02.2024
ISSN:0926-5805
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
ArticleNumber 105240
Author Zhang, Limao
Fu, Xianlei
Zhang, Penghui
Tiong, Robert Lee Kong
Guo, Jing
Author_xml – sequence: 1
  givenname: Limao
  surname: Zhang
  fullname: Zhang, Limao
– sequence: 2
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
– sequence: 3
  givenname: Xianlei
  surname: Fu
  fullname: Fu, Xianlei
– sequence: 4
  givenname: Robert Lee Kong
  surname: Tiong
  fullname: Tiong, Robert Lee Kong
– sequence: 5
  givenname: Penghui
  surname: Zhang
  fullname: Zhang, Penghui
BookMark eNp9kMFOwzAQRH0oEm3hDzj4B1I2TuKk3KBAQSriUm5IlmuviyvXrhwXxN_jqJw4cFitdrQz0rwJGfngkZCrEmYllPx6N5PHpIKfMWBVlhpWw4iMYc540XTQnJNJ3-8AoAU-H5P3e7u1STqavqyn6OXGoaYRpSuS3SOV-lN6laUcmWJwNBi6vnuh4YBRJhs8PfbWb6lGPFCHMvrh2mP6CLq_IGdGuh4vf_eUvD0-rBdPxep1-by4XRWKNWUqWGdq1nbtZlMiB80Nq1ipKoaVQezyaKl1pyVIaJlSONcmfzHDea3bBng1JfUpV8XQ9xGNOES7l_FblCAGKmInTlTEQEWcqGTbzR-byiiGUilK6_43_wBKbXE_
CitedBy_id crossref_primary_10_1016_j_tust_2025_106427
crossref_primary_10_1016_j_autcon_2025_106314
crossref_primary_10_1016_j_autcon_2025_106436
crossref_primary_10_1016_j_measurement_2024_114387
crossref_primary_10_1016_j_autcon_2024_105747
crossref_primary_10_1016_j_autcon_2024_105901
crossref_primary_10_1016_j_autcon_2025_106471
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_3390_ijgi13090320
crossref_primary_10_1016_j_ijmachtools_2025_104268
crossref_primary_10_1016_j_undsp_2024_09_004
crossref_primary_10_1038_s41598_025_98235_1
crossref_primary_10_1016_j_autcon_2025_106271
crossref_primary_10_1007_s10706_025_03256_2
crossref_primary_10_1016_j_eswa_2025_128787
crossref_primary_10_1016_j_inffus_2024_102705
crossref_primary_10_1109_JRFID_2024_3387996
crossref_primary_10_1016_j_tust_2025_106819
crossref_primary_10_1016_j_rser_2024_115003
crossref_primary_10_1016_j_aei_2025_103261
crossref_primary_10_1016_j_autcon_2024_105956
crossref_primary_10_1016_j_autcon_2024_105799
crossref_primary_10_1016_j_tust_2025_106410
crossref_primary_10_1016_j_eiar_2024_107571
crossref_primary_10_1016_j_engappai_2024_109868
crossref_primary_10_1016_j_tust_2025_107061
crossref_primary_10_1016_j_apenergy_2024_124117
crossref_primary_10_1108_ECAM_12_2023_1217
crossref_primary_10_1111_risa_17651
crossref_primary_10_3390_computation13070152
crossref_primary_10_1108_MLAG_02_2025_0005
crossref_primary_10_1016_j_enbuild_2025_115880
crossref_primary_10_1016_j_ress_2025_111604
crossref_primary_10_1016_j_autcon_2024_105882
crossref_primary_10_1016_j_tust_2024_105674
crossref_primary_10_1016_j_jrmge_2025_01_034
crossref_primary_10_1016_j_ress_2024_110300
crossref_primary_10_1109_ACCESS_2025_3601615
crossref_primary_10_1016_j_tust_2025_106760
crossref_primary_10_1016_j_aei_2025_103873
crossref_primary_10_1016_j_autcon_2025_105966
crossref_primary_10_1016_j_autcon_2025_106373
crossref_primary_10_1016_j_tust_2025_106367
crossref_primary_10_1017_dce_2025_10008
crossref_primary_10_1016_j_aei_2025_103511
crossref_primary_10_1016_j_engappai_2024_109616
crossref_primary_10_1016_j_asoc_2024_112234
crossref_primary_10_1108_ECAM_03_2024_0304
crossref_primary_10_1016_j_engappai_2024_109104
crossref_primary_10_1016_j_ress_2025_111633
crossref_primary_10_1007_s42524_025_4148_5
crossref_primary_10_1016_j_tust_2025_106878
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_3389_feart_2025_1608468
crossref_primary_10_1007_s10462_025_11261_3
crossref_primary_10_1016_j_autcon_2025_106407
crossref_primary_10_1016_j_eswa_2024_123701
crossref_primary_10_1007_s00202_024_02746_5
crossref_primary_10_1016_j_autcon_2024_105339
crossref_primary_10_1016_j_rser_2024_114975
crossref_primary_10_1016_j_aei_2024_102943
crossref_primary_10_1016_j_autcon_2024_105894
crossref_primary_10_1016_j_aei_2024_102663
crossref_primary_10_1061_JCEMD4_COENG_15962
crossref_primary_10_1016_j_enbuild_2024_114159
crossref_primary_10_1016_j_eswa_2024_125484
Cites_doi 10.1016/j.autcon.2019.102924
10.1016/j.autcon.2018.11.013
10.3390/buildings12111959
10.1016/j.autcon.2021.103937
10.1016/j.tust.2022.104728
10.1061/(ASCE)GM.1943-5622.0001245
10.1080/15732479.2019.1620789
10.1016/j.autcon.2019.102860
10.1016/j.aei.2023.101876
10.1016/j.autcon.2022.104421
10.1016/j.autcon.2020.103547
10.1016/j.autcon.2023.104785
10.1016/j.tust.2022.104794
10.1016/j.autcon.2022.104310
10.1016/j.autcon.2021.103779
10.1016/j.compind.2021.103594
10.1016/j.autcon.2023.104982
10.1016/j.gsf.2020.09.020
10.1016/j.aei.2022.101642
10.1016/j.eswa.2023.120100
10.1016/j.aei.2022.101710
10.1061/(ASCE)CO.1943-7862.0001223
10.1007/s00158-021-02846-x
10.1007/s10706-017-0238-4
10.1016/j.aei.2022.101751
10.1016/j.autcon.2022.104386
10.1016/j.tust.2021.104125
10.1061/(ASCE)CP.1943-5487.0000833
10.1016/j.autcon.2021.104109
10.1016/j.autcon.2020.103087
10.1016/j.ress.2019.106529
10.1016/j.asoc.2021.108128
10.1016/j.autcon.2022.104695
10.1016/j.autcon.2021.103838
10.1016/j.eswa.2022.118721
10.1016/j.tust.2022.104840
10.1016/j.compeleceng.2023.108712
10.1007/s11431-022-2290-7
10.1016/j.tust.2018.07.029
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2023.105240
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_autcon_2023_105240
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CITATION
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
~HD
ID FETCH-LOGICAL-c251t-28f42787bb1e60d6f2321c32e3fee8feedadd8da0a072cce9df0d62f664d75063
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146355300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Sat Nov 29 07:14:51 EST 2025
Tue Nov 18 21:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-28f42787bb1e60d6f2321c32e3fee8feedadd8da0a072cce9df0d62f664d75063
ParticipantIDs crossref_primary_10_1016_j_autcon_2023_105240
crossref_citationtrail_10_1016_j_autcon_2023_105240
PublicationCentury 2000
PublicationDate 2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2024
References Kim (10.1016/j.autcon.2023.105240_bb0090) 2022; 135
Zhou (10.1016/j.autcon.2023.105240_bb0015) 2019; 107
Shim (10.1016/j.autcon.2023.105240_bb0130) 2019; 15
Shan (10.1016/j.autcon.2023.105240_bb0080) 2022; 130
Hamledari (10.1016/j.autcon.2023.105240_bb0175) 2018
Ketkar (10.1016/j.autcon.2023.105240_bb0215) 2017
Zhou (10.1016/j.autcon.2023.105240_bb0010) 2018; 82
C.s. Data61 (10.1016/j.autcon.2023.105240_bb0220)
Xie (10.1016/j.autcon.2023.105240_bb0065) 2023; 146
Zhang (10.1016/j.autcon.2023.105240_bb0095) 2019; 106
Park (10.1016/j.autcon.2023.105240_bb0160) 2017; 143
Pregnolato (10.1016/j.autcon.2023.105240_bb0070) 2022; 141
Liu (10.1016/j.autcon.2023.105240_bb0125) 2023; 55
Feng (10.1016/j.autcon.2023.105240_bb0050) 2021; 63
Jiang (10.1016/j.autcon.2023.105240_bb0145) 2021; 130
Zhou (10.1016/j.autcon.2023.105240_bb0235) 2023; 154
Wu (10.1016/j.autcon.2023.105240_bb0115) 2022; 54
Liu (10.1016/j.autcon.2023.105240_bb0040) 2023
Zhang (10.1016/j.autcon.2023.105240_bb0230) 2023; 66
Guo (10.1016/j.autcon.2023.105240_bb0120) 2022; 115
Lee (10.1016/j.autcon.2023.105240_bb0170) 2022; 53
Chen (10.1016/j.autcon.2023.105240_bb0210) 2019
Fu (10.1016/j.autcon.2023.105240_bb0035) 2021; 132
Zhou (10.1016/j.autcon.2023.105240_bb0105) 2022; 53
Islam (10.1016/j.autcon.2023.105240_bb0225) 2023; 108
Gao (10.1016/j.autcon.2023.105240_bb0025) 2019; 98
Naderi (10.1016/j.autcon.2023.105240_bb0060) 2023; 149
Pan (10.1016/j.autcon.2023.105240_bb0200) 2022; 141
Mahmoodzadeh (10.1016/j.autcon.2023.105240_bb0110) 2021; 128
Cheng (10.1016/j.autcon.2023.105240_bb0165) 2020; 112
Wang (10.1016/j.autcon.2023.105240_bb0185) 2023; 131
Jiang (10.1016/j.autcon.2023.105240_bb0140) 2022; 136
Liu (10.1016/j.autcon.2023.105240_bb0055) 2022; 139
Wang (10.1016/j.autcon.2023.105240_bb0030) 2019; 191
Deb (10.1016/j.autcon.2023.105240_bb0045) 2000
Yu (10.1016/j.autcon.2023.105240_bb0155) 2021; 116
Fattahi (10.1016/j.autcon.2023.105240_bb0075) 2017; 35
Pan (10.1016/j.autcon.2023.105240_bb0005) 2023; 225
Zhou (10.1016/j.autcon.2023.105240_bb0100) 2019; 33
Fu (10.1016/j.autcon.2023.105240_bb0180) 2023; 212
Kipf (10.1016/j.autcon.2023.105240_bb0205) 2016
Zhou (10.1016/j.autcon.2023.105240_bb0085) 2021; 12
Zhou (10.1016/j.autcon.2023.105240_bb0020) 2018; 18
Lu (10.1016/j.autcon.2023.105240_bb0135) 2020; 36
Lin (10.1016/j.autcon.2023.105240_bb0150) 2021; 123
Fu (10.1016/j.autcon.2023.105240_bb0195) 2022; 12
She (10.1016/j.autcon.2023.105240_bb0190) 2023; 131
References_xml – volume: 107
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0015
  article-title: Unsupervised spectral clustering for shield tunneling machine monitoring data with complex network theory
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102924
– volume: 98
  start-page: 225
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0025
  article-title: Recurrent neural networks for real-time prediction of TBM operating parameters
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.013
– volume: 12
  start-page: 2075
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0195
  article-title: Probabilistic life prediction of tunnel boring machine under wearing conditions with incomplete information
  publication-title: Buildings
  doi: 10.3390/buildings12111959
– volume: 132
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0035
  article-title: Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: a deep learning approach
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103937
– volume: 130
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0080
  article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104728
– volume: 18
  start-page: 06018030
  issue: 11
  year: 2018
  ident: 10.1016/j.autcon.2023.105240_bb0020
  article-title: Reliability assessment of tunnel based on P-wave seismic velocity
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0001245
– year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0040
  article-title: Intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 15
  start-page: 1319
  issue: 10
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0130
  article-title: Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2019.1620789
– volume: 106
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0095
  article-title: Real-time analysis and regulation of EPB shield steering using Random Forest
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102860
– start-page: 849
  year: 2000
  ident: 10.1016/j.autcon.2023.105240_bb0045
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– start-page: 336
  year: 2018
  ident: 10.1016/j.autcon.2023.105240_bb0175
  article-title: UAV-enabled site-to-BIM automation: aerial robotic- and computer vision-based development of as-built/as-is BIMs and quality control
  publication-title: Construct. Res. Congr.
– volume: 55
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0125
  article-title: A systematic review of digital twin about physical entities, virtual models, twin data, and applications
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.101876
– volume: 141
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0070
  article-title: Towards civil engineering 4.0: concept, workflow and application of digital twins for existing infrastructure
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104421
– volume: 123
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0150
  article-title: Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103547
– volume: 149
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0060
  article-title: Digital twinning of civil infrastructures: current state of model architectures, interoperability solutions, and future prospects
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104785
– volume: 131
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0185
  article-title: TBM penetration rate prediction ensemble model based on full-scale linear cutting test
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104794
– volume: 139
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0055
  article-title: Multi-objective optimization control for tunnel boring machine performance improvement under uncertainty
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104310
– volume: 128
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0110
  article-title: Machine learning forecasting models of disc cutters life of tunnel boring machine
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103779
– start-page: 702
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0210
  article-title: Prediction of TBM tunneling parameters through an LSTM neural network
– volume: 136
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0140
  article-title: Digital twin-enabled smart modular integrated construction system for on-site assembly
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103594
– volume: 154
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0235
  article-title: Deep learning technologies for shield tunneling: challenges and opportunities
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104982
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0085
  article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.09.020
– volume: 53
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0105
  article-title: Physics-based machine learning method and the application to energy consumption prediction in tunneling construction
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101642
– volume: 225
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0005
  article-title: Time series clustering for TBM performance investigation using spatio-temporal complex networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120100
– volume: 36
  start-page: 05020004
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2023.105240_bb0135
  article-title: Developing a digital twin at building and city levels: case study of West Cambridge campus
  publication-title: J. Manag. Eng.
– volume: 53
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0170
  article-title: Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101710
– start-page: 97
  year: 2017
  ident: 10.1016/j.autcon.2023.105240_bb0215
  article-title: Introduction to Keras
– volume: 143
  start-page: 05016019
  issue: 2
  year: 2017
  ident: 10.1016/j.autcon.2023.105240_bb0160
  article-title: Framework of automated construction-safety monitoring using cloud-enabled BIM and BLE mobile tracking sensors
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001223
– volume: 63
  start-page: 3007
  issue: 6
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0050
  article-title: Reliability-based multi-objective optimization in tunneling alignment under uncertainty
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-02846-x
– volume: 35
  start-page: 2205
  issue: 5
  year: 2017
  ident: 10.1016/j.autcon.2023.105240_bb0075
  article-title: Applying optimized support vector regression models for prediction of tunnel boring machine performance
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0238-4
– volume: 54
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0115
  article-title: Multi-objective optimization of shield construction parameters based on random forests and NSGA-II
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101751
– volume: 141
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0200
  article-title: Data-driven multi-output prediction for TBM performance during tunnel excavation: an attention-based graph convolutional network approach
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104386
– volume: 116
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0155
  article-title: A digital twin-based decision analysis framework for operation and maintenance of tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104125
– volume: 33
  start-page: 04019019
  issue: 3
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0100
  article-title: Hybrid support vector machine optimization model for prediction of energy consumption of cutter head drives in shield tunneling
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000833
– volume: 135
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0090
  article-title: Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104109
– year: 2016
  ident: 10.1016/j.autcon.2023.105240_bb0205
– volume: 112
  year: 2020
  ident: 10.1016/j.autcon.2023.105240_bb0165
  article-title: Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103087
– ident: 10.1016/j.autcon.2023.105240_bb0220
– volume: 191
  year: 2019
  ident: 10.1016/j.autcon.2023.105240_bb0030
  article-title: Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106529
– volume: 115
  year: 2022
  ident: 10.1016/j.autcon.2023.105240_bb0120
  article-title: Data-driven optimization for mitigating tunnel-induced damages
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108128
– volume: 146
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0065
  article-title: Digital twin enabled fault detection and diagnosis process for building HVAC systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104695
– volume: 130
  year: 2021
  ident: 10.1016/j.autcon.2023.105240_bb0145
  article-title: Digital twin and its implementations in the civil engineering sector
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103838
– volume: 212
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0180
  article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118721
– volume: 131
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0190
  article-title: A new method for wear estimation of TBM disc cutter based on energy analysis
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104840
– volume: 108
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0225
  article-title: Performance analysis of video data transmission for telemedicine applications with 5G enabled Internet of Things
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108712
– volume: 66
  start-page: 751
  issue: 3
  year: 2023
  ident: 10.1016/j.autcon.2023.105240_bb0230
  article-title: Cross-project prediction for rock mass using shuffled TBM big dataset and knowledge-based machine learning methods
  publication-title: SCIENCE CHINA Technol. Sci.
  doi: 10.1007/s11431-022-2290-7
– volume: 82
  start-page: 9
  year: 2018
  ident: 10.1016/j.autcon.2023.105240_bb0010
  article-title: A probabilistic method to analyze collapse failure of shallow rectangular tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.07.029
SSID ssj0007069
Score 2.6029484
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 105240
Title Digital twin enabled real-time advanced control of TBM operation using deep learning methods
Volume 158
WOSCitedRecordID wos001146355300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007069
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKh8Q4oDGYGGzIB26RUeb8cHIsbGiDMnEoUg9IUeLYU6aSVGs7duRP573YTjoqTdthh0aV5VhR39f4y8v3vkfIBxFJCby7wLyGYqEUmuU8iFgu_aLEkjRZtJEei_PzZDpNfwwGf10tzPVM1HVyc5POHzXUMAbBxtLZB4S7WxQG4DsEHY4QdjjeK_DH1QU2AvGWf9ANpC2NwgqVfMawj3z_0t-J1IEtTj5995q5smBYtemDUqm56ylxYRtNL9ap7Gi1bEzdo9dq2Xsr2o1k9Lj6nTed0mdlXva4PRPBs8KRKSB1pqoul1BZtbARf3tjpbxvjT3J5il46KTNfcKRxyxK_OjWvdf4ttu7J3A9bsybNm7sJsdwibIezBNg0_eP_fTbPtr_7W-d6tAJ2i4zs0qGq2RmlSdki4soTYZka3R2Mv3a7ebCj41fo716V37ZagQ3r2aN3qzxlMkOeWEfMOjIAOMlGah6lzxz9eeLXfJ8zYLyFfll4UIRLtTChXZwoQ4u1MKFNpoCXGgHF9rChSJcqIMLtXB5TX5-OZl8PmW24waTwHOXjCcaW6-IojhSsV_GGvj2kQy4CrRSCXxK2A6TMvdzX3ApVVpqmMV1HIclUM842CPDuqnVG0K5LiKggwFPdRTmEl2AgtTnBdehkFFS7pPA_VCZtHb02BVllt0Vpn3CurPmxo7lzvlvHzj_HdnusXtAhvDHUYfkqbxeVour9xYb_wDPK4gL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+twin+enabled+real-time+advanced+control+of+TBM+operation+using+deep+learning+methods&rft.jtitle=Automation+in+construction&rft.au=Zhang%2C+Limao&rft.au=Guo%2C+Jing&rft.au=Fu%2C+Xianlei&rft.au=Tiong%2C+Robert+Lee+Kong&rft.date=2024-02-01&rft.issn=0926-5805&rft.volume=158&rft.spage=105240&rft_id=info:doi/10.1016%2Fj.autcon.2023.105240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2023_105240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon