Improving photoelectric perfomance with hydrogen on Al-doped ZnO

This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distorti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials chemistry and physics Ročník 291; s. 126680
Hlavní autori: Li, Lin, Zhang, Zhang, Wang, Jianpei, Yang, Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.11.2022
Predmet:
ISSN:0254-0584, 1879-3312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distortion of HAZO is smaller than that of AZO due to the repulsion of Al ions by H ions. Analysis of the electronic structure revealed that the carrier mobility of HAZO is higher than that of AZO due to the increased number of electrons at the conduction band minimum. Moreover, the conductivity of HAZO increased by 86% compared to AZO. The transmittance of HAZO is much higher than pure ZnO and AZO in the visible region and even reaching up to 95% above 600 nm. The current findings provide a theoretical basis for the possibility of co-doping Al–H with ZnO to promote its development in photovoltaic devices. [Display omitted] •We investigated the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO).•We detect that the lattice distortion of HAZO is small due to the repulsion of Al ions by H ions.•We detect that the conductivity of HAZO increased by 86% compared to AZO.•We detect that the transmittance of HAZO can reach up to 95% above 600 nm in the visible region.•It implies the possibility of co-doping Al–H with ZnO to promote the photovoltaic property.
AbstractList This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric property performances of ZnO as transparent conductive oxide (TCO), using density functional theory (DFT). Results showed that the lattice distortion of HAZO is smaller than that of AZO due to the repulsion of Al ions by H ions. Analysis of the electronic structure revealed that the carrier mobility of HAZO is higher than that of AZO due to the increased number of electrons at the conduction band minimum. Moreover, the conductivity of HAZO increased by 86% compared to AZO. The transmittance of HAZO is much higher than pure ZnO and AZO in the visible region and even reaching up to 95% above 600 nm. The current findings provide a theoretical basis for the possibility of co-doping Al–H with ZnO to promote its development in photovoltaic devices. [Display omitted] •We investigated the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO).•We detect that the lattice distortion of HAZO is small due to the repulsion of Al ions by H ions.•We detect that the conductivity of HAZO increased by 86% compared to AZO.•We detect that the transmittance of HAZO can reach up to 95% above 600 nm in the visible region.•It implies the possibility of co-doping Al–H with ZnO to promote the photovoltaic property.
ArticleNumber 126680
Author Yang, Ping
Li, Lin
Wang, Jianpei
Zhang, Zhang
Author_xml – sequence: 1
  givenname: Lin
  surname: Li
  fullname: Li, Lin
– sequence: 2
  givenname: Zhang
  surname: Zhang
  fullname: Zhang, Zhang
– sequence: 3
  givenname: Jianpei
  surname: Wang
  fullname: Wang, Jianpei
– sequence: 4
  givenname: Ping
  orcidid: 0000-0001-5767-4418
  surname: Yang
  fullname: Yang, Ping
  email: yangpingdm@ujs.edu.cn
BookMark eNqN0L1qwzAUhmFRUmiS9h7cC7CrI8u2PLUh9A8CWdqli5Dl41jBlowsUnL3dUiH0inTmb4XzrMgM-ssEnIPNAEK-cM-6VXQLfZDexwTRhlLgOW5oFdkDqIo4zQFNiNzyjIe00zwG7IYxz2lUACkc_L03g_eHYzdRUPrgsMOdfBGRwP6xvXKaoy-TWij9lh7t0MbORuturh2A9bRl93ekutGdSPe_d4l-Xx5_li_xZvt6_t6tYk1yyDEgAVTPKeYcchVWgnR1EXVcFYJZFQ1VVlAI3Je0VLVlQImBC-1UgqQA9A8XZLHc1d7N44eG6lNUME4G7wynQQqTyByL_-AyBOIPINMhfJfYfCmV_540XZ93uL04sGgl6M2OOHUxk9gsnbmgsoPdWaF1w
CitedBy_id crossref_primary_10_1016_j_jcis_2023_07_091
crossref_primary_10_1039_D3RA01574B
crossref_primary_10_1002_qua_27306
crossref_primary_10_1007_s10854_024_13172_5
crossref_primary_10_1016_j_mseb_2025_118279
crossref_primary_10_1016_j_solener_2024_112331
crossref_primary_10_1016_j_jallcom_2025_181060
crossref_primary_10_1038_s41598_024_73352_5
crossref_primary_10_1016_j_vacuum_2024_113156
crossref_primary_10_1016_j_vacuum_2024_113012
crossref_primary_10_3390_ma18051032
crossref_primary_10_1002_pssb_202400429
crossref_primary_10_1016_j_diamond_2023_110037
crossref_primary_10_1016_j_tsf_2023_139889
Cites_doi 10.1016/j.jallcom.2020.155909
10.1002/pssc.201200694
10.1016/j.jpcs.2019.04.023
10.1016/j.optmat.2012.10.022
10.1016/j.rinp.2019.102649
10.1016/j.jallcom.2021.158734
10.1021/acsami.6b14305
10.1007/s10971-016-4131-z
10.1119/1.1691372
10.1016/j.cap.2012.11.008
10.1039/c0ee00825g
10.1016/j.snb.2019.127489
10.1103/PhysRevB.37.10244
10.1063/1.3466987
10.1016/j.apsusc.2010.11.169
10.3938/jkps.53.437
10.1016/j.jallcom.2016.06.294
10.1103/PhysRevB.47.558
10.1103/PhysRevB.54.11169
10.1016/j.compositesb.2022.109645
10.1016/j.matlet.2012.01.034
10.1021/j100135a014
10.1016/j.jallcom.2010.12.118
10.1016/j.jallcom.2021.162334
10.1016/S0927-0248(02)00128-9
10.1111/jace.15818
10.1016/j.ceramint.2019.07.200
10.1016/j.apcatb.2010.10.007
10.1039/c1ee01873f
10.1016/j.surfcoat.2005.01.019
10.1002/adma.201705596
10.1088/0022-3727/41/9/095303
10.1186/1556-276X-7-639
10.1007/s12598-014-0435-8
10.1016/j.cpc.2006.03.007
10.1016/j.vacuum.2019.02.006
10.1166/jnn.2018.15685
10.1016/j.jallcom.2019.152531
10.1016/j.ceramint.2016.03.238
10.1007/s00339-021-04519-4
10.1016/j.apsusc.2007.02.181
10.1088/1757-899X/97/1/012005
10.1016/j.surfcoat.2011.10.024
10.1016/j.chemphys.2020.110826
10.1088/2516-1075/ab47ea
10.1016/j.mtcomm.2020.101805
10.1016/j.chemphys.2019.110460
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2022.126680
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3312
ExternalDocumentID 10_1016_j_matchemphys_2022_126680
S0254058422009865
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
ID FETCH-LOGICAL-c251t-1e72a460e5416a3b88fd7bf42b8e20afb971f864b09adba128849caaa1e411063
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859385900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-0584
IngestDate Tue Nov 18 22:11:23 EST 2025
Sat Nov 29 07:25:53 EST 2025
Fri Feb 23 02:42:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic
DFT simulation
Composite
Computation/computing
H–Al co-Doped ZnO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-1e72a460e5416a3b88fd7bf42b8e20afb971f864b09adba128849caaa1e411063
ORCID 0000-0001-5767-4418
ParticipantIDs crossref_citationtrail_10_1016_j_matchemphys_2022_126680
crossref_primary_10_1016_j_matchemphys_2022_126680
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2022_126680
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials chemistry and physics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jun, Park, Koh (bib6) 2012; 7
Goktas, Modanlı, Tumbul, Kilic (bib10) 2022; 893
Dronskowski, Bloechl (bib51) 1993; 97
Shantheyanda, Sundaram, Shiradkar (bib22) 2012; 177
Kovalenko, Bovgyra, Franiv, Dzikovskyi (bib36) 2021; 35
Sernelius, Berggren, Jin, Hamberg, Granqvist (bib53) 1988; 37
Liu, Yang, Ge, Yang (bib35) 2020; 816
Wang, Yang, Yang (bib57) 2022; 233
Gao, Li, Gao, Yang (bib31) 2020; 536
Lee, Lee, Lee, Cheong, Kim, Kim (bib19) 2008; 41
Ciechan, Bogus\lawski (bib39) 2019; 31
Xu, Zhang, Cheng, Zhu (bib4) 2011; 101
Eom, Park, Park, Park, Bweupe, Lim (bib13) 2018; 18
Liu, Yang (bib32) 2018; 101
Huang, Yin, Zheng (bib2) 2011; 4
Gu, Hu, Guo (bib28) 2019; 163
Klykov, Strazdina, Kozlov (bib21) 2012; 211
Hou, Li, Xu, Liu, Sha (bib29) 2020; 528
Guan, Hou, Gu, Wang (bib30) 2021; 26
Goktas, Goktas (bib42) 2021; 863
Zhou, Zhang, Wang, Tan (bib20) 2012; 74
Aslan, Tumbul, Göktaş, Budakoğlu, Mutlu (bib5) 2016; 80
Tan, Sun, Xu, Tian, Huang (bib45) 2016; 42
Saniz, Sarmadian, Partoens (bib37) 2019; 132
Kresse, Furthmüller (bib49) 1996; 54
Islam, Ishizuka, Yamada (bib15) 2011; 257
Haq, AlFaify, Alrebdi (bib40) 2021; 265
Banerjee, Lee, Bae, Lee, Rubloff (bib7) 2010; 108
Zhang, Li, Gong (bib8) 2020; 305
Wang, Shi, Lin, Zhu (bib1) 2011; 4
Sahoo, Mangal, Singh (bib24) 2017; vol. 1832
Sze, Li, Ng (bib54) 2021
Madsen, Singh (bib50) 2006; 175
Ray, Das, Barua (bib17) 2002; 74
Jin, Zhang, Wei, Ma (bib44) 2019; 1
Oh, Jeong, Myoung (bib25) 2007; 253
Cao, Wu, Chen (bib3) 2018; 30
Fox (bib56) 2002; 70
Khuili, Fazouan, Makarim, Halani, Atmani (bib41) 2016; 688
Hou, Li, Xu, Liu, Sha (bib38) 2020; 528
Dai, Suo, Li, Gao (bib43) 2019; 15
Duan, He, Tian (bib11) 2017; 9
Liu, Tang, Liao, Yang (bib34) 2019; 45
Kittel, McEuen, McEuen (bib55) 1996; vol. 8
Ruske, Sittinger, Werner (bib18) 2005; 200
Chierchia, Salza, Mittiga (bib23) 2014; 60
Wu, Peng, Chen (bib47) 2013; 35
Hur, Song, Kim (bib14) 2008; 53
Qu, Zhang, Gu (bib27) 2015; 34
Liu, Li, Yuan, Yang (bib33) 2020; 843
Ahmad, Ahmed, Zhang (bib9) 2013; 13
Lacerda, Lazaro, Ribeiro (bib46) 2015; 97
Zhong, Liu, Cai (bib26) 2011; 509
Aizawa, Tanaka, Tagami, Uchiki (bib16) 2013; 10
Mikailzade, Türkan, Önal, Zarbali, Göktaş, Tumbul (bib12) 2021; 127
Kresse, Hafner (bib48) 1993; 47
Jun (10.1016/j.matchemphys.2022.126680_bib6) 2012; 7
Hou (10.1016/j.matchemphys.2022.126680_bib38) 2020; 528
Zhong (10.1016/j.matchemphys.2022.126680_bib26) 2011; 509
Haq (10.1016/j.matchemphys.2022.126680_bib40) 2021; 265
Khuili (10.1016/j.matchemphys.2022.126680_bib41) 2016; 688
Banerjee (10.1016/j.matchemphys.2022.126680_bib7) 2010; 108
Eom (10.1016/j.matchemphys.2022.126680_bib13) 2018; 18
Kovalenko (10.1016/j.matchemphys.2022.126680_bib36) 2021; 35
Dronskowski (10.1016/j.matchemphys.2022.126680_bib51) 1993; 97
Chierchia (10.1016/j.matchemphys.2022.126680_bib23) 2014; 60
Saniz (10.1016/j.matchemphys.2022.126680_bib37) 2019; 132
Kresse (10.1016/j.matchemphys.2022.126680_bib48) 1993; 47
Goktas (10.1016/j.matchemphys.2022.126680_bib42) 2021; 863
Gao (10.1016/j.matchemphys.2022.126680_bib31) 2020; 536
Xu (10.1016/j.matchemphys.2022.126680_bib4) 2011; 101
Aslan (10.1016/j.matchemphys.2022.126680_bib5) 2016; 80
Lee (10.1016/j.matchemphys.2022.126680_bib19) 2008; 41
Goktas (10.1016/j.matchemphys.2022.126680_bib10) 2022; 893
Dai (10.1016/j.matchemphys.2022.126680_bib43) 2019; 15
Oh (10.1016/j.matchemphys.2022.126680_bib25) 2007; 253
Hou (10.1016/j.matchemphys.2022.126680_bib29) 2020; 528
Islam (10.1016/j.matchemphys.2022.126680_bib15) 2011; 257
Sahoo (10.1016/j.matchemphys.2022.126680_bib24) 2017; vol. 1832
Ray (10.1016/j.matchemphys.2022.126680_bib17) 2002; 74
Gu (10.1016/j.matchemphys.2022.126680_bib28) 2019; 163
Liu (10.1016/j.matchemphys.2022.126680_bib33) 2020; 843
Liu (10.1016/j.matchemphys.2022.126680_bib35) 2020; 816
Liu (10.1016/j.matchemphys.2022.126680_bib34) 2019; 45
Liu (10.1016/j.matchemphys.2022.126680_bib32) 2018; 101
Ciechan (10.1016/j.matchemphys.2022.126680_bib39) 2019; 31
Zhang (10.1016/j.matchemphys.2022.126680_bib8) 2020; 305
Huang (10.1016/j.matchemphys.2022.126680_bib2) 2011; 4
Cao (10.1016/j.matchemphys.2022.126680_bib3) 2018; 30
Hur (10.1016/j.matchemphys.2022.126680_bib14) 2008; 53
Kresse (10.1016/j.matchemphys.2022.126680_bib49) 1996; 54
Fox (10.1016/j.matchemphys.2022.126680_bib56) 2002; 70
Wu (10.1016/j.matchemphys.2022.126680_bib47) 2013; 35
Wang (10.1016/j.matchemphys.2022.126680_bib1) 2011; 4
Lacerda (10.1016/j.matchemphys.2022.126680_bib46) 2015; 97
Ruske (10.1016/j.matchemphys.2022.126680_bib18) 2005; 200
Guan (10.1016/j.matchemphys.2022.126680_bib30) 2021; 26
Aizawa (10.1016/j.matchemphys.2022.126680_bib16) 2013; 10
Ahmad (10.1016/j.matchemphys.2022.126680_bib9) 2013; 13
Duan (10.1016/j.matchemphys.2022.126680_bib11) 2017; 9
Sernelius (10.1016/j.matchemphys.2022.126680_bib53) 1988; 37
Madsen (10.1016/j.matchemphys.2022.126680_bib50) 2006; 175
Zhou (10.1016/j.matchemphys.2022.126680_bib20) 2012; 74
Tan (10.1016/j.matchemphys.2022.126680_bib45) 2016; 42
Sze (10.1016/j.matchemphys.2022.126680_bib54) 2021
Kittel (10.1016/j.matchemphys.2022.126680_bib55) 1996; vol. 8
Klykov (10.1016/j.matchemphys.2022.126680_bib21) 2012; 211
Shantheyanda (10.1016/j.matchemphys.2022.126680_bib22) 2012; 177
Qu (10.1016/j.matchemphys.2022.126680_bib27) 2015; 34
Jin (10.1016/j.matchemphys.2022.126680_bib44) 2019; 1
Mikailzade (10.1016/j.matchemphys.2022.126680_bib12) 2021; 127
Wang (10.1016/j.matchemphys.2022.126680_bib57) 2022; 233
References_xml – volume: 13
  start-page: 697
  year: 2013
  end-page: 704
  ident: bib9
  article-title: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis
  publication-title: Current Applied Physics
– volume: 97
  year: 2015
  ident: bib46
  article-title: Theoretical investigation of optical and structural properties of Ba-doped ZnO material
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib49
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys Rev B
– volume: 132
  start-page: 172
  year: 2019
  end-page: 181
  ident: bib37
  article-title: First-principles study of CO and OH adsorption on In-doped ZnO surfaces
  publication-title: Journal of Physics and Chemistry of Solids
– volume: 31
  year: 2019
  ident: bib39
  article-title: Calculated optical properties of Co in ZnO: internal and ionization transitions
  publication-title: Journal of Physics: Condensed Matter
– volume: vol. 8
  year: 1996
  ident: bib55
  publication-title: Introduction to Solid State Physics
– volume: 843
  year: 2020
  ident: bib33
  article-title: Study on photoelectric properties of Si supported ZnO
  publication-title: Journal of Alloys and Compounds
– volume: 70
  start-page: 1269
  year: 2002
  end-page: 1270
  ident: bib56
  article-title: Optical properties of solids
  publication-title: American Journal of Physics
– volume: 200
  start-page: 236
  year: 2005
  end-page: 240
  ident: bib18
  article-title: Hydrogen doping of DC sputtered ZnO : Al films from novel target material
  publication-title: Surface & Coatings Technology
– volume: 18
  start-page: 6532
  year: 2018
  end-page: 6535
  ident: bib13
  article-title: Influence of post-heat treatment of ZnO:Al transparent electrode for copper indium gallium selenide thin film solar cell
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 688
  start-page: 368
  year: 2016
  end-page: 375
  ident: bib41
  article-title: Comparative first principles study of ZnO doped with group III elements
  publication-title: Journal of Alloys and Compounds
– year: 2021
  ident: bib54
  article-title: Physics of Semiconductor Devices
– volume: 509
  start-page: 3847
  year: 2011
  end-page: 3851
  ident: bib26
  article-title: Elaboration and characterization of Al doped ZnO nanorod thin films annealed in hydrogen
  publication-title: Journal of Alloys and Compounds
– volume: 53
  start-page: 437
  year: 2008
  end-page: 441
  ident: bib14
  article-title: Efficiencies of ClGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness
  publication-title: Journal of the Korean Physical Society
– volume: 74
  start-page: 96
  year: 2012
  end-page: 99
  ident: bib20
  article-title: Highly conductive and transparent Al-doped ZnO films on glass substrate via incorporating hydrogen at low substrate temperatures
  publication-title: Mater Lett
– volume: 233
  year: 2022
  ident: bib57
  article-title: Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures
  publication-title: Composites Part B: Engineering
– volume: 80
  start-page: 389
  year: 2016
  end-page: 395
  ident: bib5
  article-title: Growth of ZnO nanorod arrays by one-step sol–gel process
  publication-title: Journal of Sol-Gel Science and Technology
– volume: 4
  start-page: 3861
  year: 2011
  end-page: 3877
  ident: bib2
  article-title: Applications of ZnO in organic and hybrid solar cells
  publication-title: Energy & Environmental Science
– volume: 35
  start-page: 604
  year: 2021
  end-page: 608
  ident: bib36
  article-title: Electronic structure of ZnO thin films doped with group III elements
  publication-title: Materials Today: Proceedings
– volume: vol. 1832
  year: 2017
  ident: bib24
  article-title: Deposition of Al:ZnO thin film by DC magnetron sputtering in presence of hydrogen
  publication-title: 61st Dae-Solid State Physics Symposium
– volume: 30
  year: 2018
  ident: bib3
  article-title: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation
  publication-title: Advanced Materials
– volume: 528
  year: 2020
  ident: bib29
  article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles
  publication-title: Chemical Physics
– volume: 863
  year: 2021
  ident: bib42
  article-title: A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review
  publication-title: Journal of Alloys and Compounds
– volume: 34
  start-page: 173
  year: 2015
  end-page: 177
  ident: bib27
  article-title: Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas
  publication-title: Rare Metals
– volume: 211
  start-page: 180
  year: 2012
  end-page: 183
  ident: bib21
  article-title: Influence of hydrogen content and sputtering characteristics on the properties of ZnO:Al transparent conductive layers deposited on polymer substrate
  publication-title: Surface & Coatings Technology
– volume: 1
  year: 2019
  ident: bib44
  article-title: Effects of defects on the electronic and optical properties of TiO2 nanosheet
  publication-title: Electronic Structure
– volume: 45
  start-page: 21894
  year: 2019
  end-page: 21899
  ident: bib34
  article-title: Study on interfacial interaction between Si and ZnO
  publication-title: Ceramics International
– volume: 528
  year: 2020
  ident: bib38
  article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles
  publication-title: Chemical Physics
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: bib48
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys Rev B
– volume: 4
  start-page: 2922
  year: 2011
  ident: bib1
  article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4
  publication-title: Energy Environ Sci
– volume: 816
  year: 2020
  ident: bib35
  article-title: Optoelectronic properties of AZO/ZnO bilayer
  publication-title: Journal of Alloys and Compounds
– volume: 305
  year: 2020
  ident: bib8
  article-title: Al doped narcissus-like ZnO for enhanced NO2 sensing performance: an experimental and DFT investigation
  publication-title: Sensors and Actuators B-Chemical
– volume: 253
  start-page: 7157
  year: 2007
  end-page: 7161
  ident: bib25
  article-title: Stabilization in electrical characteristics of hydrogen-annealed ZnO : Al films
  publication-title: Applied Surface Science
– volume: 7
  start-page: 639
  year: 2012
  ident: bib6
  article-title: Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films
  publication-title: Nanoscale Research Letters
– volume: 536
  year: 2020
  ident: bib31
  article-title: Investigation on electronic and optical properties of Ga-Eu codoped ZnO
  publication-title: Chemical Physics
– volume: 108
  year: 2010
  ident: bib7
  article-title: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films
  publication-title: Journal of Applied Physics
– volume: 163
  start-page: 69
  year: 2019
  end-page: 74
  ident: bib28
  article-title: Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film
  publication-title: Vacuum
– volume: 257
  start-page: 4026
  year: 2011
  end-page: 4030
  ident: bib15
  article-title: Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se-2 thin film solar cell
  publication-title: Applied Surface Science
– volume: 10
  start-page: 1050
  year: 2013
  end-page: 1054
  ident: bib16
  article-title: Investigation of ZnO:Al window layer of Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing
  publication-title: Physica Status Solidi C: Current Topics in Solid State Physics
– volume: 9
  start-page: 8161
  year: 2017
  end-page: 8168
  ident: bib11
  article-title: Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier
  publication-title: Acs Applied Materials & Interfaces
– volume: 37
  start-page: 10244
  year: 1988
  end-page: 10248
  ident: bib53
  article-title: Band-gap tailoring of ZnO by means of heavy Al doping
  publication-title: Phys Rev B
– volume: 177
  start-page: 1777
  year: 2012
  end-page: 1782
  ident: bib22
  article-title: Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering
  publication-title: Materials Science and Engineering B-Advanced Functional Solid-State Materials
– volume: 26
  year: 2021
  ident: bib30
  article-title: First-principles study of the effect of Mn and point vacancies with different valence states on the magnetic properties of ZnO
  publication-title: Materials Today Communications
– volume: 101
  start-page: 382
  year: 2011
  end-page: 387
  ident: bib4
  article-title: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study
  publication-title: Applied Catalysis B-Environmental
– volume: 265
  year: 2021
  ident: bib40
  article-title: Investigations of optoelectronic properties of novel ZnO monolayers: a first-principles study
  publication-title: MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS
– volume: 893
  year: 2022
  ident: bib10
  article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance
  publication-title: Journal of Alloys and Compounds
– volume: 97
  start-page: 8617
  year: 1993
  end-page: 8624
  ident: bib51
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: The Journal of Physical Chemistry
– volume: 15
  year: 2019
  ident: bib43
  article-title: Effect of Cu/Al doping on electronic structure and optical properties of ZnO
  publication-title: Results in Physics
– volume: 127
  start-page: 408
  year: 2021
  ident: bib12
  article-title: Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique
  publication-title: Applied Physics A
– volume: 42
  start-page: 10997
  year: 2016
  end-page: 11002
  ident: bib45
  article-title: Tuning electronic structure and optical properties of ZnO monolayer by Cd doping
  publication-title: Ceramics International
– volume: 41
  year: 2008
  ident: bib19
  article-title: Characteristics of hydrogen co-doped ZnO: Al thin films
  publication-title: J Phys D-Appl Phys.
– volume: 60
  start-page: 135
  year: 2014
  end-page: 142
  ident: bib23
  article-title: Effect of Hydrogen gas dilution on sputtered Al:ZnO film
  publication-title: Advanced Materials and Characterization Techniques for Solar Cells Ii
– volume: 35
  start-page: 509
  year: 2013
  end-page: 515
  ident: bib47
  article-title: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations
  publication-title: Optical Materials
– volume: 101
  start-page: 5615
  year: 2018
  end-page: 5626
  ident: bib32
  article-title: Optoelectronic performances on different structures of Al-doped ZnO
  publication-title: Journal of the American Ceramic Society
– volume: 74
  start-page: 387
  year: 2002
  end-page: 392
  ident: bib17
  article-title: Performance of double junction a-Si solar cells by using ZnO : Al films with different electrical and optical properties at the n/metal interface
  publication-title: Solar Energy Materials and Solar Cells
– volume: 175
  start-page: 67
  year: 2006
  end-page: 71
  ident: bib50
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Computer Physics Communications
– volume: 177
  start-page: 1777
  issue: 20
  year: 2012
  ident: 10.1016/j.matchemphys.2022.126680_bib22
  article-title: Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering
  publication-title: Materials Science and Engineering B-Advanced Functional Solid-State Materials
– volume: 843
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib33
  article-title: Study on photoelectric properties of Si supported ZnO
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2020.155909
– volume: 10
  start-page: 1050
  issue: 7–8
  year: 2013
  ident: 10.1016/j.matchemphys.2022.126680_bib16
  article-title: Investigation of ZnO:Al window layer of Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing
  publication-title: Physica Status Solidi C: Current Topics in Solid State Physics
  doi: 10.1002/pssc.201200694
– volume: 132
  start-page: 172
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib37
  article-title: First-principles study of CO and OH adsorption on In-doped ZnO surfaces
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/j.jpcs.2019.04.023
– volume: 35
  start-page: 509
  issue: 3
  year: 2013
  ident: 10.1016/j.matchemphys.2022.126680_bib47
  article-title: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations
  publication-title: Optical Materials
  doi: 10.1016/j.optmat.2012.10.022
– volume: 15
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib43
  article-title: Effect of Cu/Al doping on electronic structure and optical properties of ZnO
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2019.102649
– volume: 35
  start-page: 604
  issue: part 4
  year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib36
  article-title: Electronic structure of ZnO thin films doped with group III elements
  publication-title: Materials Today: Proceedings
– volume: 863
  year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib42
  article-title: A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.158734
– volume: 9
  start-page: 8161
  issue: 9
  year: 2017
  ident: 10.1016/j.matchemphys.2022.126680_bib11
  article-title: Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO:Al nanorod-array-film structure with stable Schottky barrier
  publication-title: Acs Applied Materials & Interfaces
  doi: 10.1021/acsami.6b14305
– volume: 80
  start-page: 389
  issue: 2
  year: 2016
  ident: 10.1016/j.matchemphys.2022.126680_bib5
  article-title: Growth of ZnO nanorod arrays by one-step sol–gel process
  publication-title: Journal of Sol-Gel Science and Technology
  doi: 10.1007/s10971-016-4131-z
– volume: 70
  start-page: 1269
  issue: 12
  year: 2002
  ident: 10.1016/j.matchemphys.2022.126680_bib56
  article-title: Optical properties of solids
  publication-title: American Journal of Physics
  doi: 10.1119/1.1691372
– volume: 13
  start-page: 697
  issue: 4
  year: 2013
  ident: 10.1016/j.matchemphys.2022.126680_bib9
  article-title: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2012.11.008
– volume: vol. 1832
  year: 2017
  ident: 10.1016/j.matchemphys.2022.126680_bib24
  article-title: Deposition of Al:ZnO thin film by DC magnetron sputtering in presence of hydrogen
– volume: 4
  start-page: 2922
  issue: 8
  year: 2011
  ident: 10.1016/j.matchemphys.2022.126680_bib1
  article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4
  publication-title: Energy Environ Sci
  doi: 10.1039/c0ee00825g
– volume: 305
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib8
  article-title: Al doped narcissus-like ZnO for enhanced NO2 sensing performance: an experimental and DFT investigation
  publication-title: Sensors and Actuators B-Chemical
  doi: 10.1016/j.snb.2019.127489
– volume: 31
  issue: 25
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib39
  article-title: Calculated optical properties of Co in ZnO: internal and ionization transitions
  publication-title: Journal of Physics: Condensed Matter
– volume: 37
  start-page: 10244
  issue: 17
  year: 1988
  ident: 10.1016/j.matchemphys.2022.126680_bib53
  article-title: Band-gap tailoring of ZnO by means of heavy Al doping
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.37.10244
– volume: 108
  issue: 4
  year: 2010
  ident: 10.1016/j.matchemphys.2022.126680_bib7
  article-title: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.3466987
– volume: 257
  start-page: 4026
  issue: 9
  year: 2011
  ident: 10.1016/j.matchemphys.2022.126680_bib15
  article-title: Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se-2 thin film solar cell
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2010.11.169
– volume: 53
  start-page: 437
  issue: 1
  year: 2008
  ident: 10.1016/j.matchemphys.2022.126680_bib14
  article-title: Efficiencies of ClGS solar cells using transparent conducting Al-doped ZnO window layers as a function of thickness
  publication-title: Journal of the Korean Physical Society
  doi: 10.3938/jkps.53.437
– volume: 688
  start-page: 368
  year: 2016
  ident: 10.1016/j.matchemphys.2022.126680_bib41
  article-title: Comparative first principles study of ZnO doped with group III elements
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2016.06.294
– volume: 47
  start-page: 558
  issue: 1
  year: 1993
  ident: 10.1016/j.matchemphys.2022.126680_bib48
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.558
– year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib54
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: 10.1016/j.matchemphys.2022.126680_bib49
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.11169
– volume: 233
  year: 2022
  ident: 10.1016/j.matchemphys.2022.126680_bib57
  article-title: Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2022.109645
– volume: 74
  start-page: 96
  year: 2012
  ident: 10.1016/j.matchemphys.2022.126680_bib20
  article-title: Highly conductive and transparent Al-doped ZnO films on glass substrate via incorporating hydrogen at low substrate temperatures
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2012.01.034
– volume: 97
  start-page: 8617
  issue: 33
  year: 1993
  ident: 10.1016/j.matchemphys.2022.126680_bib51
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: The Journal of Physical Chemistry
  doi: 10.1021/j100135a014
– volume: 509
  start-page: 3847
  issue: 9
  year: 2011
  ident: 10.1016/j.matchemphys.2022.126680_bib26
  article-title: Elaboration and characterization of Al doped ZnO nanorod thin films annealed in hydrogen
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2010.12.118
– volume: 265
  year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib40
  article-title: Investigations of optoelectronic properties of novel ZnO monolayers: a first-principles study
  publication-title: MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS
– volume: 893
  year: 2022
  ident: 10.1016/j.matchemphys.2022.126680_bib10
  article-title: Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.162334
– volume: 74
  start-page: 387
  issue: 1–4
  year: 2002
  ident: 10.1016/j.matchemphys.2022.126680_bib17
  article-title: Performance of double junction a-Si solar cells by using ZnO : Al films with different electrical and optical properties at the n/metal interface
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/S0927-0248(02)00128-9
– volume: 101
  start-page: 5615
  issue: 12
  year: 2018
  ident: 10.1016/j.matchemphys.2022.126680_bib32
  article-title: Optoelectronic performances on different structures of Al-doped ZnO
  publication-title: Journal of the American Ceramic Society
  doi: 10.1111/jace.15818
– volume: 45
  start-page: 21894
  issue: 17
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib34
  article-title: Study on interfacial interaction between Si and ZnO
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2019.07.200
– volume: 101
  start-page: 382
  issue: 3–4
  year: 2011
  ident: 10.1016/j.matchemphys.2022.126680_bib4
  article-title: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2010.10.007
– volume: 4
  start-page: 3861
  issue: 10
  year: 2011
  ident: 10.1016/j.matchemphys.2022.126680_bib2
  article-title: Applications of ZnO in organic and hybrid solar cells
  publication-title: Energy & Environmental Science
  doi: 10.1039/c1ee01873f
– volume: vol. 8
  year: 1996
  ident: 10.1016/j.matchemphys.2022.126680_bib55
– volume: 200
  start-page: 236
  issue: 1–4
  year: 2005
  ident: 10.1016/j.matchemphys.2022.126680_bib18
  article-title: Hydrogen doping of DC sputtered ZnO : Al films from novel target material
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2005.01.019
– volume: 30
  issue: 11
  year: 2018
  ident: 10.1016/j.matchemphys.2022.126680_bib3
  article-title: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation
  publication-title: Advanced Materials
  doi: 10.1002/adma.201705596
– volume: 41
  issue: 9
  year: 2008
  ident: 10.1016/j.matchemphys.2022.126680_bib19
  article-title: Characteristics of hydrogen co-doped ZnO: Al thin films
  publication-title: J Phys D-Appl Phys.
  doi: 10.1088/0022-3727/41/9/095303
– volume: 7
  start-page: 639
  year: 2012
  ident: 10.1016/j.matchemphys.2022.126680_bib6
  article-title: Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films
  publication-title: Nanoscale Research Letters
  doi: 10.1186/1556-276X-7-639
– volume: 34
  start-page: 173
  issue: 3
  year: 2015
  ident: 10.1016/j.matchemphys.2022.126680_bib27
  article-title: Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas
  publication-title: Rare Metals
  doi: 10.1007/s12598-014-0435-8
– volume: 175
  start-page: 67
  issue: 1
  year: 2006
  ident: 10.1016/j.matchemphys.2022.126680_bib50
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2006.03.007
– volume: 163
  start-page: 69
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib28
  article-title: Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2019.02.006
– volume: 18
  start-page: 6532
  issue: 9
  year: 2018
  ident: 10.1016/j.matchemphys.2022.126680_bib13
  article-title: Influence of post-heat treatment of ZnO:Al transparent electrode for copper indium gallium selenide thin film solar cell
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2018.15685
– volume: 816
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib35
  article-title: Optoelectronic properties of AZO/ZnO bilayer
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2019.152531
– volume: 42
  start-page: 10997
  issue: 9
  year: 2016
  ident: 10.1016/j.matchemphys.2022.126680_bib45
  article-title: Tuning electronic structure and optical properties of ZnO monolayer by Cd doping
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2016.03.238
– volume: 127
  start-page: 408
  issue: 6
  year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib12
  article-title: Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique
  publication-title: Applied Physics A
  doi: 10.1007/s00339-021-04519-4
– volume: 253
  start-page: 7157
  issue: 17
  year: 2007
  ident: 10.1016/j.matchemphys.2022.126680_bib25
  article-title: Stabilization in electrical characteristics of hydrogen-annealed ZnO : Al films
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2007.02.181
– volume: 97
  year: 2015
  ident: 10.1016/j.matchemphys.2022.126680_bib46
  article-title: Theoretical investigation of optical and structural properties of Ba-doped ZnO material
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/97/1/012005
– volume: 211
  start-page: 180
  year: 2012
  ident: 10.1016/j.matchemphys.2022.126680_bib21
  article-title: Influence of hydrogen content and sputtering characteristics on the properties of ZnO:Al transparent conductive layers deposited on polymer substrate
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2011.10.024
– volume: 536
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib31
  article-title: Investigation on electronic and optical properties of Ga-Eu codoped ZnO
  publication-title: Chemical Physics
  doi: 10.1016/j.chemphys.2020.110826
– volume: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.matchemphys.2022.126680_bib44
  article-title: Effects of defects on the electronic and optical properties of TiO2 nanosheet
  publication-title: Electronic Structure
  doi: 10.1088/2516-1075/ab47ea
– volume: 60
  start-page: 135
  year: 2014
  ident: 10.1016/j.matchemphys.2022.126680_bib23
  article-title: Effect of Hydrogen gas dilution on sputtered Al:ZnO film
  publication-title: Advanced Materials and Characterization Techniques for Solar Cells Ii
– volume: 26
  year: 2021
  ident: 10.1016/j.matchemphys.2022.126680_bib30
  article-title: First-principles study of the effect of Mn and point vacancies with different valence states on the magnetic properties of ZnO
  publication-title: Materials Today Communications
  doi: 10.1016/j.mtcomm.2020.101805
– volume: 528
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib38
  article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles
  publication-title: Chemical Physics
  doi: 10.1016/j.chemphys.2019.110460
– volume: 528
  year: 2020
  ident: 10.1016/j.matchemphys.2022.126680_bib29
  article-title: Study of the electronic structure and absorption spectrum of Co and H doped ZnO by first-principles
  publication-title: Chemical Physics
  doi: 10.1016/j.chemphys.2019.110460
SSID ssj0017113
Score 2.480108
Snippet This paper gives a comprehensive analysis of the physical properties of Al-doped ZnO (AZO) and H–Al co-doped (HAZO), aiming to enhance the photoelectric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126680
SubjectTerms Composite
Computation/computing
DFT simulation
H–Al co-Doped ZnO
Photovoltaic
Title Improving photoelectric perfomance with hydrogen on Al-doped ZnO
URI https://dx.doi.org/10.1016/j.matchemphys.2022.126680
Volume 291
WOSCitedRecordID wos000859385900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017113
  issn: 0254-0584
  databaseCode: AIEXJ
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA56J_54EJ0T51Qi-Ca5tGnaJuDDLmNDRefACRdfSpKm7I7Rlrsq87_3pEnaO6_DifhSSiBNe87Xk--cJOcg9CpXlVaGSwJzc0mYrigROlFEanCIYAZRrJJ9sYn88JDP5-LIb2s-78sJ5HXNLy5E-19VDW2gbHt09i_UPTwUGuAelA5XUDtcr6X4MUzQnjRd4-rcLLRNUFw17oRAH3w9-VEuG3iKXS6YnZGyaYF7fq0_rdLVj7Jzr_xah8JwLrNAr92Bjn9YePd-LQzd34xBe7_9FyDZmsVgcHzzUZhFfRAC_Fe7ES4dI2Nrp2N6AwbOJ4lSVwJuapyB5bkgSRJfssDUFexas-YusHA6Be5uv9J-29SOPo2BVrgCUL8ky_5sx7RDUrvqw7P0JtqgeSr4BG3M3u3P3w8rTHnsSmeHd7yNXo57_64Y8PfcZYWPHD9A970jgWcOAA_RDVNvojt7QU2b6N5KqslHaHeABb4ECzzCAltY4AAL3NQ4wAIDLLbQl4P94723xFfPIBo4a0dik1PJssikwLllojivSvgzGVXc0EhWSuRxxTOmIiFLJYGncCa0lDI2DDhhljxGk7qpzROEVUYjU7FMZ0IwI3OR0lJyVmkpkkjFbBvxIJdC-9TytsLJWRH2EJ4WKyItrEgLJ9JtRIeurcuvcp1Ob4LwC08UHQEsADl_7v7037rvoLvjL_AMTbrlN_Mc3dLfu8X58oXH2U_kCZTP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+photoelectric+perfomance+with+hydrogen+on+Al-doped+ZnO&rft.jtitle=Materials+chemistry+and+physics&rft.au=Li%2C+Lin&rft.au=Zhang%2C+Zhang&rft.au=Wang%2C+Jianpei&rft.au=Yang%2C+Ping&rft.date=2022-11-15&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=291&rft_id=info:doi/10.1016%2Fj.matchemphys.2022.126680&rft.externalDocID=S0254058422009865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon