Improving photoelectric perfomance with hydrogen on Al-doped ZnO
This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distorti...
Uložené v:
| Vydané v: | Materials chemistry and physics Ročník 291; s. 126680 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.11.2022
|
| Predmet: | |
| ISSN: | 0254-0584, 1879-3312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distortion of HAZO is smaller than that of AZO due to the repulsion of Al ions by H ions. Analysis of the electronic structure revealed that the carrier mobility of HAZO is higher than that of AZO due to the increased number of electrons at the conduction band minimum. Moreover, the conductivity of HAZO increased by 86% compared to AZO. The transmittance of HAZO is much higher than pure ZnO and AZO in the visible region and even reaching up to 95% above 600 nm. The current findings provide a theoretical basis for the possibility of co-doping Al–H with ZnO to promote its development in photovoltaic devices.
[Display omitted]
•We investigated the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO).•We detect that the lattice distortion of HAZO is small due to the repulsion of Al ions by H ions.•We detect that the conductivity of HAZO increased by 86% compared to AZO.•We detect that the transmittance of HAZO can reach up to 95% above 600 nm in the visible region.•It implies the possibility of co-doping Al–H with ZnO to promote the photovoltaic property. |
|---|---|
| AbstractList | This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distortion of HAZO is smaller than that of AZO due to the repulsion of Al ions by H ions. Analysis of the electronic structure revealed that the carrier mobility of HAZO is higher than that of AZO due to the increased number of electrons at the conduction band minimum. Moreover, the conductivity of HAZO increased by 86% compared to AZO. The transmittance of HAZO is much higher than pure ZnO and AZO in the visible region and even reaching up to 95% above 600 nm. The current findings provide a theoretical basis for the possibility of co-doping Al–H with ZnO to promote its development in photovoltaic devices.
[Display omitted]
•We investigated the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO).•We detect that the lattice distortion of HAZO is small due to the repulsion of Al ions by H ions.•We detect that the conductivity of HAZO increased by 86% compared to AZO.•We detect that the transmittance of HAZO can reach up to 95% above 600 nm in the visible region.•It implies the possibility of co-doping Al–H with ZnO to promote the photovoltaic property. |
| ArticleNumber | 126680 |
| Author | Yang, Ping Li, Lin Wang, Jianpei Zhang, Zhang |
| Author_xml | – sequence: 1 givenname: Lin surname: Li fullname: Li, Lin – sequence: 2 givenname: Zhang surname: Zhang fullname: Zhang, Zhang – sequence: 3 givenname: Jianpei surname: Wang fullname: Wang, Jianpei – sequence: 4 givenname: Ping orcidid: 0000-0001-5767-4418 surname: Yang fullname: Yang, Ping email: yangpingdm@ujs.edu.cn |
| BookMark | eNqN0L1qwzAUhmFRUmiS9h7cC7CrI8u2PLUh9A8CWdqli5Dl41jBlowsUnL3dUiH0inTmb4XzrMgM-ssEnIPNAEK-cM-6VXQLfZDexwTRhlLgOW5oFdkDqIo4zQFNiNzyjIe00zwG7IYxz2lUACkc_L03g_eHYzdRUPrgsMOdfBGRwP6xvXKaoy-TWij9lh7t0MbORuturh2A9bRl93ekutGdSPe_d4l-Xx5_li_xZvt6_t6tYk1yyDEgAVTPKeYcchVWgnR1EXVcFYJZFQ1VVlAI3Je0VLVlQImBC-1UgqQA9A8XZLHc1d7N44eG6lNUME4G7wynQQqTyByL_-AyBOIPINMhfJfYfCmV_540XZ93uL04sGgl6M2OOHUxk9gsnbmgsoPdWaF1w |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2023_07_091 crossref_primary_10_1039_D3RA01574B crossref_primary_10_1002_qua_27306 crossref_primary_10_1007_s10854_024_13172_5 crossref_primary_10_1016_j_mseb_2025_118279 crossref_primary_10_1016_j_solener_2024_112331 crossref_primary_10_1016_j_jallcom_2025_181060 crossref_primary_10_1038_s41598_024_73352_5 crossref_primary_10_1016_j_vacuum_2024_113156 crossref_primary_10_1016_j_vacuum_2024_113012 crossref_primary_10_3390_ma18051032 crossref_primary_10_1002_pssb_202400429 crossref_primary_10_1016_j_diamond_2023_110037 crossref_primary_10_1016_j_tsf_2023_139889 |
| Cites_doi | 10.1016/j.jallcom.2020.155909 10.1002/pssc.201200694 10.1016/j.jpcs.2019.04.023 10.1016/j.optmat.2012.10.022 10.1016/j.rinp.2019.102649 10.1016/j.jallcom.2021.158734 10.1021/acsami.6b14305 10.1007/s10971-016-4131-z 10.1119/1.1691372 10.1016/j.cap.2012.11.008 10.1039/c0ee00825g 10.1016/j.snb.2019.127489 10.1103/PhysRevB.37.10244 10.1063/1.3466987 10.1016/j.apsusc.2010.11.169 10.3938/jkps.53.437 10.1016/j.jallcom.2016.06.294 10.1103/PhysRevB.47.558 10.1103/PhysRevB.54.11169 10.1016/j.compositesb.2022.109645 10.1016/j.matlet.2012.01.034 10.1021/j100135a014 10.1016/j.jallcom.2010.12.118 10.1016/j.jallcom.2021.162334 10.1016/S0927-0248(02)00128-9 10.1111/jace.15818 10.1016/j.ceramint.2019.07.200 10.1016/j.apcatb.2010.10.007 10.1039/c1ee01873f 10.1016/j.surfcoat.2005.01.019 10.1002/adma.201705596 10.1088/0022-3727/41/9/095303 10.1186/1556-276X-7-639 10.1007/s12598-014-0435-8 10.1016/j.cpc.2006.03.007 10.1016/j.vacuum.2019.02.006 10.1166/jnn.2018.15685 10.1016/j.jallcom.2019.152531 10.1016/j.ceramint.2016.03.238 10.1007/s00339-021-04519-4 10.1016/j.apsusc.2007.02.181 10.1088/1757-899X/97/1/012005 10.1016/j.surfcoat.2011.10.024 10.1016/j.chemphys.2020.110826 10.1088/2516-1075/ab47ea 10.1016/j.mtcomm.2020.101805 10.1016/j.chemphys.2019.110460 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matchemphys.2022.126680 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3312 |
| ExternalDocumentID | 10_1016_j_matchemphys_2022_126680 S0254058422009865 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD |
| ID | FETCH-LOGICAL-c251t-1e72a460e5416a3b88fd7bf42b8e20afb971f864b09adba128849caaa1e411063 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859385900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-0584 |
| IngestDate | Tue Nov 18 22:11:23 EST 2025 Sat Nov 29 07:25:53 EST 2025 Fri Feb 23 02:42:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Photovoltaic DFT simulation Composite Computation/computing H–Al co-Doped ZnO |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-1e72a460e5416a3b88fd7bf42b8e20afb971f864b09adba128849caaa1e411063 |
| ORCID | 0000-0001-5767-4418 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_matchemphys_2022_126680 crossref_primary_10_1016_j_matchemphys_2022_126680 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2022_126680 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-15 |
| PublicationDateYYYYMMDD | 2022-11-15 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials chemistry and physics |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jun, Park, Koh (bib6) 2012; 7 Goktas, Modanlı, Tumbul, Kilic (bib10) 2022; 893 Dronskowski, Bloechl (bib51) 1993; 97 Shantheyanda, Sundaram, Shiradkar (bib22) 2012; 177 Kovalenko, Bovgyra, Franiv, Dzikovskyi (bib36) 2021; 35 Sernelius, Berggren, Jin, Hamberg, Granqvist (bib53) 1988; 37 Liu, Yang, Ge, Yang (bib35) 2020; 816 Wang, Yang, Yang (bib57) 2022; 233 Gao, Li, Gao, Yang (bib31) 2020; 536 Lee, Lee, Lee, Cheong, Kim, Kim (bib19) 2008; 41 Ciechan, Bogus\lawski (bib39) 2019; 31 Xu, Zhang, Cheng, Zhu (bib4) 2011; 101 Eom, Park, Park, Park, Bweupe, Lim (bib13) 2018; 18 Liu, Yang (bib32) 2018; 101 Huang, Yin, Zheng (bib2) 2011; 4 Gu, Hu, Guo (bib28) 2019; 163 Klykov, Strazdina, Kozlov (bib21) 2012; 211 Hou, Li, Xu, Liu, Sha (bib29) 2020; 528 Guan, Hou, Gu, Wang (bib30) 2021; 26 Goktas, Goktas (bib42) 2021; 863 Zhou, Zhang, Wang, Tan (bib20) 2012; 74 Aslan, Tumbul, Göktaş, Budakoğlu, Mutlu (bib5) 2016; 80 Tan, Sun, Xu, Tian, Huang (bib45) 2016; 42 Saniz, Sarmadian, Partoens (bib37) 2019; 132 Kresse, Furthmüller (bib49) 1996; 54 Islam, Ishizuka, Yamada (bib15) 2011; 257 Haq, AlFaify, Alrebdi (bib40) 2021; 265 Banerjee, Lee, Bae, Lee, Rubloff (bib7) 2010; 108 Zhang, Li, Gong (bib8) 2020; 305 Wang, Shi, Lin, Zhu (bib1) 2011; 4 Sahoo, Mangal, Singh (bib24) 2017; vol. 1832 Sze, Li, Ng (bib54) 2021 Madsen, Singh (bib50) 2006; 175 Ray, Das, Barua (bib17) 2002; 74 Jin, Zhang, Wei, Ma (bib44) 2019; 1 Oh, Jeong, Myoung (bib25) 2007; 253 Cao, Wu, Chen (bib3) 2018; 30 Fox (bib56) 2002; 70 Khuili, Fazouan, Makarim, Halani, Atmani (bib41) 2016; 688 Hou, Li, Xu, Liu, Sha (bib38) 2020; 528 Dai, Suo, Li, Gao (bib43) 2019; 15 Duan, He, Tian (bib11) 2017; 9 Liu, Tang, Liao, Yang (bib34) 2019; 45 Kittel, McEuen, McEuen (bib55) 1996; vol. 8 Ruske, Sittinger, Werner (bib18) 2005; 200 Chierchia, Salza, Mittiga (bib23) 2014; 60 Wu, Peng, Chen (bib47) 2013; 35 Hur, Song, Kim (bib14) 2008; 53 Qu, Zhang, Gu (bib27) 2015; 34 Liu, Li, Yuan, Yang (bib33) 2020; 843 Ahmad, Ahmed, Zhang (bib9) 2013; 13 Lacerda, Lazaro, Ribeiro (bib46) 2015; 97 Zhong, Liu, Cai (bib26) 2011; 509 Aizawa, Tanaka, Tagami, Uchiki (bib16) 2013; 10 Mikailzade, Türkan, Önal, Zarbali, Göktaş, Tumbul (bib12) 2021; 127 Kresse, Hafner (bib48) 1993; 47 Jun (10.1016/j.matchemphys.2022.126680_bib6) 2012; 7 Hou (10.1016/j.matchemphys.2022.126680_bib38) 2020; 528 Zhong (10.1016/j.matchemphys.2022.126680_bib26) 2011; 509 Haq (10.1016/j.matchemphys.2022.126680_bib40) 2021; 265 Khuili (10.1016/j.matchemphys.2022.126680_bib41) 2016; 688 Banerjee (10.1016/j.matchemphys.2022.126680_bib7) 2010; 108 Eom (10.1016/j.matchemphys.2022.126680_bib13) 2018; 18 Kovalenko (10.1016/j.matchemphys.2022.126680_bib36) 2021; 35 Dronskowski (10.1016/j.matchemphys.2022.126680_bib51) 1993; 97 Chierchia (10.1016/j.matchemphys.2022.126680_bib23) 2014; 60 Saniz (10.1016/j.matchemphys.2022.126680_bib37) 2019; 132 Kresse (10.1016/j.matchemphys.2022.126680_bib48) 1993; 47 Goktas (10.1016/j.matchemphys.2022.126680_bib42) 2021; 863 Gao (10.1016/j.matchemphys.2022.126680_bib31) 2020; 536 Xu (10.1016/j.matchemphys.2022.126680_bib4) 2011; 101 Aslan (10.1016/j.matchemphys.2022.126680_bib5) 2016; 80 Lee (10.1016/j.matchemphys.2022.126680_bib19) 2008; 41 Goktas (10.1016/j.matchemphys.2022.126680_bib10) 2022; 893 Dai (10.1016/j.matchemphys.2022.126680_bib43) 2019; 15 Oh (10.1016/j.matchemphys.2022.126680_bib25) 2007; 253 Hou (10.1016/j.matchemphys.2022.126680_bib29) 2020; 528 Islam (10.1016/j.matchemphys.2022.126680_bib15) 2011; 257 Sahoo (10.1016/j.matchemphys.2022.126680_bib24) 2017; vol. 1832 Ray (10.1016/j.matchemphys.2022.126680_bib17) 2002; 74 Gu (10.1016/j.matchemphys.2022.126680_bib28) 2019; 163 Liu (10.1016/j.matchemphys.2022.126680_bib33) 2020; 843 Liu (10.1016/j.matchemphys.2022.126680_bib35) 2020; 816 Liu (10.1016/j.matchemphys.2022.126680_bib34) 2019; 45 Liu (10.1016/j.matchemphys.2022.126680_bib32) 2018; 101 Ciechan (10.1016/j.matchemphys.2022.126680_bib39) 2019; 31 Zhang (10.1016/j.matchemphys.2022.126680_bib8) 2020; 305 Huang (10.1016/j.matchemphys.2022.126680_bib2) 2011; 4 Cao (10.1016/j.matchemphys.2022.126680_bib3) 2018; 30 Hur (10.1016/j.matchemphys.2022.126680_bib14) 2008; 53 Kresse (10.1016/j.matchemphys.2022.126680_bib49) 1996; 54 Fox (10.1016/j.matchemphys.2022.126680_bib56) 2002; 70 Wu (10.1016/j.matchemphys.2022.126680_bib47) 2013; 35 Wang (10.1016/j.matchemphys.2022.126680_bib1) 2011; 4 Lacerda (10.1016/j.matchemphys.2022.126680_bib46) 2015; 97 Ruske (10.1016/j.matchemphys.2022.126680_bib18) 2005; 200 Guan (10.1016/j.matchemphys.2022.126680_bib30) 2021; 26 Aizawa (10.1016/j.matchemphys.2022.126680_bib16) 2013; 10 Ahmad (10.1016/j.matchemphys.2022.126680_bib9) 2013; 13 Duan (10.1016/j.matchemphys.2022.126680_bib11) 2017; 9 Sernelius (10.1016/j.matchemphys.2022.126680_bib53) 1988; 37 Madsen (10.1016/j.matchemphys.2022.126680_bib50) 2006; 175 Zhou (10.1016/j.matchemphys.2022.126680_bib20) 2012; 74 Tan (10.1016/j.matchemphys.2022.126680_bib45) 2016; 42 Sze (10.1016/j.matchemphys.2022.126680_bib54) 2021 Kittel (10.1016/j.matchemphys.2022.126680_bib55) 1996; vol. 8 Klykov (10.1016/j.matchemphys.2022.126680_bib21) 2012; 211 Shantheyanda (10.1016/j.matchemphys.2022.126680_bib22) 2012; 177 Qu (10.1016/j.matchemphys.2022.126680_bib27) 2015; 34 Jin (10.1016/j.matchemphys.2022.126680_bib44) 2019; 1 Mikailzade (10.1016/j.matchemphys.2022.126680_bib12) 2021; 127 Wang (10.1016/j.matchemphys.2022.126680_bib57) 2022; 233 |
| References_xml | – volume: 13 start-page: 697 year: 2013 end-page: 704 ident: bib9 article-title: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis publication-title: Current Applied Physics – volume: 97 year: 2015 ident: bib46 article-title: Theoretical investigation of optical and structural properties of Ba-doped ZnO material publication-title: IOP Conference Series: Materials Science and Engineering – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib49 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys Rev B – volume: 132 start-page: 172 year: 2019 end-page: 181 ident: bib37 article-title: First-principles study of CO and OH adsorption on In-doped ZnO surfaces publication-title: Journal of Physics and Chemistry of Solids – volume: 31 year: 2019 ident: bib39 article-title: Calculated optical properties of Co in ZnO: internal and ionization transitions publication-title: Journal of Physics: Condensed Matter – volume: vol. 8 year: 1996 ident: bib55 publication-title: Introduction to Solid State Physics – volume: 843 year: 2020 ident: bib33 article-title: Study on photoelectric properties of Si supported ZnO publication-title: Journal of Alloys and Compounds – volume: 70 start-page: 1269 year: 2002 end-page: 1270 ident: bib56 article-title: Optical properties of solids publication-title: American Journal of Physics – volume: 200 start-page: 236 year: 2005 end-page: 240 ident: bib18 article-title: Hydrogen doping of DC sputtered ZnO : Al films from novel target material publication-title: Surface & Coatings Technology – volume: 18 start-page: 6532 year: 2018 end-page: 6535 ident: bib13 article-title: Influence of post-heat treatment of ZnO:Al transparent electrode for copper indium gallium selenide thin film solar cell publication-title: Journal of Nanoscience and Nanotechnology – volume: 688 start-page: 368 year: 2016 end-page: 375 ident: bib41 article-title: Comparative first principles study of ZnO doped with group III elements publication-title: Journal of Alloys and Compounds – year: 2021 ident: bib54 article-title: Physics of Semiconductor Devices – volume: 509 start-page: 3847 year: 2011 end-page: 3851 ident: bib26 article-title: Elaboration and characterization of Al doped ZnO nanorod thin films annealed in hydrogen publication-title: Journal of Alloys and Compounds – volume: 53 start-page: 437 year: 2008 end-page: 441 ident: bib14 article-title: Efficiencies of ClGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness publication-title: Journal of the Korean Physical Society – volume: 74 start-page: 96 year: 2012 end-page: 99 ident: bib20 article-title: Highly conductive and transparent Al-doped ZnO films on glass substrate via incorporating hydrogen at low substrate temperatures publication-title: Mater Lett – volume: 233 year: 2022 ident: bib57 article-title: Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures publication-title: Composites Part B: Engineering – volume: 80 start-page: 389 year: 2016 end-page: 395 ident: bib5 article-title: Growth of ZnO nanorod arrays by one-step sol–gel process publication-title: Journal of Sol-Gel Science and Technology – volume: 4 start-page: 3861 year: 2011 end-page: 3877 ident: bib2 article-title: Applications of ZnO in organic and hybrid solar cells publication-title: Energy & Environmental Science – volume: 35 start-page: 604 year: 2021 end-page: 608 ident: bib36 article-title: Electronic structure of ZnO thin films doped with group III elements publication-title: Materials Today: Proceedings – volume: vol. 1832 year: 2017 ident: bib24 article-title: Deposition of Al:ZnO thin film by DC magnetron sputtering in presence of hydrogen publication-title: 61st Dae-Solid State Physics Symposium – volume: 30 year: 2018 ident: bib3 article-title: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation publication-title: Advanced Materials – volume: 528 year: 2020 ident: bib29 article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles publication-title: Chemical Physics – volume: 863 year: 2021 ident: bib42 article-title: A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review publication-title: Journal of Alloys and Compounds – volume: 34 start-page: 173 year: 2015 end-page: 177 ident: bib27 article-title: Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas publication-title: Rare Metals – volume: 211 start-page: 180 year: 2012 end-page: 183 ident: bib21 article-title: Influence of hydrogen content and sputtering characteristics on the properties of ZnO:Al transparent conductive layers deposited on polymer substrate publication-title: Surface & Coatings Technology – volume: 1 year: 2019 ident: bib44 article-title: Effects of defects on the electronic and optical properties of TiO2 nanosheet publication-title: Electronic Structure – volume: 45 start-page: 21894 year: 2019 end-page: 21899 ident: bib34 article-title: Study on interfacial interaction between Si and ZnO publication-title: Ceramics International – volume: 528 year: 2020 ident: bib38 article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles publication-title: Chemical Physics – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: bib48 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys Rev B – volume: 4 start-page: 2922 year: 2011 ident: bib1 article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 publication-title: Energy Environ Sci – volume: 816 year: 2020 ident: bib35 article-title: Optoelectronic properties of AZO/ZnO bilayer publication-title: Journal of Alloys and Compounds – volume: 305 year: 2020 ident: bib8 article-title: Al doped narcissus-like ZnO for enhanced NO2 sensing performance: an experimental and DFT investigation publication-title: Sensors and Actuators B-Chemical – volume: 253 start-page: 7157 year: 2007 end-page: 7161 ident: bib25 article-title: Stabilization in electrical characteristics of hydrogen-annealed ZnO : Al films publication-title: Applied Surface Science – volume: 7 start-page: 639 year: 2012 ident: bib6 article-title: Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films publication-title: Nanoscale Research Letters – volume: 536 year: 2020 ident: bib31 article-title: Investigation on electronic and optical properties of Ga-Eu codoped ZnO publication-title: Chemical Physics – volume: 108 year: 2010 ident: bib7 article-title: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films publication-title: Journal of Applied Physics – volume: 163 start-page: 69 year: 2019 end-page: 74 ident: bib28 article-title: Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film publication-title: Vacuum – volume: 257 start-page: 4026 year: 2011 end-page: 4030 ident: bib15 article-title: Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se-2 thin film solar cell publication-title: Applied Surface Science – volume: 10 start-page: 1050 year: 2013 end-page: 1054 ident: bib16 article-title: Investigation of ZnO:Al window layer of Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing publication-title: Physica Status Solidi C: Current Topics in Solid State Physics – volume: 9 start-page: 8161 year: 2017 end-page: 8168 ident: bib11 article-title: Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier publication-title: Acs Applied Materials & Interfaces – volume: 37 start-page: 10244 year: 1988 end-page: 10248 ident: bib53 article-title: Band-gap tailoring of ZnO by means of heavy Al doping publication-title: Phys Rev B – volume: 177 start-page: 1777 year: 2012 end-page: 1782 ident: bib22 article-title: Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering publication-title: Materials Science and Engineering B-Advanced Functional Solid-State Materials – volume: 26 year: 2021 ident: bib30 article-title: First-principles study of the effect of Mn and point vacancies with different valence states on the magnetic properties of ZnO publication-title: Materials Today Communications – volume: 101 start-page: 382 year: 2011 end-page: 387 ident: bib4 article-title: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study publication-title: Applied Catalysis B-Environmental – volume: 265 year: 2021 ident: bib40 article-title: Investigations of optoelectronic properties of novel ZnO monolayers: a first-principles study publication-title: MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS – volume: 893 year: 2022 ident: bib10 article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance publication-title: Journal of Alloys and Compounds – volume: 97 start-page: 8617 year: 1993 end-page: 8624 ident: bib51 article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations publication-title: The Journal of Physical Chemistry – volume: 15 year: 2019 ident: bib43 article-title: Effect of Cu/Al doping on electronic structure and optical properties of ZnO publication-title: Results in Physics – volume: 127 start-page: 408 year: 2021 ident: bib12 article-title: Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique publication-title: Applied Physics A – volume: 42 start-page: 10997 year: 2016 end-page: 11002 ident: bib45 article-title: Tuning electronic structure and optical properties of ZnO monolayer by Cd doping publication-title: Ceramics International – volume: 41 year: 2008 ident: bib19 article-title: Characteristics of hydrogen co-doped ZnO: Al thin films publication-title: J Phys D-Appl Phys. – volume: 60 start-page: 135 year: 2014 end-page: 142 ident: bib23 article-title: Effect of Hydrogen gas dilution on sputtered Al:ZnO film publication-title: Advanced Materials and Characterization Techniques for Solar Cells Ii – volume: 35 start-page: 509 year: 2013 end-page: 515 ident: bib47 article-title: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations publication-title: Optical Materials – volume: 101 start-page: 5615 year: 2018 end-page: 5626 ident: bib32 article-title: Optoelectronic performances on different structures of Al-doped ZnO publication-title: Journal of the American Ceramic Society – volume: 74 start-page: 387 year: 2002 end-page: 392 ident: bib17 article-title: Performance of double junction a-Si solar cells by using ZnO : Al films with different electrical and optical properties at the n/metal interface publication-title: Solar Energy Materials and Solar Cells – volume: 175 start-page: 67 year: 2006 end-page: 71 ident: bib50 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Computer Physics Communications – volume: 177 start-page: 1777 issue: 20 year: 2012 ident: 10.1016/j.matchemphys.2022.126680_bib22 article-title: Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering publication-title: Materials Science and Engineering B-Advanced Functional Solid-State Materials – volume: 843 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib33 article-title: Study on photoelectric properties of Si supported ZnO publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2020.155909 – volume: 10 start-page: 1050 issue: 7–8 year: 2013 ident: 10.1016/j.matchemphys.2022.126680_bib16 article-title: Investigation of ZnO:Al window layer of Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing publication-title: Physica Status Solidi C: Current Topics in Solid State Physics doi: 10.1002/pssc.201200694 – volume: 132 start-page: 172 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib37 article-title: First-principles study of CO and OH adsorption on In-doped ZnO surfaces publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/j.jpcs.2019.04.023 – volume: 35 start-page: 509 issue: 3 year: 2013 ident: 10.1016/j.matchemphys.2022.126680_bib47 article-title: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations publication-title: Optical Materials doi: 10.1016/j.optmat.2012.10.022 – volume: 15 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib43 article-title: Effect of Cu/Al doping on electronic structure and optical properties of ZnO publication-title: Results in Physics doi: 10.1016/j.rinp.2019.102649 – volume: 35 start-page: 604 issue: part 4 year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib36 article-title: Electronic structure of ZnO thin films doped with group III elements publication-title: Materials Today: Proceedings – volume: 863 year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib42 article-title: A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.158734 – volume: 9 start-page: 8161 issue: 9 year: 2017 ident: 10.1016/j.matchemphys.2022.126680_bib11 article-title: Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier publication-title: Acs Applied Materials & Interfaces doi: 10.1021/acsami.6b14305 – volume: 80 start-page: 389 issue: 2 year: 2016 ident: 10.1016/j.matchemphys.2022.126680_bib5 article-title: Growth of ZnO nanorod arrays by one-step sol–gel process publication-title: Journal of Sol-Gel Science and Technology doi: 10.1007/s10971-016-4131-z – volume: 70 start-page: 1269 issue: 12 year: 2002 ident: 10.1016/j.matchemphys.2022.126680_bib56 article-title: Optical properties of solids publication-title: American Journal of Physics doi: 10.1119/1.1691372 – volume: 13 start-page: 697 issue: 4 year: 2013 ident: 10.1016/j.matchemphys.2022.126680_bib9 article-title: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis publication-title: Current Applied Physics doi: 10.1016/j.cap.2012.11.008 – volume: vol. 1832 year: 2017 ident: 10.1016/j.matchemphys.2022.126680_bib24 article-title: Deposition of Al:ZnO thin film by DC magnetron sputtering in presence of hydrogen – volume: 4 start-page: 2922 issue: 8 year: 2011 ident: 10.1016/j.matchemphys.2022.126680_bib1 article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 publication-title: Energy Environ Sci doi: 10.1039/c0ee00825g – volume: 305 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib8 article-title: Al doped narcissus-like ZnO for enhanced NO2 sensing performance: an experimental and DFT investigation publication-title: Sensors and Actuators B-Chemical doi: 10.1016/j.snb.2019.127489 – volume: 31 issue: 25 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib39 article-title: Calculated optical properties of Co in ZnO: internal and ionization transitions publication-title: Journal of Physics: Condensed Matter – volume: 37 start-page: 10244 issue: 17 year: 1988 ident: 10.1016/j.matchemphys.2022.126680_bib53 article-title: Band-gap tailoring of ZnO by means of heavy Al doping publication-title: Phys Rev B doi: 10.1103/PhysRevB.37.10244 – volume: 108 issue: 4 year: 2010 ident: 10.1016/j.matchemphys.2022.126680_bib7 article-title: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films publication-title: Journal of Applied Physics doi: 10.1063/1.3466987 – volume: 257 start-page: 4026 issue: 9 year: 2011 ident: 10.1016/j.matchemphys.2022.126680_bib15 article-title: Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se-2 thin film solar cell publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2010.11.169 – volume: 53 start-page: 437 issue: 1 year: 2008 ident: 10.1016/j.matchemphys.2022.126680_bib14 article-title: Efficiencies of ClGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness publication-title: Journal of the Korean Physical Society doi: 10.3938/jkps.53.437 – volume: 688 start-page: 368 year: 2016 ident: 10.1016/j.matchemphys.2022.126680_bib41 article-title: Comparative first principles study of ZnO doped with group III elements publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2016.06.294 – volume: 47 start-page: 558 issue: 1 year: 1993 ident: 10.1016/j.matchemphys.2022.126680_bib48 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.558 – year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib54 – volume: 54 start-page: 11169 issue: 16 year: 1996 ident: 10.1016/j.matchemphys.2022.126680_bib49 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.11169 – volume: 233 year: 2022 ident: 10.1016/j.matchemphys.2022.126680_bib57 article-title: Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2022.109645 – volume: 74 start-page: 96 year: 2012 ident: 10.1016/j.matchemphys.2022.126680_bib20 article-title: Highly conductive and transparent Al-doped ZnO films on glass substrate via incorporating hydrogen at low substrate temperatures publication-title: Mater Lett doi: 10.1016/j.matlet.2012.01.034 – volume: 97 start-page: 8617 issue: 33 year: 1993 ident: 10.1016/j.matchemphys.2022.126680_bib51 article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations publication-title: The Journal of Physical Chemistry doi: 10.1021/j100135a014 – volume: 509 start-page: 3847 issue: 9 year: 2011 ident: 10.1016/j.matchemphys.2022.126680_bib26 article-title: Elaboration and characterization of Al doped ZnO nanorod thin films annealed in hydrogen publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2010.12.118 – volume: 265 year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib40 article-title: Investigations of optoelectronic properties of novel ZnO monolayers: a first-principles study publication-title: MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS – volume: 893 year: 2022 ident: 10.1016/j.matchemphys.2022.126680_bib10 article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.162334 – volume: 74 start-page: 387 issue: 1–4 year: 2002 ident: 10.1016/j.matchemphys.2022.126680_bib17 article-title: Performance of double junction a-Si solar cells by using ZnO : Al films with different electrical and optical properties at the n/metal interface publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/S0927-0248(02)00128-9 – volume: 101 start-page: 5615 issue: 12 year: 2018 ident: 10.1016/j.matchemphys.2022.126680_bib32 article-title: Optoelectronic performances on different structures of Al-doped ZnO publication-title: Journal of the American Ceramic Society doi: 10.1111/jace.15818 – volume: 45 start-page: 21894 issue: 17 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib34 article-title: Study on interfacial interaction between Si and ZnO publication-title: Ceramics International doi: 10.1016/j.ceramint.2019.07.200 – volume: 101 start-page: 382 issue: 3–4 year: 2011 ident: 10.1016/j.matchemphys.2022.126680_bib4 article-title: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study publication-title: Applied Catalysis B-Environmental doi: 10.1016/j.apcatb.2010.10.007 – volume: 4 start-page: 3861 issue: 10 year: 2011 ident: 10.1016/j.matchemphys.2022.126680_bib2 article-title: Applications of ZnO in organic and hybrid solar cells publication-title: Energy & Environmental Science doi: 10.1039/c1ee01873f – volume: vol. 8 year: 1996 ident: 10.1016/j.matchemphys.2022.126680_bib55 – volume: 200 start-page: 236 issue: 1–4 year: 2005 ident: 10.1016/j.matchemphys.2022.126680_bib18 article-title: Hydrogen doping of DC sputtered ZnO : Al films from novel target material publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2005.01.019 – volume: 30 issue: 11 year: 2018 ident: 10.1016/j.matchemphys.2022.126680_bib3 article-title: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation publication-title: Advanced Materials doi: 10.1002/adma.201705596 – volume: 41 issue: 9 year: 2008 ident: 10.1016/j.matchemphys.2022.126680_bib19 article-title: Characteristics of hydrogen co-doped ZnO: Al thin films publication-title: J Phys D-Appl Phys. doi: 10.1088/0022-3727/41/9/095303 – volume: 7 start-page: 639 year: 2012 ident: 10.1016/j.matchemphys.2022.126680_bib6 article-title: Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films publication-title: Nanoscale Research Letters doi: 10.1186/1556-276X-7-639 – volume: 34 start-page: 173 issue: 3 year: 2015 ident: 10.1016/j.matchemphys.2022.126680_bib27 article-title: Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas publication-title: Rare Metals doi: 10.1007/s12598-014-0435-8 – volume: 175 start-page: 67 issue: 1 year: 2006 ident: 10.1016/j.matchemphys.2022.126680_bib50 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2006.03.007 – volume: 163 start-page: 69 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib28 article-title: Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film publication-title: Vacuum doi: 10.1016/j.vacuum.2019.02.006 – volume: 18 start-page: 6532 issue: 9 year: 2018 ident: 10.1016/j.matchemphys.2022.126680_bib13 article-title: Influence of post-heat treatment of ZnO:Al transparent electrode for copper indium gallium selenide thin film solar cell publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2018.15685 – volume: 816 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib35 article-title: Optoelectronic properties of AZO/ZnO bilayer publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2019.152531 – volume: 42 start-page: 10997 issue: 9 year: 2016 ident: 10.1016/j.matchemphys.2022.126680_bib45 article-title: Tuning electronic structure and optical properties of ZnO monolayer by Cd doping publication-title: Ceramics International doi: 10.1016/j.ceramint.2016.03.238 – volume: 127 start-page: 408 issue: 6 year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib12 article-title: Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique publication-title: Applied Physics A doi: 10.1007/s00339-021-04519-4 – volume: 253 start-page: 7157 issue: 17 year: 2007 ident: 10.1016/j.matchemphys.2022.126680_bib25 article-title: Stabilization in electrical characteristics of hydrogen-annealed ZnO : Al films publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2007.02.181 – volume: 97 year: 2015 ident: 10.1016/j.matchemphys.2022.126680_bib46 article-title: Theoretical investigation of optical and structural properties of Ba-doped ZnO material publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/97/1/012005 – volume: 211 start-page: 180 year: 2012 ident: 10.1016/j.matchemphys.2022.126680_bib21 article-title: Influence of hydrogen content and sputtering characteristics on the properties of ZnO:Al transparent conductive layers deposited on polymer substrate publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2011.10.024 – volume: 536 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib31 article-title: Investigation on electronic and optical properties of Ga-Eu codoped ZnO publication-title: Chemical Physics doi: 10.1016/j.chemphys.2020.110826 – volume: 1 issue: 4 year: 2019 ident: 10.1016/j.matchemphys.2022.126680_bib44 article-title: Effects of defects on the electronic and optical properties of TiO2 nanosheet publication-title: Electronic Structure doi: 10.1088/2516-1075/ab47ea – volume: 60 start-page: 135 year: 2014 ident: 10.1016/j.matchemphys.2022.126680_bib23 article-title: Effect of Hydrogen gas dilution on sputtered Al:ZnO film publication-title: Advanced Materials and Characterization Techniques for Solar Cells Ii – volume: 26 year: 2021 ident: 10.1016/j.matchemphys.2022.126680_bib30 article-title: First-principles study of the effect of Mn and point vacancies with different valence states on the magnetic properties of ZnO publication-title: Materials Today Communications doi: 10.1016/j.mtcomm.2020.101805 – volume: 528 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib38 article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles publication-title: Chemical Physics doi: 10.1016/j.chemphys.2019.110460 – volume: 528 year: 2020 ident: 10.1016/j.matchemphys.2022.126680_bib29 article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles publication-title: Chemical Physics doi: 10.1016/j.chemphys.2019.110460 |
| SSID | ssj0017113 |
| Score | 2.480108 |
| Snippet | This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126680 |
| SubjectTerms | Composite Computation/computing DFT simulation H–Al co-Doped ZnO Photovoltaic |
| Title | Improving photoelectric perfomance with hydrogen on Al-doped ZnO |
| URI | https://dx.doi.org/10.1016/j.matchemphys.2022.126680 |
| Volume | 291 |
| WOSCitedRecordID | wos000859385900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017113 issn: 0254-0584 databaseCode: AIEXJ dateStart: 19950115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA56J_54EJ0T51Qi-Ca5tGnaJuDDLmNDRefACRdfSpKm7I7Rlrsq87_3pEnaO6_DifhSSiBNe87Xk--cJOcg9CpXlVaGSwJzc0mYrigROlFEanCIYAZRrJJ9sYn88JDP5-LIb2s-78sJ5HXNLy5E-19VDW2gbHt09i_UPTwUGuAelA5XUDtcr6X4MUzQnjRd4-rcLLRNUFw17oRAH3w9-VEuG3iKXS6YnZGyaYF7fq0_rdLVj7Jzr_xah8JwLrNAr92Bjn9YePd-LQzd34xBe7_9FyDZmsVgcHzzUZhFfRAC_Fe7ES4dI2Nrp2N6AwbOJ4lSVwJuapyB5bkgSRJfssDUFexas-YusHA6Be5uv9J-29SOPo2BVrgCUL8ky_5sx7RDUrvqw7P0JtqgeSr4BG3M3u3P3w8rTHnsSmeHd7yNXo57_64Y8PfcZYWPHD9A970jgWcOAA_RDVNvojt7QU2b6N5KqslHaHeABb4ECzzCAltY4AAL3NQ4wAIDLLbQl4P94723xFfPIBo4a0dik1PJssikwLllojivSvgzGVXc0EhWSuRxxTOmIiFLJYGncCa0lDI2DDhhljxGk7qpzROEVUYjU7FMZ0IwI3OR0lJyVmkpkkjFbBvxIJdC-9TytsLJWRH2EJ4WKyItrEgLJ9JtRIeurcuvcp1Ob4LwC08UHQEsADl_7v7037rvoLvjL_AMTbrlN_Mc3dLfu8X58oXH2U_kCZTP |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+photoelectric+perfomance+with+hydrogen+on+Al-doped+ZnO&rft.jtitle=Materials+chemistry+and+physics&rft.au=Li%2C+Lin&rft.au=Zhang%2C+Zhang&rft.au=Wang%2C+Jianpei&rft.au=Yang%2C+Ping&rft.date=2022-11-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=291&rft_id=info:doi/10.1016%2Fj.matchemphys.2022.126680&rft.externalDocID=S0254058422009865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |