Rough set-inspired isolation forest
This paper presents an innovative approach to anomaly detection, combining the Isolation Forest method with Zdzisław Pawlak's rough set theory. The core methodology involves modifying the structure of binary trees used in Isolation Forests, allowing nodes to have more than the usual two childre...
Saved in:
| Published in: | Information sciences Vol. 718; p. 122390 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.11.2025
|
| Subjects: | |
| ISSN: | 0020-0255 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents an innovative approach to anomaly detection, combining the Isolation Forest method with Zdzisław Pawlak's rough set theory. The core methodology involves modifying the structure of binary trees used in Isolation Forests, allowing nodes to have more than the usual two children. Based on rough set theory, two approaches are developed: one where each node has three children, and another with five children per node. According to Pawlak's theory, lower and upper approximations are sought using the mean and standard deviation to define rough sets. This methodology is further enhanced by introducing a boundary region in the partitioned dataset, creating two variants: one with boundaries spanning from 1.5 to 3 standard deviations and another from 3 to 6 standard deviations. Each attribute is divided into a rough set comprising five subsets, with observations assigned to specific areas based on the defined limits, receiving corresponding weights. The proposed models are evaluated against the base Isolation Forest and K-Means-Based Isolation Forest, demonstrating notable improvements in performance.
•Tree nodes are enhanced with rough set-based approximations.•Isolation Forest and its modifications are compared for efficiency.•Modifications significantly improve anomaly detection scores. |
|---|---|
| AbstractList | This paper presents an innovative approach to anomaly detection, combining the Isolation Forest method with Zdzisław Pawlak's rough set theory. The core methodology involves modifying the structure of binary trees used in Isolation Forests, allowing nodes to have more than the usual two children. Based on rough set theory, two approaches are developed: one where each node has three children, and another with five children per node. According to Pawlak's theory, lower and upper approximations are sought using the mean and standard deviation to define rough sets. This methodology is further enhanced by introducing a boundary region in the partitioned dataset, creating two variants: one with boundaries spanning from 1.5 to 3 standard deviations and another from 3 to 6 standard deviations. Each attribute is divided into a rough set comprising five subsets, with observations assigned to specific areas based on the defined limits, receiving corresponding weights. The proposed models are evaluated against the base Isolation Forest and K-Means-Based Isolation Forest, demonstrating notable improvements in performance.
•Tree nodes are enhanced with rough set-based approximations.•Isolation Forest and its modifications are compared for efficiency.•Modifications significantly improve anomaly detection scores. |
| ArticleNumber | 122390 |
| Author | Rachwał, Albert Karczmarek, Paweł Rachwał, Alicja |
| Author_xml | – sequence: 1 givenname: Albert orcidid: 0000-0002-1093-4275 surname: Rachwał fullname: Rachwał, Albert email: a.rachwal@pollub.pl – sequence: 2 givenname: Paweł orcidid: 0000-0002-6215-297X surname: Karczmarek fullname: Karczmarek, Paweł email: p.karczmarek@pollub.pl – sequence: 3 givenname: Alicja orcidid: 0000-0001-6939-7788 surname: Rachwał fullname: Rachwał, Alicja email: alicja.rachwal@pollub.pl |
| BookMark | eNp9j01LxDAURbMYwZnRH-Cu4Lr15aPpBFcyqCMMCKLr0L6-aMrYDEkV_PdmqGtXDy6c--5ZscUYRmLsikPFgeubofJjqgSIuuJCSAMLtgQQUOakPmerlAYAUI3WS3b9Er7eP4pEU5mho4_UFz6FQzv5MBYuRErTBTtz7SHR5d9ds7eH-9ftrtw_Pz5t7_YlippPpdCqUXIjUBE30CGZ_A-kJJDkOuykbjk5k2NDjWqw3yiqdYcGOJrGoVwzPvdiDClFcvYY_WcbfywHezKzg80j7cnMzmaZuZ0ZysO-PUWb0NOI1GcVnGwf_D_0LzxnWVo |
| Cites_doi | 10.1109/ACCESS.2022.3144425 10.1111/j.1365-2656.2008.01390.x 10.1371/journal.pone.0209909 10.1109/ACCESS.2020.2975066 10.1109/TIFS.2021.3050605 10.1186/s42400-024-00238-4 10.1016/j.ins.2024.120324 10.1109/TKDE.2023.3312108 10.1016/j.asoc.2023.110285 10.1080/03081079008935107 10.1016/j.ins.2024.120732 10.1109/ACCESS.2022.3190505 10.1016/0022-0000(82)90004-6 10.1145/361002.361007 10.1016/0022-0000(93)90048-2 10.1038/s42005-024-01662-1 10.1016/j.cose.2024.103928 10.1093/mnras/stae496 10.1109/ACCESS.2024.3355978 10.1186/s42162-024-00351-1 10.1016/j.inffus.2023.102133 10.1007/BF01001956 10.1002/ese3.1593 10.1145/2133360.2133363 10.1016/j.knosys.2020.105659 10.1109/TSG.2022.3148699 10.3390/electronics13091700 10.1023/A:1010933404324 10.1007/s44196-023-00378-4 10.1109/JBHI.2023.3323014 10.1016/j.ymssp.2012.12.003 10.1016/j.fss.2019.11.009 10.1016/j.ijar.2023.109087 10.1007/s10489-024-05428-8 10.1007/978-3-319-25754-9_7 10.1016/j.ins.2023.01.104 10.1186/s40537-024-00937-2 10.1186/s42162-024-00329-z |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. |
| Copyright_xml | – notice: 2025 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2025.122390 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | 10_1016_j_ins_2025_122390 S0020025525005225 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77I 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- ~HD 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c251t-26474382c4e190bce9025033e03efbcb36a1ef9e909e747cd84e56bc901c97fc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514054800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:38:58 EST 2025 Sat Sep 13 17:02:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tree algorithms Rough set theory Isolation forest Pattern recognition Anomaly detection Binary trees |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-26474382c4e190bce9025033e03efbcb36a1ef9e909e747cd84e56bc901c97fc3 |
| ORCID | 0000-0002-1093-4275 0000-0002-6215-297X 0000-0001-6939-7788 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2025_122390 elsevier_sciencedirect_doi_10_1016_j_ins_2025_122390 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Jalal-Kamali, Kreinovich (br0020) 2013; 37 Janusz, Zalewska, Wawrowski, Biczyk, Ludziejewski, Sikora, Ślęzak (br0100) 2023; 141 Hore, Ghadermazi, Shah, Bastian (br0110) 2024; 144 Huang, Yu, Ni, Zhou, Li (br0170) 2024; 7 Lai, Farid, Bello, Sabrina (br0130) 2024; 7 Yang, Singh, Lee (br0400) 2019; 11 Chen, Li, Peng, Chen, Yuan (br0080) 2024; 103 Pawlak (br0430) 1991 Liu, Ting, Zhou (br0440) 2008 She, Fan (br0480) 2024 Chabchoub, Togbe, Boly, Chiky (br0410) 2022; 10 Karczmarek, Kiersztyn, Pedrycz, Al (br0360) 2020; 195 Etsebeth, Lochner, Walmsley, Grespan (br0320) 2024; 529 Flajolet, Odlyzko (br0460) 1982; 25 Deshpande, Kumar (br0290) 2024; 664 Liu, Liu (br0160) 2024; 7 Zhao, Yang, Li (br0230) 2023; 44 Yaldiz, Buller, Richardson, An, Lin, Satish, Driver, Atkinson, Mesite, King, Bursey, Galer, Millard-Stafford, Sawka, Medda, Inan (br0150) 2023; 27 Liu, Ting, Zhou (br0300) 2012; 6 Lee, Kareem, Hur (br0140) 2024; 13 de Bernardo, Penabad, Corral, Brisaboa (br0280) 2024; 674 Zhang, Zhang, Xu, Liu, Fei, Wu (br0340) 2024; 12 Enshaeifar, Zoha, Skillman, Markides, Acton, Elsaleh, Kenny, Rostill, Nilforooshan, Barnaghi (br0310) 2019; 14 Ziarko (br0470) 1993; 46 Wang, Yuan, Luo, Chen, Peng (br0210) 2024; 165 Skowron, Ślęzak (br0050) 2022 Elnour, Meskin, Khan, Jain (br0390) 2020; 8 Janusz, Stawicki, Szczuka, Ślęzak (br0040) 2015 Benítez-Caballero, Medina, Ramírez-Poussa, Ślęzak (br0070) 2020; 391 Gałka, Karczmarek, Tokovarov (br0380) 2023; 628 Preiss (br0450) 2000 Zhang, Yuan, Miao (br0200) 2024; 36 Galka, Karczmarek, Tokovarov (br0370) 2022; 10 Li, Wei, Liu (br0240) 2024; 46 Bentley (br0270) 1975; 18 Cheng, Li, Ma (br0330) 2023; 11 Elith, Leathwick, Hastie (br0250) 2008; 77 Zhao, Wan, Miao (br0090) 2024; 17 Breiman (br0260) 2001; 45 Faustine, Pereira (br0010) 2022; 13 Dubois, Prade (br0060) 1990; 17 Pawlak (br0030) 1982; 11 Kaushik, Naik (br0180) 2024; 7 Senthil Kumar, Aruna, Varalatchoumy, Manikannan, Santhana Krishnan, Usha Rani, Kumar, Rajaram (br0350) 2024; 46 Gupta, Rasheed, Steen (br0120) 2024; 11 Marteau (br0420) 2021; 16 Cai, Li (br0220) 2024; 54 She (10.1016/j.ins.2025.122390_br0480) Benítez-Caballero (10.1016/j.ins.2025.122390_br0070) 2020; 391 Lee (10.1016/j.ins.2025.122390_br0140) 2024; 13 Cai (10.1016/j.ins.2025.122390_br0220) 2024; 54 Zhao (10.1016/j.ins.2025.122390_br0230) 2023; 44 Liu (10.1016/j.ins.2025.122390_br0160) 2024; 7 Kaushik (10.1016/j.ins.2025.122390_br0180) 2024; 7 Breiman (10.1016/j.ins.2025.122390_br0260) 2001; 45 Senthil Kumar (10.1016/j.ins.2025.122390_br0350) 2024; 46 Elnour (10.1016/j.ins.2025.122390_br0390) 2020; 8 Chen (10.1016/j.ins.2025.122390_br0080) 2024; 103 Preiss (10.1016/j.ins.2025.122390_br0450) 2000 Lai (10.1016/j.ins.2025.122390_br0130) 2024; 7 Liu (10.1016/j.ins.2025.122390_br0440) 2008 Jalal-Kamali (10.1016/j.ins.2025.122390_br0020) 2013; 37 Gupta (10.1016/j.ins.2025.122390_br0120) 2024; 11 Flajolet (10.1016/j.ins.2025.122390_br0460) 1982; 25 Galka (10.1016/j.ins.2025.122390_br0370) 2022; 10 Zhao (10.1016/j.ins.2025.122390_br0090) 2024; 17 Chabchoub (10.1016/j.ins.2025.122390_br0410) 2022; 10 de Bernardo (10.1016/j.ins.2025.122390_br0280) 2024; 674 Liu (10.1016/j.ins.2025.122390_br0300) 2012; 6 Dubois (10.1016/j.ins.2025.122390_br0060) 1990; 17 Li (10.1016/j.ins.2025.122390_br0240) 2024; 46 Cheng (10.1016/j.ins.2025.122390_br0330) 2023; 11 Gałka (10.1016/j.ins.2025.122390_br0380) 2023; 628 Yang (10.1016/j.ins.2025.122390_br0400) 2019; 11 Yaldiz (10.1016/j.ins.2025.122390_br0150) 2023; 27 Hore (10.1016/j.ins.2025.122390_br0110) 2024; 144 Karczmarek (10.1016/j.ins.2025.122390_br0360) 2020; 195 Skowron (10.1016/j.ins.2025.122390_br0050) 2022 Etsebeth (10.1016/j.ins.2025.122390_br0320) 2024; 529 Pawlak (10.1016/j.ins.2025.122390_br0430) 1991 Elith (10.1016/j.ins.2025.122390_br0250) 2008; 77 Wang (10.1016/j.ins.2025.122390_br0210) 2024; 165 Ziarko (10.1016/j.ins.2025.122390_br0470) 1993; 46 Janusz (10.1016/j.ins.2025.122390_br0100) 2023; 141 Zhang (10.1016/j.ins.2025.122390_br0340) 2024; 12 Huang (10.1016/j.ins.2025.122390_br0170) 2024; 7 Zhang (10.1016/j.ins.2025.122390_br0200) 2024; 36 Enshaeifar (10.1016/j.ins.2025.122390_br0310) 2019; 14 Deshpande (10.1016/j.ins.2025.122390_br0290) 2024; 664 Faustine (10.1016/j.ins.2025.122390_br0010) 2022; 13 Pawlak (10.1016/j.ins.2025.122390_br0030) 1982; 11 Janusz (10.1016/j.ins.2025.122390_br0040) 2015 Bentley (10.1016/j.ins.2025.122390_br0270) 1975; 18 Marteau (10.1016/j.ins.2025.122390_br0420) 2021; 16 |
| References_xml | – volume: 7 year: 2024 ident: br0130 article-title: Ensemble learning based anomaly detection for IoT cybersecurity via Bayesian hyperparameters sensitivity analysis publication-title: Cybersecurity – volume: 103 year: 2024 ident: br0080 article-title: Fusing multi-scale fuzzy information to detect outliers publication-title: Inf. Fusion – volume: 664 year: 2024 ident: br0290 article-title: Time and memory scalable algorithms for clustering tendency assessment of big data publication-title: Inf. Sci. – volume: 195 year: 2020 ident: br0360 article-title: K-means-based isolation forest publication-title: Knowl.-Based Syst. – volume: 628 start-page: 320 year: 2023 end-page: 338 ident: br0380 article-title: Effective enhancement of isolation forest method based on minimal spanning tree clustering publication-title: Inf. Sci. – volume: 54 start-page: 5317 year: 2024 end-page: 5335 ident: br0220 article-title: Outlier detection for incomplete real-valued data via information entropy and class-consistent technology publication-title: Appl. Intell. – volume: 13 start-page: 1700 year: 2024 ident: br0140 article-title: A comparative study of deep-learning autoencoders (DLAEs) for vibration anomaly detection in manufacturing equipment publication-title: Electronics – volume: 144 year: 2024 ident: br0110 article-title: A sequential deep learning framework for a robust and resilient network intrusion detection system publication-title: Comput. Secur. – volume: 529 start-page: 732 year: 2024 end-page: 747 ident: br0320 article-title: Astronomaly at scale: searching for anomalies amongst 4 million galaxies publication-title: Mon. Not. R. Astron. Soc. – volume: 7 year: 2024 ident: br0180 article-title: Detecting faults in the cooling systems by monitoring temperature and energy publication-title: Energy Inform. – volume: 46 start-page: 4995 year: 2024 end-page: 5011 ident: br0350 article-title: Optimizing solar power plant efficiency through advanced analytical framework and comparative analysis publication-title: Int. J. Intell. Fuzzy Syst. – volume: 17 year: 2024 ident: br0090 article-title: Conflict analysis triggered by three-way decision and Pythagorean fuzzy rough set publication-title: Int. J. Comput. Intell. Syst. – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: br0030 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. – volume: 141 year: 2023 ident: br0100 article-title: BrightBox - a rough set based technology for diagnosing mistakes of machine learning models publication-title: Appl. Soft Comput. – volume: 37 start-page: 43 year: 2013 end-page: 53 ident: br0020 article-title: Estimating correlation under interval uncertainty publication-title: Mech. Syst. Signal Process. – volume: 11 year: 2024 ident: br0120 article-title: Correlation-based outlier detection for ships' in-service datasets publication-title: J. Big Data – volume: 44 start-page: 3023 year: 2023 end-page: 3041 ident: br0230 article-title: Outlier detection for incomplete real-valued data based on inner boundary publication-title: J. Intell. Fuzzy Syst. – volume: 46 start-page: 39 year: 1993 end-page: 59 ident: br0470 article-title: Variable precision rough set model publication-title: J. Comput. Syst. Sci. – year: 2000 ident: br0450 article-title: Data Structures and Algorithms with Object-Oriented Design Patterns in Java – volume: 165 year: 2024 ident: br0210 article-title: Exploiting fuzzy rough entropy to detect anomalies publication-title: Int. J. Approx. Reason. – volume: 10 start-page: 10219 year: 2022 end-page: 10237 ident: br0410 article-title: An in-depth study and improvement of isolation forest publication-title: IEEE Access – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: br0270 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM – volume: 12 start-page: 19598 year: 2024 end-page: 19611 ident: br0340 article-title: Remaining life prediction of bearings based on improved IF-SCINet publication-title: IEEE Access – start-page: 77 year: 2015 end-page: 86 ident: br0040 article-title: Rough set tools for practical data exploration publication-title: Rough Sets Knowl. Technol. – volume: 11 start-page: 4493 year: 2023 end-page: 4504 ident: br0330 article-title: A method for battery fault diagnosis and early warning combining isolated forest algorithm and sliding window publication-title: Energy Sci. Eng. – volume: 10 start-page: 74175 year: 2022 end-page: 74186 ident: br0370 article-title: Isolation forest based on minimal spanning tree publication-title: IEEE Access – year: 1991 ident: br0430 article-title: Rough Sets: Theoretical Aspects of Reasoning About Data – year: 2008 ident: br0440 article-title: Isolation forest publication-title: 2008 Eighth IEEE International Conference on Data Mining – volume: 11 start-page: 1 year: 2019 end-page: 8 ident: br0400 article-title: Isolation-based feature selection for unsupervised outlier detection publication-title: Proc. Annu. Conf. Progn. Health Manag. Soc. – volume: 7 year: 2024 ident: br0160 article-title: Optimized diagnosis of local anomalies in charge and discharge of solar cell capacitors publication-title: Energy Inform. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: br0260 article-title: Random forest publication-title: Mach. Learn. – volume: 14 year: 2019 ident: br0310 article-title: Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia publication-title: PLoS ONE – volume: 13 start-page: 2440 year: 2022 end-page: 2451 ident: br0010 article-title: FPSeq2Q: fully parameterized sequence to quantile regression for net-load forecasting with uncertainty estimates publication-title: IEEE Trans. Smart Grid – volume: 674 year: 2024 ident: br0280 article-title: Classic distance join queries using compact data structures publication-title: Inf. Sci. – volume: 17 start-page: 191 year: 1990 end-page: 209 ident: br0060 article-title: Rough fuzzy sets and fuzzy rough sets publication-title: Int. J. Gen. Syst. – year: 2024 ident: br0480 article-title: Dataset: ODDS dataset – volume: 27 start-page: 5803 year: 2023 end-page: 5814 ident: br0150 article-title: Early prediction of impending exertional heat stroke with wearable multimodal sensing and anomaly detection publication-title: IEEE J. Biomed. Health Inform. – volume: 8 start-page: 36639 year: 2020 end-page: 36651 ident: br0390 article-title: A dual-isolation-forests-based attack detection framework for industrial control systems publication-title: IEEE Access – volume: 25 start-page: 171 year: 1982 end-page: 213 ident: br0460 article-title: The average height of binary trees and other simple trees publication-title: J. Comput. Syst. Sci. – year: 2022 ident: br0050 article-title: Rough sets turn 40: from information systems to intelligent systems publication-title: Ann. Comput. Sci. Inf. Syst. – volume: 16 start-page: 2157 year: 2021 end-page: 2172 ident: br0420 article-title: Random partitioning forest for point-wise and collective anomaly detection—application to network intrusion detection publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 36 start-page: 2082 year: 2024 end-page: 2095 ident: br0200 article-title: Outlier detection using three-way neighborhood characteristic regions and corresponding fusion measurement publication-title: IEEE Trans. Knowl. Data Eng. – volume: 6 start-page: 1 year: 2012 end-page: 39 ident: br0300 article-title: Isolation-based anomaly detection publication-title: ACM Trans. Knowl. Discov. Data – volume: 391 start-page: 117 year: 2020 end-page: 138 ident: br0070 article-title: Rough-set-driven approach for attribute reduction in fuzzy formal concept analysis publication-title: Fuzzy Sets Syst. – volume: 7 year: 2024 ident: br0170 article-title: Quantum force sensing by digital twinning of atomic Bose-Einstein condensates publication-title: Commun. Phys. – volume: 46 start-page: 1899 year: 2024 end-page: 1918 ident: br0240 article-title: Outlier detection using conditional information entropy and rough set theory publication-title: J. Intell. Fuzzy Syst. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: br0250 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 10 start-page: 10219 year: 2022 ident: 10.1016/j.ins.2025.122390_br0410 article-title: An in-depth study and improvement of isolation forest publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144425 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.ins.2025.122390_br0250 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 14 year: 2019 ident: 10.1016/j.ins.2025.122390_br0310 article-title: Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia publication-title: PLoS ONE doi: 10.1371/journal.pone.0209909 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.ins.2025.122390_br0400 article-title: Isolation-based feature selection for unsupervised outlier detection publication-title: Proc. Annu. Conf. Progn. Health Manag. Soc. – volume: 8 start-page: 36639 year: 2020 ident: 10.1016/j.ins.2025.122390_br0390 article-title: A dual-isolation-forests-based attack detection framework for industrial control systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975066 – volume: 16 start-page: 2157 year: 2021 ident: 10.1016/j.ins.2025.122390_br0420 article-title: Random partitioning forest for point-wise and collective anomaly detection—application to network intrusion detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2021.3050605 – volume: 7 year: 2024 ident: 10.1016/j.ins.2025.122390_br0130 article-title: Ensemble learning based anomaly detection for IoT cybersecurity via Bayesian hyperparameters sensitivity analysis publication-title: Cybersecurity doi: 10.1186/s42400-024-00238-4 – volume: 664 year: 2024 ident: 10.1016/j.ins.2025.122390_br0290 article-title: Time and memory scalable algorithms for clustering tendency assessment of big data publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120324 – volume: 36 start-page: 2082 year: 2024 ident: 10.1016/j.ins.2025.122390_br0200 article-title: Outlier detection using three-way neighborhood characteristic regions and corresponding fusion measurement publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3312108 – volume: 141 year: 2023 ident: 10.1016/j.ins.2025.122390_br0100 article-title: BrightBox - a rough set based technology for diagnosing mistakes of machine learning models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110285 – volume: 17 start-page: 191 year: 1990 ident: 10.1016/j.ins.2025.122390_br0060 article-title: Rough fuzzy sets and fuzzy rough sets publication-title: Int. J. Gen. Syst. doi: 10.1080/03081079008935107 – volume: 674 year: 2024 ident: 10.1016/j.ins.2025.122390_br0280 article-title: Classic distance join queries using compact data structures publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120732 – volume: 10 start-page: 74175 year: 2022 ident: 10.1016/j.ins.2025.122390_br0370 article-title: Isolation forest based on minimal spanning tree publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190505 – volume: 25 start-page: 171 year: 1982 ident: 10.1016/j.ins.2025.122390_br0460 article-title: The average height of binary trees and other simple trees publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(82)90004-6 – volume: 46 start-page: 1899 year: 2024 ident: 10.1016/j.ins.2025.122390_br0240 article-title: Outlier detection using conditional information entropy and rough set theory publication-title: J. Intell. Fuzzy Syst. – volume: 18 start-page: 509 year: 1975 ident: 10.1016/j.ins.2025.122390_br0270 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM doi: 10.1145/361002.361007 – volume: 46 start-page: 39 year: 1993 ident: 10.1016/j.ins.2025.122390_br0470 article-title: Variable precision rough set model publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(93)90048-2 – volume: 46 start-page: 4995 year: 2024 ident: 10.1016/j.ins.2025.122390_br0350 article-title: Optimizing solar power plant efficiency through advanced analytical framework and comparative analysis publication-title: Int. J. Intell. Fuzzy Syst. – year: 2000 ident: 10.1016/j.ins.2025.122390_br0450 – volume: 7 year: 2024 ident: 10.1016/j.ins.2025.122390_br0170 article-title: Quantum force sensing by digital twinning of atomic Bose-Einstein condensates publication-title: Commun. Phys. doi: 10.1038/s42005-024-01662-1 – volume: 144 year: 2024 ident: 10.1016/j.ins.2025.122390_br0110 article-title: A sequential deep learning framework for a robust and resilient network intrusion detection system publication-title: Comput. Secur. doi: 10.1016/j.cose.2024.103928 – volume: 44 start-page: 3023 year: 2023 ident: 10.1016/j.ins.2025.122390_br0230 article-title: Outlier detection for incomplete real-valued data based on inner boundary publication-title: J. Intell. Fuzzy Syst. – year: 2022 ident: 10.1016/j.ins.2025.122390_br0050 article-title: Rough sets turn 40: from information systems to intelligent systems publication-title: Ann. Comput. Sci. Inf. Syst. – ident: 10.1016/j.ins.2025.122390_br0480 – volume: 529 start-page: 732 year: 2024 ident: 10.1016/j.ins.2025.122390_br0320 article-title: Astronomaly at scale: searching for anomalies amongst 4 million galaxies publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stae496 – volume: 12 start-page: 19598 year: 2024 ident: 10.1016/j.ins.2025.122390_br0340 article-title: Remaining life prediction of bearings based on improved IF-SCINet publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3355978 – volume: 7 year: 2024 ident: 10.1016/j.ins.2025.122390_br0180 article-title: Detecting faults in the cooling systems by monitoring temperature and energy publication-title: Energy Inform. doi: 10.1186/s42162-024-00351-1 – volume: 103 year: 2024 ident: 10.1016/j.ins.2025.122390_br0080 article-title: Fusing multi-scale fuzzy information to detect outliers publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102133 – volume: 11 start-page: 341 year: 1982 ident: 10.1016/j.ins.2025.122390_br0030 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. doi: 10.1007/BF01001956 – volume: 11 start-page: 4493 year: 2023 ident: 10.1016/j.ins.2025.122390_br0330 article-title: A method for battery fault diagnosis and early warning combining isolated forest algorithm and sliding window publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1593 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.ins.2025.122390_br0300 article-title: Isolation-based anomaly detection publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2133360.2133363 – volume: 195 year: 2020 ident: 10.1016/j.ins.2025.122390_br0360 article-title: K-means-based isolation forest publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105659 – volume: 13 start-page: 2440 year: 2022 ident: 10.1016/j.ins.2025.122390_br0010 article-title: FPSeq2Q: fully parameterized sequence to quantile regression for net-load forecasting with uncertainty estimates publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3148699 – volume: 13 start-page: 1700 year: 2024 ident: 10.1016/j.ins.2025.122390_br0140 article-title: A comparative study of deep-learning autoencoders (DLAEs) for vibration anomaly detection in manufacturing equipment publication-title: Electronics doi: 10.3390/electronics13091700 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ins.2025.122390_br0260 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 17 year: 2024 ident: 10.1016/j.ins.2025.122390_br0090 article-title: Conflict analysis triggered by three-way decision and Pythagorean fuzzy rough set publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-023-00378-4 – volume: 27 start-page: 5803 year: 2023 ident: 10.1016/j.ins.2025.122390_br0150 article-title: Early prediction of impending exertional heat stroke with wearable multimodal sensing and anomaly detection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3323014 – volume: 37 start-page: 43 year: 2013 ident: 10.1016/j.ins.2025.122390_br0020 article-title: Estimating correlation under interval uncertainty publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.12.003 – volume: 391 start-page: 117 year: 2020 ident: 10.1016/j.ins.2025.122390_br0070 article-title: Rough-set-driven approach for attribute reduction in fuzzy formal concept analysis publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2019.11.009 – year: 2008 ident: 10.1016/j.ins.2025.122390_br0440 article-title: Isolation forest – volume: 165 year: 2024 ident: 10.1016/j.ins.2025.122390_br0210 article-title: Exploiting fuzzy rough entropy to detect anomalies publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2023.109087 – volume: 54 start-page: 5317 year: 2024 ident: 10.1016/j.ins.2025.122390_br0220 article-title: Outlier detection for incomplete real-valued data via information entropy and class-consistent technology publication-title: Appl. Intell. doi: 10.1007/s10489-024-05428-8 – start-page: 77 year: 2015 ident: 10.1016/j.ins.2025.122390_br0040 article-title: Rough set tools for practical data exploration publication-title: Rough Sets Knowl. Technol. doi: 10.1007/978-3-319-25754-9_7 – volume: 628 start-page: 320 year: 2023 ident: 10.1016/j.ins.2025.122390_br0380 article-title: Effective enhancement of isolation forest method based on minimal spanning tree clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.01.104 – volume: 11 year: 2024 ident: 10.1016/j.ins.2025.122390_br0120 article-title: Correlation-based outlier detection for ships' in-service datasets publication-title: J. Big Data doi: 10.1186/s40537-024-00937-2 – volume: 7 year: 2024 ident: 10.1016/j.ins.2025.122390_br0160 article-title: Optimized diagnosis of local anomalies in charge and discharge of solar cell capacitors publication-title: Energy Inform. doi: 10.1186/s42162-024-00329-z – year: 1991 ident: 10.1016/j.ins.2025.122390_br0430 |
| SSID | ssj0004766 |
| Score | 2.481732 |
| Snippet | This paper presents an innovative approach to anomaly detection, combining the Isolation Forest method with Zdzisław Pawlak's rough set theory. The core... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 122390 |
| SubjectTerms | Anomaly detection Binary trees Isolation forest Pattern recognition Rough set theory Tree algorithms |
| Title | Rough set-inspired isolation forest |
| URI | https://dx.doi.org/10.1016/j.ins.2025.122390 |
| Volume | 718 |
| WOSCitedRecordID | wos001514054800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swED62ZA_bw9iylmVbhmHNHlpc_Eu29VhCyraHUEoKeTOycqJJqVeSbCn763eyZMfNGmge9iKMsGSj7zh9p7vTARyhoD1BTVNXxnHuEqWWLo-83JU8FJEQAtM4L4tNJKNROpnwC1voclmWE0iKIr2_53f_FWrqI7B16uwecNeTUgc9E-jUEuzUPgn4y7LuzhJX7qzQbnRilDP6Yh1UWPmT5lUMe52_eGK3w034u5DXa9EfsH4amGwYHYZd62hauD-3YoE3hoqu0by5e_RMzkXzmCFgNt-uoTrJztQGSFN1JlZ3GuXnE9UwtT__0cvmiGBOxoS-Ij1gp5t3H96BvbU31RGDVTDaPKMpMj1FZqZ4Du0gYTxtQfvs-3DyY5MUmxhHdfXflUu7DO7b-o_HSUmDaIzfwGtrIThnBtm38AyLDrxq3BvZgZ7NNnG-Og34HKun38GXUgacpgw4tQw4RgYO4Op8OB58c201DFcSB13pUMREe21lhETiconaQeyFIXohqlzmYSx8VJy6OZKNKKdphCzOJRE-yRMlw0NoFT8LfA-O54sgEYGPjOinmjLOlEoV-t6UzAXFVBeOq-XI7sylJ9lOALoQVQuWWTE1bCwj8HcP-7DPNz7Cy41MfoLWavELe_BC_l7NlovPFvm_3NZdtA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough+set-inspired+isolation+forest&rft.jtitle=Information+sciences&rft.au=Rachwa%C5%82%2C+Albert&rft.au=Karczmarek%2C+Pawe%C5%82&rft.au=Rachwa%C5%82%2C+Alicja&rft.date=2025-11-01&rft.issn=0020-0255&rft.volume=718&rft.spage=122390&rft_id=info:doi/10.1016%2Fj.ins.2025.122390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2025_122390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |