Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms

•For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research Vol. 76; no. 4; pp. 2086 - 2103
Main Authors: Tabar, Mehmet Emin, Sisman, Yasemin
Format: Journal Article
Language:English
Published: Elsevier B.V 15.08.2025
Subjects:
ISSN:0273-1177
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best optimization method-deep learning model combination in the study was found to be GRU with Adam optimization. In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject.
AbstractList •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best optimization method-deep learning model combination in the study was found to be GRU with Adam optimization. In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject.
Author Tabar, Mehmet Emin
Sisman, Yasemin
Author_xml – sequence: 1
  givenname: Mehmet Emin
  orcidid: 0000-0002-3234-5340
  surname: Tabar
  fullname: Tabar, Mehmet Emin
  email: metabar@beu.edu.tr
  organization: Bitlis Eren University, Vocational School of Technical Sciences, Bitlis, Türkiye
– sequence: 2
  givenname: Yasemin
  orcidid: 0000-0002-6600-0623
  surname: Sisman
  fullname: Sisman, Yasemin
  organization: Ondokuz Mayis University, Engineering Faculty, Department of Geomatics Engineering, Samsun, Türkiye
BookMark eNp9kE1PAjEQhnvAREB_gLf-gV073S_QE0FFE6IH9NyM7SyW7G437YYE_fMW8OzpzUzmeTN5JmzUuY4YuwGRgoDydpdi8KkUskhFmQqYjdhYyCpLAKrqkk1C2AkBsqrEmP08EPW8IfSd7bbJJwYyvHWGmjhy7AzvPRmrB-s67mq-et1s-GBb4oG8pXDHF1y7tkePg91TJLA5BBuOt2iwPy1djNZ-46kEm63zdvhqwxW7qLEJdP2XU_bx9Pi-fE7Wb6uX5WKdaFnAkICRmgxBKQuEUsg8z8EIgzkWmSmzOqtmWKKpaz2f5fMSc4l1bgqBxggNBWRTBude7V0InmrVe9uiPygQ6mhM7VQ0po7GlChVNBaZ-zND8bG9Ja-CttTFR6wnPSjj7D_0L4dpem4
Cites_doi 10.1016/j.chemolab.2024.105272
10.1109/TPAMI.2008.137
10.1016/j.bspc.2024.107253
10.1007/s11356-019-05116-y
10.1016/j.ress.2024.110493
10.1016/j.asoc.2021.107216
10.1175/JTECH1717.1
10.1016/j.dsp.2013.06.014
10.1016/j.najef.2025.102375
10.1016/j.est.2022.104663
10.1111/mice.13164
10.1080/00423114.2022.2158879
10.1016/j.asr.2024.10.030
10.1016/j.asr.2024.12.016
10.1016/j.asr.2022.05.042
10.1016/j.asr.2022.10.067
10.1016/j.jsames.2023.104680
10.1016/j.yofte.2024.103875
10.1109/ICMLA.2018.00227
10.1007/s00500-019-04367-8
10.1101/2024.01.13.575497
10.1007/978-981-97-6199-9_5
10.1016/j.jvolgeores.2016.08.006
10.1016/j.irfa.2024.103879
10.1080/09540091.2021.1940101
10.3390/math10173206
10.1016/j.geog.2024.12.002
10.1007/s10291-025-01867-z
10.1016/j.jwpe.2025.107164
10.3389/feart.2022.884500
10.1364/OE.416672
10.1007/s00190-022-01662-5
10.1007/s10291-023-01544-z
10.1109/TPS.2023.3325457
10.1016/j.renene.2023.119741
10.1109/CAC.2018.8623271
10.3390/app12020719
10.3390/universe8110562
10.1038/s41598-023-41537-z
10.1162/neco.1997.9.8.1735
10.1109/JSTARS.2017.2743695
10.3390/app14104004
10.1016/j.measurement.2024.116348
10.1016/j.neucom.2025.129607
10.1016/j.ymssp.2022.108907
ContentType Journal Article
Copyright 2025 COSPAR
Copyright_xml – notice: 2025 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2025.06.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EndPage 2103
ExternalDocumentID 10_1016_j_asr_2025_06_018
S0273117725006131
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SHN
SSE
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c251t-1d2cede1625a16024441d0da4a53d63f378a6adffc98496a42af4d50add0c1513
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539015800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1177
IngestDate Sat Nov 29 07:45:56 EST 2025
Sat Aug 23 17:11:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Adaptive learning optimization
GNSS
Time series
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-1d2cede1625a16024441d0da4a53d63f378a6adffc98496a42af4d50add0c1513
ORCID 0000-0002-6600-0623
0000-0002-3234-5340
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_asr_2025_06_018
elsevier_sciencedirect_doi_10_1016_j_asr_2025_06_018
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, H., He, X., Lu, T., 2024. Deep Learning Based GNSS Time Series Prediction in Presence of Color Noise BT - Positioning and Navigation Using Machine Learning Methods. In: Yu, K. (Ed.), Springer Nature Singapore, Singapore. Pp. 99–126. doi: 10.1007/978-981-97-6199-9_5.
Prasad, Udeme, Misra, Bisallah (b0165) 2023; 3
Xue, Guo, Dong, Zhang, Lian, Yuan (b0250) 2025; 58
Foster, Bevis, Businger (b0055) 2005; 22
Huang, He, Hu, Ming (b0085) 2025; 75
Jia, Jia, Zhang (b0100) 2025; 102
Wu, Liu, Zou, Weng (b0235) 2022; 34
Liu, Wang, Fang, Yu, Du (b0125) 2025; 243
Ratnam, Dabbakuti, Sunda (b0170) 2017; 10
Huang, Wang, Du, Zhang, Bai, Wang (b0080) 2022; 10
Chen, Niu, Li, Li (b0025) 2023; 61
Zhang, Ren, Li, Du, Xu, Li (b0270) 2025; 257
Mndawe, Paul, Doorsamy (b0150) 2022; 12
Vankadara, Mosses, Siddiqui, Ansari, Panda (b0220) 2023; 51
You, Chen, Xie, Ren (b0260) 2025; 76
Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (b0190) 2024; 39
Gao, Li, Chen, Jiang, Feng (b0060) 2022; 96
Wang, Wang, Liu, Wang, Wang (b0230) 2023; 13
Cai, Yuan, Wu (b0015) 2025; 98
Yan, Liang, Lu, Wu, Zhang (b0255) 2021; 105
Donoso, Yáñez, Ortega-Culaciati, Moreno (b0040) 2023; 132
Zhang, N., Lei, D., Zhao, J.F., 2018. An Improved Adagrad Gradient Descent Optimization Algorithm. In: Proceedings 2018 Chinese Automation Congress, CAC 2018. IEEE. Pp. 2359–2362. doi: 10.1109/CAC.2018.8623271.
Sánchez-Alzola, Martí, García-Yeguas, Gil (b0185) 2016; 327
Loshchilov, Hutter (b0140) 2019; 2019
Wang, Zhang, Li, Guo, Zhang, Tan (b0225) 2025; 71
Jason Brownlee, 2018. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python - Jason Brownlee - Google Books. Machine Learning Mastery.
Kiani Shahvandi, Soja (b0115) 2022; 70
Li, Jiang, Xu, Lin, Guo, Wu (b0120) 2019; 26
Xie, Wang, Li, Dong, Kang, Zhu, Wang, Yang (b0245) 2024; 14
Gülal, Erdoğan, Tiryakioğlu (b0070) 2013; 23
Tao, Tao, He, Bai, Liu (b0205) 2024; 221
Zhou, He, Montillet, Wang, Hu, Sun, Huang, Ma (b0280) 2025; 29
Katlav, Tabar, Turk (b0110) 2025; 42
Ergen, Katlav (b0050) 2024; 83
Tabar, Katlav, Turk (b0200) 2025; 44
Yu, X. mei, Feng, W. zhi, Wang, H., Chu, Q., Chen, Q., 2020. An attention mechanism and multi-granularity-based Bi-LSTM model for Chinese Q&A system. Soft. Comput. 24, 5831–5845. doi: 10.1007/s00500-019-04367-8.
Nguyen, Dang Le, Pham, Le Hoang Tran (b0160) 2023; 15
Chen, Rao, Feng, Zuo (b0030) 2022; 171
Liu, Wang, Wang, Xu, Li, Xin (b0130) 2021; 29
Nath, Chetia, Kalita (b0155) 2023; 71
AbuKaraki, Alrawashdeh, Abusaleh, Alksasbeh, Alqudah, Alemerien, Alshamaseen (b0005) 2024; 80
Cho, Park, Kim (b0035) 2022; 50
Mao, Tian, Jin, Di (b0145) 2025; 625
Aslam, S., Rasool, A., Wu, H., Li, X., 2024. CEL : A Continual Learning Model for Disease Outbreak Prediction by Leveraging Domain Adaptation via Elastic Weight Consolidation. arXiv Prepr. arXiv2401.08940. doi: 10.48550/arXiv.2401.08940.
Graves, Liwicki, Fernández, Bertolami, Bunke, Schmidhuber (b0065) 2009; 31
Hochreiter, Schmidhuber (b0075) 1997; 9
Teso-Fz-Betoño, Zulueta, Cabezas-Olivenza, Teso-Fz-Betoño, Fernandez-Gamiz (b0215) 2022; 10
Ravi, Deepak, Pritesh (b0175) 2022; 8
Ji, Huang, Zeng, Ren, Chen (b0095) 2025; 253
Jiang, Wang, Li, Li, Yuan (b0105) 2023; 28
Ten, Sorokin, Shestakov, Ohzono, Titkov (b0210) 2025; 75
Wu, S., Ouyang, H., Li, Houpu, Li, Z., Li, Haiyang, He, Y., 2025. GNSS time series analysis of the crustal movement network of China: Detecting the optimal order of the polynomial term and its effect on the deterministic model. Geod. Geodyn. doi: 10.1016/j.geog.2024.12.002.
Siami-Namini, S., Tavakoli, N., Siami Namin, A., 2018. A Comparison of ARIMA and LSTM in Forecasting Time Series. In: Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. IEEE. Pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227.
Ergen, Katlav (b0045) 2024; 40
Liu, Yin, Zhang (b0135) 2024; 87
Reddybattula, Nelapudi, Moses, Devanaboyina, Ali, Jamjareegulgarn, Panda (b0180) 2022
Teso-Fz-Betoño (10.1016/j.asr.2025.06.018_b0215) 2022; 10
Tabar (10.1016/j.asr.2025.06.018_b0200) 2025; 44
Yan (10.1016/j.asr.2025.06.018_b0255) 2021; 105
Loshchilov (10.1016/j.asr.2025.06.018_b0140) 2019; 2019
Nguyen (10.1016/j.asr.2025.06.018_b0160) 2023; 15
Huang (10.1016/j.asr.2025.06.018_b0085) 2025; 75
Ratnam (10.1016/j.asr.2025.06.018_b0170) 2017; 10
Li (10.1016/j.asr.2025.06.018_b0120) 2019; 26
AbuKaraki (10.1016/j.asr.2025.06.018_b0005) 2024; 80
Ergen (10.1016/j.asr.2025.06.018_b0045) 2024; 40
Prasad (10.1016/j.asr.2025.06.018_b0165) 2023; 3
10.1016/j.asr.2025.06.018_b0240
Liu (10.1016/j.asr.2025.06.018_b0130) 2021; 29
Mao (10.1016/j.asr.2025.06.018_b0145) 2025; 625
Sánchez-Alzola (10.1016/j.asr.2025.06.018_b0185) 2016; 327
Wang (10.1016/j.asr.2025.06.018_b0225) 2025; 71
Wang (10.1016/j.asr.2025.06.018_b0230) 2023; 13
You (10.1016/j.asr.2025.06.018_b0260) 2025; 76
Zhou (10.1016/j.asr.2025.06.018_b0280) 2025; 29
10.1016/j.asr.2025.06.018_b0010
Xue (10.1016/j.asr.2025.06.018_b0250) 2025; 58
Foster (10.1016/j.asr.2025.06.018_b0055) 2005; 22
10.1016/j.asr.2025.06.018_b0090
Liu (10.1016/j.asr.2025.06.018_b0135) 2024; 87
Katlav (10.1016/j.asr.2025.06.018_b0110) 2025; 42
Donoso (10.1016/j.asr.2025.06.018_b0040) 2023; 132
Reddybattula (10.1016/j.asr.2025.06.018_b0180) 2022
Chen (10.1016/j.asr.2025.06.018_b0025) 2023; 61
Vankadara (10.1016/j.asr.2025.06.018_b0220) 2023; 51
Graves (10.1016/j.asr.2025.06.018_b0065) 2009; 31
Nath (10.1016/j.asr.2025.06.018_b0155) 2023; 71
Shafighfard (10.1016/j.asr.2025.06.018_b0190) 2024; 39
10.1016/j.asr.2025.06.018_b0265
Kiani Shahvandi (10.1016/j.asr.2025.06.018_b0115) 2022; 70
Cai (10.1016/j.asr.2025.06.018_b0015) 2025; 98
Tao (10.1016/j.asr.2025.06.018_b0205) 2024; 221
Xie (10.1016/j.asr.2025.06.018_b0245) 2024; 14
10.1016/j.asr.2025.06.018_b0020
Jia (10.1016/j.asr.2025.06.018_b0100) 2025; 102
Mndawe (10.1016/j.asr.2025.06.018_b0150) 2022; 12
Hochreiter (10.1016/j.asr.2025.06.018_b0075) 1997; 9
Ravi (10.1016/j.asr.2025.06.018_b0175) 2022; 8
Cho (10.1016/j.asr.2025.06.018_b0035) 2022; 50
Liu (10.1016/j.asr.2025.06.018_b0125) 2025; 243
Ji (10.1016/j.asr.2025.06.018_b0095) 2025; 253
10.1016/j.asr.2025.06.018_b0275
Gülal (10.1016/j.asr.2025.06.018_b0070) 2013; 23
Ergen (10.1016/j.asr.2025.06.018_b0050) 2024; 83
Zhang (10.1016/j.asr.2025.06.018_b0270) 2025; 257
10.1016/j.asr.2025.06.018_b0195
Gao (10.1016/j.asr.2025.06.018_b0060) 2022; 96
Ten (10.1016/j.asr.2025.06.018_b0210) 2025; 75
Chen (10.1016/j.asr.2025.06.018_b0030) 2022; 171
Jiang (10.1016/j.asr.2025.06.018_b0105) 2023; 28
Wu (10.1016/j.asr.2025.06.018_b0235) 2022; 34
Huang (10.1016/j.asr.2025.06.018_b0080) 2022; 10
References_xml – volume: 28
  start-page: 3
  year: 2023
  ident: b0105
  article-title: A new deep self-attention neural network for GNSS coordinate time series prediction
  publication-title: GPS Solut.
– volume: 51
  start-page: 3373
  year: 2023
  end-page: 3383
  ident: b0220
  article-title: Ionospheric total electron content forecasting at a low-latitude indian location using a bi-long short-term memory deep learning approach
  publication-title: IEEE Trans. Plasma Sci.
– volume: 87
  year: 2024
  ident: b0135
  article-title: Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model
  publication-title: Opt. Fiber Technol.
– volume: 42
  year: 2025
  ident: b0110
  article-title: AI-guided design framework for bond behavior of steel-concrete in steel reinforced concrete composites: from dataset cleaning to feature engineering
  publication-title: Mater. Today Commun.
– volume: 76
  year: 2025
  ident: b0260
  article-title: Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach
  publication-title: North Am. J. Econ. Financ.
– reference: Jason Brownlee, 2018. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python - Jason Brownlee - Google Books. Machine Learning Mastery.
– volume: 40
  year: 2024
  ident: b0045
  article-title: Estimation of the shear strength of UHPC beams via interpretable deep learning models: Comparison of different optimization techniques
  publication-title: Mater. Today Commun.
– volume: 13
  start-page: 14876
  year: 2023
  ident: b0230
  article-title: Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
  publication-title: Sci. Rep.
– volume: 3
  year: 2023
  ident: b0165
  article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 50
  year: 2022
  ident: b0035
  article-title: A fire risk assessment method for high-capacity battery packs using interquartile range filter
  publication-title: J. Energy Storage
– volume: 10
  year: 2022
  ident: b0080
  article-title: Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm
  publication-title: Front. Earth Sci.
– volume: 257
  year: 2025
  ident: b0270
  article-title: A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 10
  year: 2022
  ident: b0215
  article-title: A Study of Learning Issues in Feedforward Neural Networks
  publication-title: Mathematics
– volume: 14
  start-page: 4004
  year: 2024
  ident: b0245
  article-title: Deep learning CNN-GRU method for GNSS deformation monitoring prediction
  publication-title: Appl. Sci.
– volume: 22
  start-page: 687
  year: 2005
  end-page: 695
  ident: b0055
  article-title: GPS meteorology: Sliding-window analysis
  publication-title: J. Atmos. Ocean. Technol.
– reference: Yu, X. mei, Feng, W. zhi, Wang, H., Chu, Q., Chen, Q., 2020. An attention mechanism and multi-granularity-based Bi-LSTM model for Chinese Q&A system. Soft. Comput. 24, 5831–5845. doi: 10.1007/s00500-019-04367-8.
– volume: 44
  year: 2025
  ident: b0200
  article-title: Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite
  publication-title: Mater. Today Commun.
– reference: Aslam, S., Rasool, A., Wu, H., Li, X., 2024. CEL : A Continual Learning Model for Disease Outbreak Prediction by Leveraging Domain Adaptation via Elastic Weight Consolidation. arXiv Prepr. arXiv2401.08940. doi: 10.48550/arXiv.2401.08940.
– volume: 26
  start-page: 19879
  year: 2019
  end-page: 19896
  ident: b0120
  article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River
  publication-title: China. Environ. Sci. Pollut. Res.
– volume: 29
  start-page: 113
  year: 2025
  ident: b0280
  article-title: An improved ICEEMDAN-MPA-GRU model for GNSS height time series prediction with weighted quality evaluation index
  publication-title: GPS Solut.
– volume: 98
  year: 2025
  ident: b0015
  article-title: An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting
  publication-title: Int. Rev. Financ. Anal.
– volume: 171
  year: 2022
  ident: b0030
  article-title: Physics-Informed LSTM hyperparameters selection for gearbox fault detection
  publication-title: Mech. Syst. Signal Process.
– volume: 12
  start-page: 719
  year: 2022
  ident: b0150
  article-title: Development of a stock price prediction framework for intelligent media and technical analysis
  publication-title: Appl. Sci.
– volume: 71
  start-page: 2307
  year: 2023
  end-page: 2317
  ident: b0155
  article-title: Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India
  publication-title: Adv. Sp. Res.
– volume: 80
  start-page: 1055
  year: 2024
  end-page: 1073
  ident: b0005
  article-title: Pulmonary edema and pleural effusion detection using EfficientNet-V1-B4 architecture and AdamW optimizer from chest X-rays images
  publication-title: Comput. Mater. Contin.
– volume: 10
  start-page: 5784
  year: 2017
  end-page: 5790
  ident: b0170
  article-title: Modeling of ionospheric time delays based on a multishell spherical harmonics function approach
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 34
  start-page: 44
  year: 2022
  end-page: 62
  ident: b0235
  article-title: S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis
  publication-title: Conn. Sci.
– volume: 58
  year: 2025
  ident: b0250
  article-title: Prediction of runoff in the upper reaches of the Hei River based on the LSTM model guided by physical mechanisms
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 96
  start-page: 71
  year: 2022
  ident: b0060
  article-title: Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
  publication-title: J. Geod.
– year: 2022
  ident: b0180
  article-title: Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network
  publication-title: Universe
– volume: 31
  start-page: 855
  year: 2009
  end-page: 868
  ident: b0065
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 2677
  year: 2023
  end-page: 2685
  ident: b0160
  article-title: Deep bidirectional LSTM for disease classification supporting hospital admission based on pre-diagnosis: a case study in Vietnam
  publication-title: Int. J. Inf. Technol.
– volume: 105
  year: 2021
  ident: b0255
  article-title: HANSEL: Adaptive horizontal scaling of microservices using Bi-LSTM
  publication-title: Appl. Soft Comput.
– volume: 61
  start-page: 3136
  year: 2023
  end-page: 3160
  ident: b0025
  article-title: A modified bidirectional long short-term memory neural network for rail vehicle suspension fault detection
  publication-title: Veh. Syst. Dyn.
– volume: 132
  year: 2023
  ident: b0040
  article-title: A machine learning approach for slow slip event detection using GNSS time-series
  publication-title: J. South Am. Earth Sci.
– volume: 75
  start-page: 3397
  year: 2025
  end-page: 3413
  ident: b0085
  article-title: Impact of offsets on GNSS time series stochastic noise properties and velocity estimation
  publication-title: Adv. Sp. Res.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0075
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Zhang, N., Lei, D., Zhao, J.F., 2018. An Improved Adagrad Gradient Descent Optimization Algorithm. In: Proceedings 2018 Chinese Automation Congress, CAC 2018. IEEE. Pp. 2359–2362. doi: 10.1109/CAC.2018.8623271.
– volume: 39
  start-page: 3573
  year: 2024
  end-page: 3594
  ident: b0190
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput. Civ. Infrastruct. Eng.
– reference: Siami-Namini, S., Tavakoli, N., Siami Namin, A., 2018. A Comparison of ARIMA and LSTM in Forecasting Time Series. In: Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. IEEE. Pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227.
– reference: Chen, H., He, X., Lu, T., 2024. Deep Learning Based GNSS Time Series Prediction in Presence of Color Noise BT - Positioning and Navigation Using Machine Learning Methods. In: Yu, K. (Ed.), Springer Nature Singapore, Singapore. Pp. 99–126. doi: 10.1007/978-981-97-6199-9_5.
– volume: 2019
  year: 2019
  ident: b0140
  article-title: Decoupled weight decay regularization
  publication-title: ICLR
– volume: 221
  year: 2024
  ident: b0205
  article-title: Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism
  publication-title: Renew. Energy
– volume: 8
  year: 2022
  ident: b0175
  article-title: Intelligent classification of tungsten inert gas welding defects: a transfer learning approach
  publication-title: Front. Mech. Eng.
– volume: 71
  year: 2025
  ident: b0225
  article-title: Spatio-temporal analysis and prediction for raw water quality of drinking water source by improved RNN algorithm
  publication-title: J. Water Process Eng.
– volume: 29
  start-page: 5923
  year: 2021
  end-page: 5933
  ident: b0130
  article-title: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system
  publication-title: Opt. Express
– reference: Wu, S., Ouyang, H., Li, Houpu, Li, Z., Li, Haiyang, He, Y., 2025. GNSS time series analysis of the crustal movement network of China: Detecting the optimal order of the polynomial term and its effect on the deterministic model. Geod. Geodyn. doi: 10.1016/j.geog.2024.12.002.
– volume: 102
  year: 2025
  ident: b0100
  article-title: A residual GRU method with deep cross fusion for Alzheimer’s disease progression prediction using missing variable-length time series data
  publication-title: Biomed. Signal Process. Control
– volume: 243
  year: 2025
  ident: b0125
  article-title: Identification of the number of leaks in water supply pipes based on wavelet scattering network and Bi-LSTM model with Bayesian optimization
  publication-title: Measurement
– volume: 327
  start-page: 240
  year: 2016
  end-page: 248
  ident: b0185
  article-title: Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008–2015)
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 23
  start-page: 1945
  year: 2013
  end-page: 1957
  ident: b0070
  article-title: Research on the stability analysis of GNSS reference stations network by time series analysis
  publication-title: Digit. Signal Process.
– volume: 83
  year: 2024
  ident: b0050
  article-title: Investigation of optimized machine learning models with PSO for forecasting the shear capacity of steel fiber-reinforced SCC beams with/out stirrups
  publication-title: J. Build. Eng.
– volume: 70
  start-page: 563
  year: 2022
  end-page: 575
  ident: b0115
  article-title: Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series
  publication-title: Adv. Sp. Res.
– volume: 625
  year: 2025
  ident: b0145
  article-title: Enhancing music audio signal recognition through CNN-BiLSTM fusion with De-noising autoencoder for improved performance
  publication-title: Neurocomputing
– volume: 75
  start-page: 1052
  year: 2025
  end-page: 1065
  ident: b0210
  article-title: Detecting covolcanic ionospheric disturbances using GNSS data and a machine learning algorithm
  publication-title: Adv. Sp. Res.
– volume: 253
  year: 2025
  ident: b0095
  article-title: A physical-data-driven combined strategy for load identification of tire type rail transit vehicle
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 257
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0270
  article-title: A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2024.105272
– volume: 31
  start-page: 855
  year: 2009
  ident: 10.1016/j.asr.2025.06.018_b0065
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.137
– volume: 102
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0100
  article-title: A residual GRU method with deep cross fusion for Alzheimer’s disease progression prediction using missing variable-length time series data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.107253
– ident: 10.1016/j.asr.2025.06.018_b0090
– volume: 26
  start-page: 19879
  year: 2019
  ident: 10.1016/j.asr.2025.06.018_b0120
  article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River
  publication-title: China. Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05116-y
– volume: 253
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0095
  article-title: A physical-data-driven combined strategy for load identification of tire type rail transit vehicle
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110493
– volume: 8
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0175
  article-title: Intelligent classification of tungsten inert gas welding defects: a transfer learning approach
  publication-title: Front. Mech. Eng.
– volume: 105
  year: 2021
  ident: 10.1016/j.asr.2025.06.018_b0255
  article-title: HANSEL: Adaptive horizontal scaling of microservices using Bi-LSTM
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107216
– volume: 22
  start-page: 687
  year: 2005
  ident: 10.1016/j.asr.2025.06.018_b0055
  article-title: GPS meteorology: Sliding-window analysis
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1717.1
– volume: 23
  start-page: 1945
  year: 2013
  ident: 10.1016/j.asr.2025.06.018_b0070
  article-title: Research on the stability analysis of GNSS reference stations network by time series analysis
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.06.014
– volume: 76
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0260
  article-title: Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach
  publication-title: North Am. J. Econ. Financ.
  doi: 10.1016/j.najef.2025.102375
– volume: 50
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0035
  article-title: A fire risk assessment method for high-capacity battery packs using interquartile range filter
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104663
– volume: 39
  start-page: 3573
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0190
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13164
– volume: 80
  start-page: 1055
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0005
  article-title: Pulmonary edema and pleural effusion detection using EfficientNet-V1-B4 architecture and AdamW optimizer from chest X-rays images
  publication-title: Comput. Mater. Contin.
– volume: 61
  start-page: 3136
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0025
  article-title: A modified bidirectional long short-term memory neural network for rail vehicle suspension fault detection
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2022.2158879
– volume: 75
  start-page: 1052
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0210
  article-title: Detecting covolcanic ionospheric disturbances using GNSS data and a machine learning algorithm
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2024.10.030
– volume: 58
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0250
  article-title: Prediction of runoff in the upper reaches of the Hei River based on the LSTM model guided by physical mechanisms
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 75
  start-page: 3397
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0085
  article-title: Impact of offsets on GNSS time series stochastic noise properties and velocity estimation
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2024.12.016
– volume: 44
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0200
  article-title: Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite
  publication-title: Mater. Today Commun.
– volume: 70
  start-page: 563
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0115
  article-title: Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2022.05.042
– volume: 71
  start-page: 2307
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0155
  article-title: Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2022.10.067
– volume: 132
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0040
  article-title: A machine learning approach for slow slip event detection using GNSS time-series
  publication-title: J. South Am. Earth Sci.
  doi: 10.1016/j.jsames.2023.104680
– volume: 2019
  year: 2019
  ident: 10.1016/j.asr.2025.06.018_b0140
  article-title: Decoupled weight decay regularization
  publication-title: ICLR
– volume: 83
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0050
  article-title: Investigation of optimized machine learning models with PSO for forecasting the shear capacity of steel fiber-reinforced SCC beams with/out stirrups
  publication-title: J. Build. Eng.
– volume: 87
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0135
  article-title: Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.103875
– ident: 10.1016/j.asr.2025.06.018_b0195
  doi: 10.1109/ICMLA.2018.00227
– ident: 10.1016/j.asr.2025.06.018_b0265
  doi: 10.1007/s00500-019-04367-8
– ident: 10.1016/j.asr.2025.06.018_b0010
  doi: 10.1101/2024.01.13.575497
– ident: 10.1016/j.asr.2025.06.018_b0020
  doi: 10.1007/978-981-97-6199-9_5
– volume: 327
  start-page: 240
  year: 2016
  ident: 10.1016/j.asr.2025.06.018_b0185
  article-title: Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008–2015)
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2016.08.006
– volume: 98
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0015
  article-title: An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2024.103879
– volume: 34
  start-page: 44
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0235
  article-title: S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis
  publication-title: Conn. Sci.
  doi: 10.1080/09540091.2021.1940101
– volume: 3
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0165
  article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 40
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0045
  article-title: Estimation of the shear strength of UHPC beams via interpretable deep learning models: Comparison of different optimization techniques
  publication-title: Mater. Today Commun.
– volume: 10
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0215
  article-title: A Study of Learning Issues in Feedforward Neural Networks
  publication-title: Mathematics
  doi: 10.3390/math10173206
– ident: 10.1016/j.asr.2025.06.018_b0240
  doi: 10.1016/j.geog.2024.12.002
– volume: 15
  start-page: 2677
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0160
  article-title: Deep bidirectional LSTM for disease classification supporting hospital admission based on pre-diagnosis: a case study in Vietnam
  publication-title: Int. J. Inf. Technol.
– volume: 29
  start-page: 113
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0280
  article-title: An improved ICEEMDAN-MPA-GRU model for GNSS height time series prediction with weighted quality evaluation index
  publication-title: GPS Solut.
  doi: 10.1007/s10291-025-01867-z
– volume: 71
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0225
  article-title: Spatio-temporal analysis and prediction for raw water quality of drinking water source by improved RNN algorithm
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2025.107164
– volume: 10
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0080
  article-title: Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2022.884500
– volume: 29
  start-page: 5923
  year: 2021
  ident: 10.1016/j.asr.2025.06.018_b0130
  article-title: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system
  publication-title: Opt. Express
  doi: 10.1364/OE.416672
– volume: 96
  start-page: 71
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0060
  article-title: Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
  publication-title: J. Geod.
  doi: 10.1007/s00190-022-01662-5
– volume: 28
  start-page: 3
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0105
  article-title: A new deep self-attention neural network for GNSS coordinate time series prediction
  publication-title: GPS Solut.
  doi: 10.1007/s10291-023-01544-z
– volume: 51
  start-page: 3373
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0220
  article-title: Ionospheric total electron content forecasting at a low-latitude indian location using a bi-long short-term memory deep learning approach
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2023.3325457
– volume: 221
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0205
  article-title: Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119741
– ident: 10.1016/j.asr.2025.06.018_b0275
  doi: 10.1109/CAC.2018.8623271
– volume: 12
  start-page: 719
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0150
  article-title: Development of a stock price prediction framework for intelligent media and technical analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app12020719
– year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0180
  article-title: Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network
  publication-title: Universe
  doi: 10.3390/universe8110562
– volume: 13
  start-page: 14876
  year: 2023
  ident: 10.1016/j.asr.2025.06.018_b0230
  article-title: Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-41537-z
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.asr.2025.06.018_b0075
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 10
  start-page: 5784
  year: 2017
  ident: 10.1016/j.asr.2025.06.018_b0170
  article-title: Modeling of ionospheric time delays based on a multishell spherical harmonics function approach
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2743695
– volume: 14
  start-page: 4004
  year: 2024
  ident: 10.1016/j.asr.2025.06.018_b0245
  article-title: Deep learning CNN-GRU method for GNSS deformation monitoring prediction
  publication-title: Appl. Sci.
  doi: 10.3390/app14104004
– volume: 243
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0125
  article-title: Identification of the number of leaks in water supply pipes based on wavelet scattering network and Bi-LSTM model with Bayesian optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.116348
– volume: 625
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0145
  article-title: Enhancing music audio signal recognition through CNN-BiLSTM fusion with De-noising autoencoder for improved performance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2025.129607
– volume: 42
  year: 2025
  ident: 10.1016/j.asr.2025.06.018_b0110
  article-title: AI-guided design framework for bond behavior of steel-concrete in steel reinforced concrete composites: from dataset cleaning to feature engineering
  publication-title: Mater. Today Commun.
– volume: 171
  year: 2022
  ident: 10.1016/j.asr.2025.06.018_b0030
  article-title: Physics-Informed LSTM hyperparameters selection for gearbox fault detection
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108907
SSID ssj0012770
Score 2.42908
Snippet •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 2086
SubjectTerms Adaptive learning optimization
Deep learning
GNSS
Time series
Title Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms
URI https://dx.doi.org/10.1016/j.asr.2025.06.018
Volume 76
WOSCitedRecordID wos001539015800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0273-1177
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012770
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhI8ICigjS_5AfFAFZQ4TuLwFkH5kqgmdUjlKXJsZ-u0JlETpiH-A_5qzrHdZoNJ7IGXJLq2bpL75Xw53_0OoRexLDlMq5qnklCPpoXwOKexV6ogjsIyDBUVfbOJZDZji0V6MBr9crUwZ6dJVbHz87T5r6oGGShbl85eQ92bQUEAx6B02ILaYftPin-nVOOaQRx5epaSpt-NK0ds1npxxnmKH2bzed9hfqLPzmTIZTY13ZCC8wFvCZe86YU17Fa2hnPCT4_q9bI7tsznjtTWpBf0Cbdgt4Ru0DKInfXhgsLkd39RxyvVTaar5Qar82Vrg7Pf4BLcBzY-QSIdcDUVmtaMgYPk6aXhoc01PV8stujQgPqOGdva054B4U9Db2IOJ695q0ldSdSTsFpLfoFU-9Jkt0lBdNltJzkMkeshcp3hF7AbaJckUQoWcjf7NF183qxJkSQxETt7PW6NvM8WvHQef_dyBp7L4T10175y4MxA5T4aqWqM9rJWL4LUqx_4Je6PTYyrHaM7A47KMbp1YOQP0E-NLHwRWdghCwOy8BZZuC6xRhbWyMIGWW9whge4wg5X-rsOV3iIK7zF1UP09f308O1Hz_bu8AR4zJ0XSCKUhAeeRDyIwREEt1v6klMehTIGI5AwHnNZliJlNI05JbykMvJhuvUFeKHhI7RT1ZXaQ5jFTAomipAIRmkRcO4zTvxYKpAVpdhHr9y9zhtD0ZJfqd19RJ02cutjGt8xB2Rd_bPH1_mPJ-j29kF4ina69Xf1DN0UZ92yXT-3sPoNPmOhzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+modeling+and+prediction+of+GNSS+time+series%3A+A+comparative+analysis+of+adaptive+optimization+algorithms&rft.jtitle=Advances+in+space+research&rft.au=Tabar%2C+Mehmet+Emin&rft.au=Sisman%2C+Yasemin&rft.date=2025-08-15&rft.issn=0273-1177&rft.volume=76&rft.issue=4&rft.spage=2086&rft.epage=2103&rft_id=info:doi/10.1016%2Fj.asr.2025.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2025_06_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon