Digital twin enabled real-time advanced control of TBM operation using deep learning methods
Uloženo v:
| Vydáno v: | Automation in construction Ročník 158; s. 105240 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.02.2024
|
| ISSN: | 0926-5805 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| ArticleNumber | 105240 |
|---|---|
| Author | Zhang, Limao Fu, Xianlei Zhang, Penghui Tiong, Robert Lee Kong Guo, Jing |
| Author_xml | – sequence: 1 givenname: Limao surname: Zhang fullname: Zhang, Limao – sequence: 2 givenname: Jing surname: Guo fullname: Guo, Jing – sequence: 3 givenname: Xianlei surname: Fu fullname: Fu, Xianlei – sequence: 4 givenname: Robert Lee Kong surname: Tiong fullname: Tiong, Robert Lee Kong – sequence: 5 givenname: Penghui surname: Zhang fullname: Zhang, Penghui |
| BookMark | eNp9kMFOwzAQRH0oEm3hDzj4B1I2TuKk3KBAQSriUm5IlmuviyvXrhwXxN_jqJw4cFitdrQz0rwJGfngkZCrEmYllPx6N5PHpIKfMWBVlhpWw4iMYc540XTQnJNJ3-8AoAU-H5P3e7u1STqavqyn6OXGoaYRpSuS3SOV-lN6laUcmWJwNBi6vnuh4YBRJhs8PfbWb6lGPFCHMvrh2mP6CLq_IGdGuh4vf_eUvD0-rBdPxep1-by4XRWKNWUqWGdq1nbtZlMiB80Nq1ipKoaVQezyaKl1pyVIaJlSONcmfzHDea3bBng1JfUpV8XQ9xGNOES7l_FblCAGKmInTlTEQEWcqGTbzR-byiiGUilK6_43_wBKbXE_ |
| CitedBy_id | crossref_primary_10_1016_j_tust_2025_106427 crossref_primary_10_1016_j_autcon_2025_106314 crossref_primary_10_1016_j_autcon_2025_106436 crossref_primary_10_1016_j_measurement_2024_114387 crossref_primary_10_1016_j_autcon_2024_105747 crossref_primary_10_1016_j_autcon_2024_105901 crossref_primary_10_1016_j_autcon_2025_106471 crossref_primary_10_1007_s11831_024_10145_z crossref_primary_10_3390_ijgi13090320 crossref_primary_10_1016_j_ijmachtools_2025_104268 crossref_primary_10_1016_j_undsp_2024_09_004 crossref_primary_10_1038_s41598_025_98235_1 crossref_primary_10_1016_j_autcon_2025_106271 crossref_primary_10_1007_s10706_025_03256_2 crossref_primary_10_1016_j_eswa_2025_128787 crossref_primary_10_1016_j_inffus_2024_102705 crossref_primary_10_1109_JRFID_2024_3387996 crossref_primary_10_1016_j_tust_2025_106819 crossref_primary_10_1016_j_rser_2024_115003 crossref_primary_10_1016_j_aei_2025_103261 crossref_primary_10_1016_j_autcon_2024_105956 crossref_primary_10_1016_j_autcon_2024_105799 crossref_primary_10_1016_j_tust_2025_106410 crossref_primary_10_1016_j_eiar_2024_107571 crossref_primary_10_1016_j_engappai_2024_109868 crossref_primary_10_1016_j_tust_2025_107061 crossref_primary_10_1016_j_apenergy_2024_124117 crossref_primary_10_1108_ECAM_12_2023_1217 crossref_primary_10_1111_risa_17651 crossref_primary_10_3390_computation13070152 crossref_primary_10_1108_MLAG_02_2025_0005 crossref_primary_10_1016_j_enbuild_2025_115880 crossref_primary_10_1016_j_ress_2025_111604 crossref_primary_10_1016_j_autcon_2024_105882 crossref_primary_10_1016_j_tust_2024_105674 crossref_primary_10_1016_j_jrmge_2025_01_034 crossref_primary_10_1016_j_ress_2024_110300 crossref_primary_10_1109_ACCESS_2025_3601615 crossref_primary_10_1016_j_tust_2025_106760 crossref_primary_10_1016_j_aei_2025_103873 crossref_primary_10_1016_j_autcon_2025_105966 crossref_primary_10_1016_j_autcon_2025_106373 crossref_primary_10_1016_j_tust_2025_106367 crossref_primary_10_1017_dce_2025_10008 crossref_primary_10_1016_j_aei_2025_103511 crossref_primary_10_1016_j_engappai_2024_109616 crossref_primary_10_1016_j_asoc_2024_112234 crossref_primary_10_1108_ECAM_03_2024_0304 crossref_primary_10_1016_j_engappai_2024_109104 crossref_primary_10_1016_j_ress_2025_111633 crossref_primary_10_1007_s42524_025_4148_5 crossref_primary_10_1016_j_tust_2025_106878 crossref_primary_10_1080_17486025_2025_2502029 crossref_primary_10_3389_feart_2025_1608468 crossref_primary_10_1007_s10462_025_11261_3 crossref_primary_10_1016_j_autcon_2025_106407 crossref_primary_10_1016_j_eswa_2024_123701 crossref_primary_10_1007_s00202_024_02746_5 crossref_primary_10_1016_j_autcon_2024_105339 crossref_primary_10_1016_j_rser_2024_114975 crossref_primary_10_1016_j_aei_2024_102943 crossref_primary_10_1016_j_autcon_2024_105894 crossref_primary_10_1016_j_aei_2024_102663 crossref_primary_10_1061_JCEMD4_COENG_15962 crossref_primary_10_1016_j_enbuild_2024_114159 crossref_primary_10_1016_j_eswa_2024_125484 |
| Cites_doi | 10.1016/j.autcon.2019.102924 10.1016/j.autcon.2018.11.013 10.3390/buildings12111959 10.1016/j.autcon.2021.103937 10.1016/j.tust.2022.104728 10.1061/(ASCE)GM.1943-5622.0001245 10.1080/15732479.2019.1620789 10.1016/j.autcon.2019.102860 10.1016/j.aei.2023.101876 10.1016/j.autcon.2022.104421 10.1016/j.autcon.2020.103547 10.1016/j.autcon.2023.104785 10.1016/j.tust.2022.104794 10.1016/j.autcon.2022.104310 10.1016/j.autcon.2021.103779 10.1016/j.compind.2021.103594 10.1016/j.autcon.2023.104982 10.1016/j.gsf.2020.09.020 10.1016/j.aei.2022.101642 10.1016/j.eswa.2023.120100 10.1016/j.aei.2022.101710 10.1061/(ASCE)CO.1943-7862.0001223 10.1007/s00158-021-02846-x 10.1007/s10706-017-0238-4 10.1016/j.aei.2022.101751 10.1016/j.autcon.2022.104386 10.1016/j.tust.2021.104125 10.1061/(ASCE)CP.1943-5487.0000833 10.1016/j.autcon.2021.104109 10.1016/j.autcon.2020.103087 10.1016/j.ress.2019.106529 10.1016/j.asoc.2021.108128 10.1016/j.autcon.2022.104695 10.1016/j.autcon.2021.103838 10.1016/j.eswa.2022.118721 10.1016/j.tust.2022.104840 10.1016/j.compeleceng.2023.108712 10.1007/s11431-022-2290-7 10.1016/j.tust.2018.07.029 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.autcon.2023.105240 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | 10_1016_j_autcon_2023_105240 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CITATION CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-c251t-28f42787bb1e60d6f2321c32e3fee8feedadd8da0a072cce9df0d62f664d75063 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146355300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Sat Nov 29 07:14:51 EST 2025 Tue Nov 18 21:26:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-28f42787bb1e60d6f2321c32e3fee8feedadd8da0a072cce9df0d62f664d75063 |
| ParticipantIDs | crossref_primary_10_1016_j_autcon_2023_105240 crossref_citationtrail_10_1016_j_autcon_2023_105240 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Automation in construction |
| PublicationYear | 2024 |
| References | Kim (10.1016/j.autcon.2023.105240_bb0090) 2022; 135 Zhou (10.1016/j.autcon.2023.105240_bb0015) 2019; 107 Shim (10.1016/j.autcon.2023.105240_bb0130) 2019; 15 Shan (10.1016/j.autcon.2023.105240_bb0080) 2022; 130 Hamledari (10.1016/j.autcon.2023.105240_bb0175) 2018 Ketkar (10.1016/j.autcon.2023.105240_bb0215) 2017 Zhou (10.1016/j.autcon.2023.105240_bb0010) 2018; 82 C.s. Data61 (10.1016/j.autcon.2023.105240_bb0220) Xie (10.1016/j.autcon.2023.105240_bb0065) 2023; 146 Zhang (10.1016/j.autcon.2023.105240_bb0095) 2019; 106 Park (10.1016/j.autcon.2023.105240_bb0160) 2017; 143 Pregnolato (10.1016/j.autcon.2023.105240_bb0070) 2022; 141 Liu (10.1016/j.autcon.2023.105240_bb0125) 2023; 55 Feng (10.1016/j.autcon.2023.105240_bb0050) 2021; 63 Jiang (10.1016/j.autcon.2023.105240_bb0145) 2021; 130 Zhou (10.1016/j.autcon.2023.105240_bb0235) 2023; 154 Wu (10.1016/j.autcon.2023.105240_bb0115) 2022; 54 Liu (10.1016/j.autcon.2023.105240_bb0040) 2023 Zhang (10.1016/j.autcon.2023.105240_bb0230) 2023; 66 Guo (10.1016/j.autcon.2023.105240_bb0120) 2022; 115 Lee (10.1016/j.autcon.2023.105240_bb0170) 2022; 53 Chen (10.1016/j.autcon.2023.105240_bb0210) 2019 Fu (10.1016/j.autcon.2023.105240_bb0035) 2021; 132 Zhou (10.1016/j.autcon.2023.105240_bb0105) 2022; 53 Islam (10.1016/j.autcon.2023.105240_bb0225) 2023; 108 Gao (10.1016/j.autcon.2023.105240_bb0025) 2019; 98 Naderi (10.1016/j.autcon.2023.105240_bb0060) 2023; 149 Pan (10.1016/j.autcon.2023.105240_bb0200) 2022; 141 Mahmoodzadeh (10.1016/j.autcon.2023.105240_bb0110) 2021; 128 Cheng (10.1016/j.autcon.2023.105240_bb0165) 2020; 112 Wang (10.1016/j.autcon.2023.105240_bb0185) 2023; 131 Jiang (10.1016/j.autcon.2023.105240_bb0140) 2022; 136 Liu (10.1016/j.autcon.2023.105240_bb0055) 2022; 139 Wang (10.1016/j.autcon.2023.105240_bb0030) 2019; 191 Deb (10.1016/j.autcon.2023.105240_bb0045) 2000 Yu (10.1016/j.autcon.2023.105240_bb0155) 2021; 116 Fattahi (10.1016/j.autcon.2023.105240_bb0075) 2017; 35 Pan (10.1016/j.autcon.2023.105240_bb0005) 2023; 225 Zhou (10.1016/j.autcon.2023.105240_bb0100) 2019; 33 Fu (10.1016/j.autcon.2023.105240_bb0180) 2023; 212 Kipf (10.1016/j.autcon.2023.105240_bb0205) 2016 Zhou (10.1016/j.autcon.2023.105240_bb0085) 2021; 12 Zhou (10.1016/j.autcon.2023.105240_bb0020) 2018; 18 Lu (10.1016/j.autcon.2023.105240_bb0135) 2020; 36 Lin (10.1016/j.autcon.2023.105240_bb0150) 2021; 123 Fu (10.1016/j.autcon.2023.105240_bb0195) 2022; 12 She (10.1016/j.autcon.2023.105240_bb0190) 2023; 131 |
| References_xml | – volume: 107 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0015 article-title: Unsupervised spectral clustering for shield tunneling machine monitoring data with complex network theory publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102924 – volume: 98 start-page: 225 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0025 article-title: Recurrent neural networks for real-time prediction of TBM operating parameters publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.013 – volume: 12 start-page: 2075 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0195 article-title: Probabilistic life prediction of tunnel boring machine under wearing conditions with incomplete information publication-title: Buildings doi: 10.3390/buildings12111959 – volume: 132 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0035 article-title: Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: a deep learning approach publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103937 – volume: 130 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0080 article-title: Success and challenges in predicting TBM penetration rate using recurrent neural networks publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104728 – volume: 18 start-page: 06018030 issue: 11 year: 2018 ident: 10.1016/j.autcon.2023.105240_bb0020 article-title: Reliability assessment of tunnel based on P-wave seismic velocity publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0001245 – year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0040 article-title: Intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization publication-title: J. Rock Mech. Geotech. Eng. – volume: 15 start-page: 1319 issue: 10 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0130 article-title: Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2019.1620789 – volume: 106 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0095 article-title: Real-time analysis and regulation of EPB shield steering using Random Forest publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102860 – start-page: 849 year: 2000 ident: 10.1016/j.autcon.2023.105240_bb0045 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – start-page: 336 year: 2018 ident: 10.1016/j.autcon.2023.105240_bb0175 article-title: UAV-enabled site-to-BIM automation: aerial robotic- and computer vision-based development of as-built/as-is BIMs and quality control publication-title: Construct. Res. Congr. – volume: 55 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0125 article-title: A systematic review of digital twin about physical entities, virtual models, twin data, and applications publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.101876 – volume: 141 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0070 article-title: Towards civil engineering 4.0: concept, workflow and application of digital twins for existing infrastructure publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104421 – volume: 123 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0150 article-title: Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103547 – volume: 149 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0060 article-title: Digital twinning of civil infrastructures: current state of model architectures, interoperability solutions, and future prospects publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104785 – volume: 131 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0185 article-title: TBM penetration rate prediction ensemble model based on full-scale linear cutting test publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104794 – volume: 139 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0055 article-title: Multi-objective optimization control for tunnel boring machine performance improvement under uncertainty publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104310 – volume: 128 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0110 article-title: Machine learning forecasting models of disc cutters life of tunnel boring machine publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103779 – start-page: 702 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0210 article-title: Prediction of TBM tunneling parameters through an LSTM neural network – volume: 136 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0140 article-title: Digital twin-enabled smart modular integrated construction system for on-site assembly publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103594 – volume: 154 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0235 article-title: Deep learning technologies for shield tunneling: challenges and opportunities publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104982 – volume: 12 issue: 3 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0085 article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.09.020 – volume: 53 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0105 article-title: Physics-based machine learning method and the application to energy consumption prediction in tunneling construction publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101642 – volume: 225 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0005 article-title: Time series clustering for TBM performance investigation using spatio-temporal complex networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120100 – volume: 36 start-page: 05020004 issue: 3 year: 2020 ident: 10.1016/j.autcon.2023.105240_bb0135 article-title: Developing a digital twin at building and city levels: case study of West Cambridge campus publication-title: J. Manag. Eng. – volume: 53 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0170 article-title: Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101710 – start-page: 97 year: 2017 ident: 10.1016/j.autcon.2023.105240_bb0215 article-title: Introduction to Keras – volume: 143 start-page: 05016019 issue: 2 year: 2017 ident: 10.1016/j.autcon.2023.105240_bb0160 article-title: Framework of automated construction-safety monitoring using cloud-enabled BIM and BLE mobile tracking sensors publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001223 – volume: 63 start-page: 3007 issue: 6 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0050 article-title: Reliability-based multi-objective optimization in tunneling alignment under uncertainty publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-02846-x – volume: 35 start-page: 2205 issue: 5 year: 2017 ident: 10.1016/j.autcon.2023.105240_bb0075 article-title: Applying optimized support vector regression models for prediction of tunnel boring machine performance publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-017-0238-4 – volume: 54 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0115 article-title: Multi-objective optimization of shield construction parameters based on random forests and NSGA-II publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101751 – volume: 141 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0200 article-title: Data-driven multi-output prediction for TBM performance during tunnel excavation: an attention-based graph convolutional network approach publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104386 – volume: 116 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0155 article-title: A digital twin-based decision analysis framework for operation and maintenance of tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104125 – volume: 33 start-page: 04019019 issue: 3 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0100 article-title: Hybrid support vector machine optimization model for prediction of energy consumption of cutter head drives in shield tunneling publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000833 – volume: 135 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0090 article-title: Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104109 – year: 2016 ident: 10.1016/j.autcon.2023.105240_bb0205 – volume: 112 year: 2020 ident: 10.1016/j.autcon.2023.105240_bb0165 article-title: Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103087 – ident: 10.1016/j.autcon.2023.105240_bb0220 – volume: 191 year: 2019 ident: 10.1016/j.autcon.2023.105240_bb0030 article-title: Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106529 – volume: 115 year: 2022 ident: 10.1016/j.autcon.2023.105240_bb0120 article-title: Data-driven optimization for mitigating tunnel-induced damages publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108128 – volume: 146 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0065 article-title: Digital twin enabled fault detection and diagnosis process for building HVAC systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104695 – volume: 130 year: 2021 ident: 10.1016/j.autcon.2023.105240_bb0145 article-title: Digital twin and its implementations in the civil engineering sector publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103838 – volume: 212 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0180 article-title: A hybrid deep learning approach for dynamic attitude and position prediction in tunnel construction considering spatio-temporal patterns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118721 – volume: 131 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0190 article-title: A new method for wear estimation of TBM disc cutter based on energy analysis publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104840 – volume: 108 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0225 article-title: Performance analysis of video data transmission for telemedicine applications with 5G enabled Internet of Things publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108712 – volume: 66 start-page: 751 issue: 3 year: 2023 ident: 10.1016/j.autcon.2023.105240_bb0230 article-title: Cross-project prediction for rock mass using shuffled TBM big dataset and knowledge-based machine learning methods publication-title: SCIENCE CHINA Technol. Sci. doi: 10.1007/s11431-022-2290-7 – volume: 82 start-page: 9 year: 2018 ident: 10.1016/j.autcon.2023.105240_bb0010 article-title: A probabilistic method to analyze collapse failure of shallow rectangular tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.07.029 |
| SSID | ssj0007069 |
| Score | 2.6030052 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 105240 |
| Title | Digital twin enabled real-time advanced control of TBM operation using deep learning methods |
| Volume | 158 |
| WOSCitedRecordID | wos001146355300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007069 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKh8Q4oDGYGGzIB26RURqnjnMsbGiDMXEoUg9IkZvYU6aSVGs7duSn815sJx2Vpu2wQ6PGcqyo72vey_N730fIB2T9SuMwZsJwwWKlJVPgSFHNnUM0O-DKmEZsIjk_l5NJ-qPX--t7Ya5nSVXJm5t0_qimhjEwNrbOPsDc7aIwAN_B6HAEs8PxXoY_Ki9QCCRY_kE2kKY1CjtU1Iyhjny36e-L1CFaHH_6HtRz7cCwatIHhdZzrylx4YSmF-uh7Gi1rG3fY9DUsndUtBvJ6LPyt6rbSp-V3ezxPhPBs8KRCSB1pss2l1C6amFb_B2caR18q91FLk8Rxb60uUs4RoINZTi89ey1vO3u6QmxXmTJmzYe7DbHcIllPZgnQNH3j9302zza__m3turQF7RdZnaVDFfJ7CpPyFaUDFPZJ1uj0-PJ19abJ6GwfI3u7n37ZVMjuHk3a-HNWpwy3iEv3AsGHVlgvCQ9Xe2SZ77_fLFLnq9RUL4ivxxcKMKFOrjQFi7Uw4U6uNDaUIALbeFCG7hQhAv1cKEOLq_Jzy_H488nzClusBzi3CWLpEHplWQ6HWgRFsJAvD3IeaS50VrCpwB3KAsVqjCJ8lynhYFZkREiLiD0FHyP9Ku60m8IhTdv3HMGJyZ5PBWFVHCq0mEYKzHlcbFPuP-hstzR0aMqyiy7y0z7hLVXzS0dy53z3z5w_juy3WH3gPThj6MPydP8elkurt47bPwDTxiGmA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+twin+enabled+real-time+advanced+control+of+TBM+operation+using+deep+learning+methods&rft.jtitle=Automation+in+construction&rft.au=Zhang%2C+Limao&rft.au=Guo%2C+Jing&rft.au=Fu%2C+Xianlei&rft.au=Tiong%2C+Robert+Lee+Kong&rft.date=2024-02-01&rft.issn=0926-5805&rft.volume=158&rft.spage=105240&rft_id=info:doi/10.1016%2Fj.autcon.2023.105240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2023_105240 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |