Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms
•For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best...
Gespeichert in:
| Veröffentlicht in: | Advances in space research Jg. 76; H. 4; S. 2086 - 2103 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.08.2025
|
| Schlagworte: | |
| ISSN: | 0273-1177 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best optimization method-deep learning model combination in the study was found to be GRU with Adam optimization.
In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject. |
|---|---|
| AbstractList | •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed for the prediction of GNSS time series data.•10 different deep learning methods and 4 different optimization algorithms were studied.•The best optimization method-deep learning model combination in the study was found to be GRU with Adam optimization.
In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject. |
| Author | Tabar, Mehmet Emin Sisman, Yasemin |
| Author_xml | – sequence: 1 givenname: Mehmet Emin orcidid: 0000-0002-3234-5340 surname: Tabar fullname: Tabar, Mehmet Emin email: metabar@beu.edu.tr organization: Bitlis Eren University, Vocational School of Technical Sciences, Bitlis, Türkiye – sequence: 2 givenname: Yasemin orcidid: 0000-0002-6600-0623 surname: Sisman fullname: Sisman, Yasemin organization: Ondokuz Mayis University, Engineering Faculty, Department of Geomatics Engineering, Samsun, Türkiye |
| BookMark | eNp9kE1PAjEQhnvAREB_gLf-gV073S_QE0FFE6IH9NyM7SyW7G437YYE_fMW8OzpzUzmeTN5JmzUuY4YuwGRgoDydpdi8KkUskhFmQqYjdhYyCpLAKrqkk1C2AkBsqrEmP08EPW8IfSd7bbJJwYyvHWGmjhy7AzvPRmrB-s67mq-et1s-GBb4oG8pXDHF1y7tkePg91TJLA5BBuOt2iwPy1djNZ-46kEm63zdvhqwxW7qLEJdP2XU_bx9Pi-fE7Wb6uX5WKdaFnAkICRmgxBKQuEUsg8z8EIgzkWmSmzOqtmWKKpaz2f5fMSc4l1bgqBxggNBWRTBude7V0InmrVe9uiPygQ6mhM7VQ0po7GlChVNBaZ-zND8bG9Ja-CttTFR6wnPSjj7D_0L4dpem4 |
| Cites_doi | 10.1016/j.chemolab.2024.105272 10.1109/TPAMI.2008.137 10.1016/j.bspc.2024.107253 10.1007/s11356-019-05116-y 10.1016/j.ress.2024.110493 10.1016/j.asoc.2021.107216 10.1175/JTECH1717.1 10.1016/j.dsp.2013.06.014 10.1016/j.najef.2025.102375 10.1016/j.est.2022.104663 10.1111/mice.13164 10.1080/00423114.2022.2158879 10.1016/j.asr.2024.10.030 10.1016/j.asr.2024.12.016 10.1016/j.asr.2022.05.042 10.1016/j.asr.2022.10.067 10.1016/j.jsames.2023.104680 10.1016/j.yofte.2024.103875 10.1109/ICMLA.2018.00227 10.1007/s00500-019-04367-8 10.1101/2024.01.13.575497 10.1007/978-981-97-6199-9_5 10.1016/j.jvolgeores.2016.08.006 10.1016/j.irfa.2024.103879 10.1080/09540091.2021.1940101 10.3390/math10173206 10.1016/j.geog.2024.12.002 10.1007/s10291-025-01867-z 10.1016/j.jwpe.2025.107164 10.3389/feart.2022.884500 10.1364/OE.416672 10.1007/s00190-022-01662-5 10.1007/s10291-023-01544-z 10.1109/TPS.2023.3325457 10.1016/j.renene.2023.119741 10.1109/CAC.2018.8623271 10.3390/app12020719 10.3390/universe8110562 10.1038/s41598-023-41537-z 10.1162/neco.1997.9.8.1735 10.1109/JSTARS.2017.2743695 10.3390/app14104004 10.1016/j.measurement.2024.116348 10.1016/j.neucom.2025.129607 10.1016/j.ymssp.2022.108907 |
| ContentType | Journal Article |
| Copyright | 2025 COSPAR |
| Copyright_xml | – notice: 2025 COSPAR |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asr.2025.06.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Astronomy & Astrophysics Physics |
| EndPage | 2103 |
| ExternalDocumentID | 10_1016_j_asr_2025_06_018 S0273117725006131 |
| GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ABQEM ABQYD ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SEW SPC SPCBC SSQ SSZ T5K ZMT ~02 ~G- 1B1 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AGHFR AGQPQ AI. ASPBG AVWKF AZFZN CITATION EFLBG EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RPZ SHN SSE T9H UHS VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c251t-1d2cede1625a16024441d0da4a53d63f378a6adffc98496a42af4d50add0c1513 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539015800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0273-1177 |
| IngestDate | Sat Nov 29 07:45:56 EST 2025 Sat Aug 23 17:11:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Adaptive learning optimization GNSS Time series |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-1d2cede1625a16024441d0da4a53d63f378a6adffc98496a42af4d50add0c1513 |
| ORCID | 0000-0002-6600-0623 0000-0002-3234-5340 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1016_j_asr_2025_06_018 elsevier_sciencedirect_doi_10_1016_j_asr_2025_06_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-15 |
| PublicationDateYYYYMMDD | 2025-08-15 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in space research |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, H., He, X., Lu, T., 2024. Deep Learning Based GNSS Time Series Prediction in Presence of Color Noise BT - Positioning and Navigation Using Machine Learning Methods. In: Yu, K. (Ed.), Springer Nature Singapore, Singapore. Pp. 99–126. doi: 10.1007/978-981-97-6199-9_5. Prasad, Udeme, Misra, Bisallah (b0165) 2023; 3 Xue, Guo, Dong, Zhang, Lian, Yuan (b0250) 2025; 58 Foster, Bevis, Businger (b0055) 2005; 22 Huang, He, Hu, Ming (b0085) 2025; 75 Jia, Jia, Zhang (b0100) 2025; 102 Wu, Liu, Zou, Weng (b0235) 2022; 34 Liu, Wang, Fang, Yu, Du (b0125) 2025; 243 Ratnam, Dabbakuti, Sunda (b0170) 2017; 10 Huang, Wang, Du, Zhang, Bai, Wang (b0080) 2022; 10 Chen, Niu, Li, Li (b0025) 2023; 61 Zhang, Ren, Li, Du, Xu, Li (b0270) 2025; 257 Mndawe, Paul, Doorsamy (b0150) 2022; 12 Vankadara, Mosses, Siddiqui, Ansari, Panda (b0220) 2023; 51 You, Chen, Xie, Ren (b0260) 2025; 76 Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (b0190) 2024; 39 Gao, Li, Chen, Jiang, Feng (b0060) 2022; 96 Wang, Wang, Liu, Wang, Wang (b0230) 2023; 13 Cai, Yuan, Wu (b0015) 2025; 98 Yan, Liang, Lu, Wu, Zhang (b0255) 2021; 105 Donoso, Yáñez, Ortega-Culaciati, Moreno (b0040) 2023; 132 Zhang, N., Lei, D., Zhao, J.F., 2018. An Improved Adagrad Gradient Descent Optimization Algorithm. In: Proceedings 2018 Chinese Automation Congress, CAC 2018. IEEE. Pp. 2359–2362. doi: 10.1109/CAC.2018.8623271. Sánchez-Alzola, Martí, García-Yeguas, Gil (b0185) 2016; 327 Loshchilov, Hutter (b0140) 2019; 2019 Wang, Zhang, Li, Guo, Zhang, Tan (b0225) 2025; 71 Jason Brownlee, 2018. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python - Jason Brownlee - Google Books. Machine Learning Mastery. Kiani Shahvandi, Soja (b0115) 2022; 70 Li, Jiang, Xu, Lin, Guo, Wu (b0120) 2019; 26 Xie, Wang, Li, Dong, Kang, Zhu, Wang, Yang (b0245) 2024; 14 Gülal, Erdoğan, Tiryakioğlu (b0070) 2013; 23 Tao, Tao, He, Bai, Liu (b0205) 2024; 221 Zhou, He, Montillet, Wang, Hu, Sun, Huang, Ma (b0280) 2025; 29 Katlav, Tabar, Turk (b0110) 2025; 42 Ergen, Katlav (b0050) 2024; 83 Tabar, Katlav, Turk (b0200) 2025; 44 Yu, X. mei, Feng, W. zhi, Wang, H., Chu, Q., Chen, Q., 2020. An attention mechanism and multi-granularity-based Bi-LSTM model for Chinese Q&A system. Soft. Comput. 24, 5831–5845. doi: 10.1007/s00500-019-04367-8. Nguyen, Dang Le, Pham, Le Hoang Tran (b0160) 2023; 15 Chen, Rao, Feng, Zuo (b0030) 2022; 171 Liu, Wang, Wang, Xu, Li, Xin (b0130) 2021; 29 Nath, Chetia, Kalita (b0155) 2023; 71 AbuKaraki, Alrawashdeh, Abusaleh, Alksasbeh, Alqudah, Alemerien, Alshamaseen (b0005) 2024; 80 Cho, Park, Kim (b0035) 2022; 50 Mao, Tian, Jin, Di (b0145) 2025; 625 Aslam, S., Rasool, A., Wu, H., Li, X., 2024. CEL : A Continual Learning Model for Disease Outbreak Prediction by Leveraging Domain Adaptation via Elastic Weight Consolidation. arXiv Prepr. arXiv2401.08940. doi: 10.48550/arXiv.2401.08940. Graves, Liwicki, Fernández, Bertolami, Bunke, Schmidhuber (b0065) 2009; 31 Hochreiter, Schmidhuber (b0075) 1997; 9 Teso-Fz-Betoño, Zulueta, Cabezas-Olivenza, Teso-Fz-Betoño, Fernandez-Gamiz (b0215) 2022; 10 Ravi, Deepak, Pritesh (b0175) 2022; 8 Ji, Huang, Zeng, Ren, Chen (b0095) 2025; 253 Jiang, Wang, Li, Li, Yuan (b0105) 2023; 28 Ten, Sorokin, Shestakov, Ohzono, Titkov (b0210) 2025; 75 Wu, S., Ouyang, H., Li, Houpu, Li, Z., Li, Haiyang, He, Y., 2025. GNSS time series analysis of the crustal movement network of China: Detecting the optimal order of the polynomial term and its effect on the deterministic model. Geod. Geodyn. doi: 10.1016/j.geog.2024.12.002. Siami-Namini, S., Tavakoli, N., Siami Namin, A., 2018. A Comparison of ARIMA and LSTM in Forecasting Time Series. In: Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. IEEE. Pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227. Ergen, Katlav (b0045) 2024; 40 Liu, Yin, Zhang (b0135) 2024; 87 Reddybattula, Nelapudi, Moses, Devanaboyina, Ali, Jamjareegulgarn, Panda (b0180) 2022 Teso-Fz-Betoño (10.1016/j.asr.2025.06.018_b0215) 2022; 10 Tabar (10.1016/j.asr.2025.06.018_b0200) 2025; 44 Yan (10.1016/j.asr.2025.06.018_b0255) 2021; 105 Loshchilov (10.1016/j.asr.2025.06.018_b0140) 2019; 2019 Nguyen (10.1016/j.asr.2025.06.018_b0160) 2023; 15 Huang (10.1016/j.asr.2025.06.018_b0085) 2025; 75 Ratnam (10.1016/j.asr.2025.06.018_b0170) 2017; 10 Li (10.1016/j.asr.2025.06.018_b0120) 2019; 26 AbuKaraki (10.1016/j.asr.2025.06.018_b0005) 2024; 80 Ergen (10.1016/j.asr.2025.06.018_b0045) 2024; 40 Prasad (10.1016/j.asr.2025.06.018_b0165) 2023; 3 10.1016/j.asr.2025.06.018_b0240 Liu (10.1016/j.asr.2025.06.018_b0130) 2021; 29 Mao (10.1016/j.asr.2025.06.018_b0145) 2025; 625 Sánchez-Alzola (10.1016/j.asr.2025.06.018_b0185) 2016; 327 Wang (10.1016/j.asr.2025.06.018_b0225) 2025; 71 Wang (10.1016/j.asr.2025.06.018_b0230) 2023; 13 You (10.1016/j.asr.2025.06.018_b0260) 2025; 76 Zhou (10.1016/j.asr.2025.06.018_b0280) 2025; 29 10.1016/j.asr.2025.06.018_b0010 Xue (10.1016/j.asr.2025.06.018_b0250) 2025; 58 Foster (10.1016/j.asr.2025.06.018_b0055) 2005; 22 10.1016/j.asr.2025.06.018_b0090 Liu (10.1016/j.asr.2025.06.018_b0135) 2024; 87 Katlav (10.1016/j.asr.2025.06.018_b0110) 2025; 42 Donoso (10.1016/j.asr.2025.06.018_b0040) 2023; 132 Reddybattula (10.1016/j.asr.2025.06.018_b0180) 2022 Chen (10.1016/j.asr.2025.06.018_b0025) 2023; 61 Vankadara (10.1016/j.asr.2025.06.018_b0220) 2023; 51 Graves (10.1016/j.asr.2025.06.018_b0065) 2009; 31 Nath (10.1016/j.asr.2025.06.018_b0155) 2023; 71 Shafighfard (10.1016/j.asr.2025.06.018_b0190) 2024; 39 10.1016/j.asr.2025.06.018_b0265 Kiani Shahvandi (10.1016/j.asr.2025.06.018_b0115) 2022; 70 Cai (10.1016/j.asr.2025.06.018_b0015) 2025; 98 Tao (10.1016/j.asr.2025.06.018_b0205) 2024; 221 Xie (10.1016/j.asr.2025.06.018_b0245) 2024; 14 10.1016/j.asr.2025.06.018_b0020 Jia (10.1016/j.asr.2025.06.018_b0100) 2025; 102 Mndawe (10.1016/j.asr.2025.06.018_b0150) 2022; 12 Hochreiter (10.1016/j.asr.2025.06.018_b0075) 1997; 9 Ravi (10.1016/j.asr.2025.06.018_b0175) 2022; 8 Cho (10.1016/j.asr.2025.06.018_b0035) 2022; 50 Liu (10.1016/j.asr.2025.06.018_b0125) 2025; 243 Ji (10.1016/j.asr.2025.06.018_b0095) 2025; 253 10.1016/j.asr.2025.06.018_b0275 Gülal (10.1016/j.asr.2025.06.018_b0070) 2013; 23 Ergen (10.1016/j.asr.2025.06.018_b0050) 2024; 83 Zhang (10.1016/j.asr.2025.06.018_b0270) 2025; 257 10.1016/j.asr.2025.06.018_b0195 Gao (10.1016/j.asr.2025.06.018_b0060) 2022; 96 Ten (10.1016/j.asr.2025.06.018_b0210) 2025; 75 Chen (10.1016/j.asr.2025.06.018_b0030) 2022; 171 Jiang (10.1016/j.asr.2025.06.018_b0105) 2023; 28 Wu (10.1016/j.asr.2025.06.018_b0235) 2022; 34 Huang (10.1016/j.asr.2025.06.018_b0080) 2022; 10 |
| References_xml | – volume: 28 start-page: 3 year: 2023 ident: b0105 article-title: A new deep self-attention neural network for GNSS coordinate time series prediction publication-title: GPS Solut. – volume: 51 start-page: 3373 year: 2023 end-page: 3383 ident: b0220 article-title: Ionospheric total electron content forecasting at a low-latitude indian location using a bi-long short-term memory deep learning approach publication-title: IEEE Trans. Plasma Sci. – volume: 87 year: 2024 ident: b0135 article-title: Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model publication-title: Opt. Fiber Technol. – volume: 42 year: 2025 ident: b0110 article-title: AI-guided design framework for bond behavior of steel-concrete in steel reinforced concrete composites: from dataset cleaning to feature engineering publication-title: Mater. Today Commun. – volume: 76 year: 2025 ident: b0260 article-title: Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach publication-title: North Am. J. Econ. Financ. – reference: Jason Brownlee, 2018. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python - Jason Brownlee - Google Books. Machine Learning Mastery. – volume: 40 year: 2024 ident: b0045 article-title: Estimation of the shear strength of UHPC beams via interpretable deep learning models: Comparison of different optimization techniques publication-title: Mater. Today Commun. – volume: 13 start-page: 14876 year: 2023 ident: b0230 article-title: Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM publication-title: Sci. Rep. – volume: 3 year: 2023 ident: b0165 article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers publication-title: Int. J. Inf. Manag. Data Insights – volume: 50 year: 2022 ident: b0035 article-title: A fire risk assessment method for high-capacity battery packs using interquartile range filter publication-title: J. Energy Storage – volume: 10 year: 2022 ident: b0080 article-title: Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm publication-title: Front. Earth Sci. – volume: 257 year: 2025 ident: b0270 article-title: A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention publication-title: Chemom. Intell. Lab. Syst. – volume: 10 year: 2022 ident: b0215 article-title: A Study of Learning Issues in Feedforward Neural Networks publication-title: Mathematics – volume: 14 start-page: 4004 year: 2024 ident: b0245 article-title: Deep learning CNN-GRU method for GNSS deformation monitoring prediction publication-title: Appl. Sci. – volume: 22 start-page: 687 year: 2005 end-page: 695 ident: b0055 article-title: GPS meteorology: Sliding-window analysis publication-title: J. Atmos. Ocean. Technol. – reference: Yu, X. mei, Feng, W. zhi, Wang, H., Chu, Q., Chen, Q., 2020. An attention mechanism and multi-granularity-based Bi-LSTM model for Chinese Q&A system. Soft. Comput. 24, 5831–5845. doi: 10.1007/s00500-019-04367-8. – volume: 44 year: 2025 ident: b0200 article-title: Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite publication-title: Mater. Today Commun. – reference: Aslam, S., Rasool, A., Wu, H., Li, X., 2024. CEL : A Continual Learning Model for Disease Outbreak Prediction by Leveraging Domain Adaptation via Elastic Weight Consolidation. arXiv Prepr. arXiv2401.08940. doi: 10.48550/arXiv.2401.08940. – volume: 26 start-page: 19879 year: 2019 end-page: 19896 ident: b0120 article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River publication-title: China. Environ. Sci. Pollut. Res. – volume: 29 start-page: 113 year: 2025 ident: b0280 article-title: An improved ICEEMDAN-MPA-GRU model for GNSS height time series prediction with weighted quality evaluation index publication-title: GPS Solut. – volume: 98 year: 2025 ident: b0015 article-title: An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting publication-title: Int. Rev. Financ. Anal. – volume: 171 year: 2022 ident: b0030 article-title: Physics-Informed LSTM hyperparameters selection for gearbox fault detection publication-title: Mech. Syst. Signal Process. – volume: 12 start-page: 719 year: 2022 ident: b0150 article-title: Development of a stock price prediction framework for intelligent media and technical analysis publication-title: Appl. Sci. – volume: 71 start-page: 2307 year: 2023 end-page: 2317 ident: b0155 article-title: Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India publication-title: Adv. Sp. Res. – volume: 80 start-page: 1055 year: 2024 end-page: 1073 ident: b0005 article-title: Pulmonary edema and pleural effusion detection using EfficientNet-V1-B4 architecture and AdamW optimizer from chest X-rays images publication-title: Comput. Mater. Contin. – volume: 10 start-page: 5784 year: 2017 end-page: 5790 ident: b0170 article-title: Modeling of ionospheric time delays based on a multishell spherical harmonics function approach publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 34 start-page: 44 year: 2022 end-page: 62 ident: b0235 article-title: S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis publication-title: Conn. Sci. – volume: 58 year: 2025 ident: b0250 article-title: Prediction of runoff in the upper reaches of the Hei River based on the LSTM model guided by physical mechanisms publication-title: J. Hydrol.: Reg. Stud. – volume: 96 start-page: 71 year: 2022 ident: b0060 article-title: Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches publication-title: J. Geod. – year: 2022 ident: b0180 article-title: Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network publication-title: Universe – volume: 31 start-page: 855 year: 2009 end-page: 868 ident: b0065 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 2677 year: 2023 end-page: 2685 ident: b0160 article-title: Deep bidirectional LSTM for disease classification supporting hospital admission based on pre-diagnosis: a case study in Vietnam publication-title: Int. J. Inf. Technol. – volume: 105 year: 2021 ident: b0255 article-title: HANSEL: Adaptive horizontal scaling of microservices using Bi-LSTM publication-title: Appl. Soft Comput. – volume: 61 start-page: 3136 year: 2023 end-page: 3160 ident: b0025 article-title: A modified bidirectional long short-term memory neural network for rail vehicle suspension fault detection publication-title: Veh. Syst. Dyn. – volume: 132 year: 2023 ident: b0040 article-title: A machine learning approach for slow slip event detection using GNSS time-series publication-title: J. South Am. Earth Sci. – volume: 75 start-page: 3397 year: 2025 end-page: 3413 ident: b0085 article-title: Impact of offsets on GNSS time series stochastic noise properties and velocity estimation publication-title: Adv. Sp. Res. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0075 article-title: Long short-term memory publication-title: Neural Comput. – reference: Zhang, N., Lei, D., Zhao, J.F., 2018. An Improved Adagrad Gradient Descent Optimization Algorithm. In: Proceedings 2018 Chinese Automation Congress, CAC 2018. IEEE. Pp. 2359–2362. doi: 10.1109/CAC.2018.8623271. – volume: 39 start-page: 3573 year: 2024 end-page: 3594 ident: b0190 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams publication-title: Comput. Civ. Infrastruct. Eng. – reference: Siami-Namini, S., Tavakoli, N., Siami Namin, A., 2018. A Comparison of ARIMA and LSTM in Forecasting Time Series. In: Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. IEEE. Pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227. – reference: Chen, H., He, X., Lu, T., 2024. Deep Learning Based GNSS Time Series Prediction in Presence of Color Noise BT - Positioning and Navigation Using Machine Learning Methods. In: Yu, K. (Ed.), Springer Nature Singapore, Singapore. Pp. 99–126. doi: 10.1007/978-981-97-6199-9_5. – volume: 2019 year: 2019 ident: b0140 article-title: Decoupled weight decay regularization publication-title: ICLR – volume: 221 year: 2024 ident: b0205 article-title: Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism publication-title: Renew. Energy – volume: 8 year: 2022 ident: b0175 article-title: Intelligent classification of tungsten inert gas welding defects: a transfer learning approach publication-title: Front. Mech. Eng. – volume: 71 year: 2025 ident: b0225 article-title: Spatio-temporal analysis and prediction for raw water quality of drinking water source by improved RNN algorithm publication-title: J. Water Process Eng. – volume: 29 start-page: 5923 year: 2021 end-page: 5933 ident: b0130 article-title: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system publication-title: Opt. Express – reference: Wu, S., Ouyang, H., Li, Houpu, Li, Z., Li, Haiyang, He, Y., 2025. GNSS time series analysis of the crustal movement network of China: Detecting the optimal order of the polynomial term and its effect on the deterministic model. Geod. Geodyn. doi: 10.1016/j.geog.2024.12.002. – volume: 102 year: 2025 ident: b0100 article-title: A residual GRU method with deep cross fusion for Alzheimer’s disease progression prediction using missing variable-length time series data publication-title: Biomed. Signal Process. Control – volume: 243 year: 2025 ident: b0125 article-title: Identification of the number of leaks in water supply pipes based on wavelet scattering network and Bi-LSTM model with Bayesian optimization publication-title: Measurement – volume: 327 start-page: 240 year: 2016 end-page: 248 ident: b0185 article-title: Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008–2015) publication-title: J. Volcanol. Geotherm. Res. – volume: 23 start-page: 1945 year: 2013 end-page: 1957 ident: b0070 article-title: Research on the stability analysis of GNSS reference stations network by time series analysis publication-title: Digit. Signal Process. – volume: 83 year: 2024 ident: b0050 article-title: Investigation of optimized machine learning models with PSO for forecasting the shear capacity of steel fiber-reinforced SCC beams with/out stirrups publication-title: J. Build. Eng. – volume: 70 start-page: 563 year: 2022 end-page: 575 ident: b0115 article-title: Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series publication-title: Adv. Sp. Res. – volume: 625 year: 2025 ident: b0145 article-title: Enhancing music audio signal recognition through CNN-BiLSTM fusion with De-noising autoencoder for improved performance publication-title: Neurocomputing – volume: 75 start-page: 1052 year: 2025 end-page: 1065 ident: b0210 article-title: Detecting covolcanic ionospheric disturbances using GNSS data and a machine learning algorithm publication-title: Adv. Sp. Res. – volume: 253 year: 2025 ident: b0095 article-title: A physical-data-driven combined strategy for load identification of tire type rail transit vehicle publication-title: Reliab. Eng. Syst. Saf. – volume: 257 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0270 article-title: A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2024.105272 – volume: 31 start-page: 855 year: 2009 ident: 10.1016/j.asr.2025.06.018_b0065 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.137 – volume: 102 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0100 article-title: A residual GRU method with deep cross fusion for Alzheimer’s disease progression prediction using missing variable-length time series data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.107253 – ident: 10.1016/j.asr.2025.06.018_b0090 – volume: 26 start-page: 19879 year: 2019 ident: 10.1016/j.asr.2025.06.018_b0120 article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River publication-title: China. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05116-y – volume: 253 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0095 article-title: A physical-data-driven combined strategy for load identification of tire type rail transit vehicle publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110493 – volume: 8 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0175 article-title: Intelligent classification of tungsten inert gas welding defects: a transfer learning approach publication-title: Front. Mech. Eng. – volume: 105 year: 2021 ident: 10.1016/j.asr.2025.06.018_b0255 article-title: HANSEL: Adaptive horizontal scaling of microservices using Bi-LSTM publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107216 – volume: 22 start-page: 687 year: 2005 ident: 10.1016/j.asr.2025.06.018_b0055 article-title: GPS meteorology: Sliding-window analysis publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH1717.1 – volume: 23 start-page: 1945 year: 2013 ident: 10.1016/j.asr.2025.06.018_b0070 article-title: Research on the stability analysis of GNSS reference stations network by time series analysis publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.06.014 – volume: 76 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0260 article-title: Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach publication-title: North Am. J. Econ. Financ. doi: 10.1016/j.najef.2025.102375 – volume: 50 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0035 article-title: A fire risk assessment method for high-capacity battery packs using interquartile range filter publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104663 – volume: 39 start-page: 3573 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0190 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.13164 – volume: 80 start-page: 1055 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0005 article-title: Pulmonary edema and pleural effusion detection using EfficientNet-V1-B4 architecture and AdamW optimizer from chest X-rays images publication-title: Comput. Mater. Contin. – volume: 61 start-page: 3136 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0025 article-title: A modified bidirectional long short-term memory neural network for rail vehicle suspension fault detection publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2022.2158879 – volume: 75 start-page: 1052 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0210 article-title: Detecting covolcanic ionospheric disturbances using GNSS data and a machine learning algorithm publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2024.10.030 – volume: 58 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0250 article-title: Prediction of runoff in the upper reaches of the Hei River based on the LSTM model guided by physical mechanisms publication-title: J. Hydrol.: Reg. Stud. – volume: 75 start-page: 3397 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0085 article-title: Impact of offsets on GNSS time series stochastic noise properties and velocity estimation publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2024.12.016 – volume: 44 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0200 article-title: Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite publication-title: Mater. Today Commun. – volume: 70 start-page: 563 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0115 article-title: Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2022.05.042 – volume: 71 start-page: 2307 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0155 article-title: Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2022.10.067 – volume: 132 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0040 article-title: A machine learning approach for slow slip event detection using GNSS time-series publication-title: J. South Am. Earth Sci. doi: 10.1016/j.jsames.2023.104680 – volume: 2019 year: 2019 ident: 10.1016/j.asr.2025.06.018_b0140 article-title: Decoupled weight decay regularization publication-title: ICLR – volume: 83 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0050 article-title: Investigation of optimized machine learning models with PSO for forecasting the shear capacity of steel fiber-reinforced SCC beams with/out stirrups publication-title: J. Build. Eng. – volume: 87 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0135 article-title: Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.103875 – ident: 10.1016/j.asr.2025.06.018_b0195 doi: 10.1109/ICMLA.2018.00227 – ident: 10.1016/j.asr.2025.06.018_b0265 doi: 10.1007/s00500-019-04367-8 – ident: 10.1016/j.asr.2025.06.018_b0010 doi: 10.1101/2024.01.13.575497 – ident: 10.1016/j.asr.2025.06.018_b0020 doi: 10.1007/978-981-97-6199-9_5 – volume: 327 start-page: 240 year: 2016 ident: 10.1016/j.asr.2025.06.018_b0185 article-title: Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008–2015) publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2016.08.006 – volume: 98 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0015 article-title: An integrated CEEMDAN and TCN-LSTM deep learning framework for forecasting publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2024.103879 – volume: 34 start-page: 44 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0235 article-title: S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis publication-title: Conn. Sci. doi: 10.1080/09540091.2021.1940101 – volume: 3 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0165 article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers publication-title: Int. J. Inf. Manag. Data Insights – volume: 40 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0045 article-title: Estimation of the shear strength of UHPC beams via interpretable deep learning models: Comparison of different optimization techniques publication-title: Mater. Today Commun. – volume: 10 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0215 article-title: A Study of Learning Issues in Feedforward Neural Networks publication-title: Mathematics doi: 10.3390/math10173206 – ident: 10.1016/j.asr.2025.06.018_b0240 doi: 10.1016/j.geog.2024.12.002 – volume: 15 start-page: 2677 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0160 article-title: Deep bidirectional LSTM for disease classification supporting hospital admission based on pre-diagnosis: a case study in Vietnam publication-title: Int. J. Inf. Technol. – volume: 29 start-page: 113 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0280 article-title: An improved ICEEMDAN-MPA-GRU model for GNSS height time series prediction with weighted quality evaluation index publication-title: GPS Solut. doi: 10.1007/s10291-025-01867-z – volume: 71 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0225 article-title: Spatio-temporal analysis and prediction for raw water quality of drinking water source by improved RNN algorithm publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2025.107164 – volume: 10 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0080 article-title: Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm publication-title: Front. Earth Sci. doi: 10.3389/feart.2022.884500 – volume: 29 start-page: 5923 year: 2021 ident: 10.1016/j.asr.2025.06.018_b0130 article-title: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system publication-title: Opt. Express doi: 10.1364/OE.416672 – volume: 96 start-page: 71 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0060 article-title: Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches publication-title: J. Geod. doi: 10.1007/s00190-022-01662-5 – volume: 28 start-page: 3 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0105 article-title: A new deep self-attention neural network for GNSS coordinate time series prediction publication-title: GPS Solut. doi: 10.1007/s10291-023-01544-z – volume: 51 start-page: 3373 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0220 article-title: Ionospheric total electron content forecasting at a low-latitude indian location using a bi-long short-term memory deep learning approach publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2023.3325457 – volume: 221 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0205 article-title: Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119741 – ident: 10.1016/j.asr.2025.06.018_b0275 doi: 10.1109/CAC.2018.8623271 – volume: 12 start-page: 719 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0150 article-title: Development of a stock price prediction framework for intelligent media and technical analysis publication-title: Appl. Sci. doi: 10.3390/app12020719 – year: 2022 ident: 10.1016/j.asr.2025.06.018_b0180 article-title: Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network publication-title: Universe doi: 10.3390/universe8110562 – volume: 13 start-page: 14876 year: 2023 ident: 10.1016/j.asr.2025.06.018_b0230 article-title: Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM publication-title: Sci. Rep. doi: 10.1038/s41598-023-41537-z – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.asr.2025.06.018_b0075 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 10 start-page: 5784 year: 2017 ident: 10.1016/j.asr.2025.06.018_b0170 article-title: Modeling of ionospheric time delays based on a multishell spherical harmonics function approach publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2743695 – volume: 14 start-page: 4004 year: 2024 ident: 10.1016/j.asr.2025.06.018_b0245 article-title: Deep learning CNN-GRU method for GNSS deformation monitoring prediction publication-title: Appl. Sci. doi: 10.3390/app14104004 – volume: 243 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0125 article-title: Identification of the number of leaks in water supply pipes based on wavelet scattering network and Bi-LSTM model with Bayesian optimization publication-title: Measurement doi: 10.1016/j.measurement.2024.116348 – volume: 625 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0145 article-title: Enhancing music audio signal recognition through CNN-BiLSTM fusion with De-noising autoencoder for improved performance publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.129607 – volume: 42 year: 2025 ident: 10.1016/j.asr.2025.06.018_b0110 article-title: AI-guided design framework for bond behavior of steel-concrete in steel reinforced concrete composites: from dataset cleaning to feature engineering publication-title: Mater. Today Commun. – volume: 171 year: 2022 ident: 10.1016/j.asr.2025.06.018_b0030 article-title: Physics-Informed LSTM hyperparameters selection for gearbox fault detection publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.108907 |
| SSID | ssj0012770 |
| Score | 2.42908 |
| Snippet | •For the first time in the literature, adaptive learning rate optimization methods are compared on GNSS time series data.•Deep learning methods are proposed... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 2086 |
| SubjectTerms | Adaptive learning optimization Deep learning GNSS Time series |
| Title | Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms |
| URI | https://dx.doi.org/10.1016/j.asr.2025.06.018 |
| Volume | 76 |
| WOSCitedRecordID | wos001539015800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0273-1177 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012770 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhJ7QFCYtnGRHxAPVEFJ7CQObxGUm6Ca1CGVp8i1na3TmkRNmIb4B_xqjmO7zQaT2AMvaeS2TtLz9fj4XL6D0POUSlJwRT1J-NyjAexTYN0hnlShLxJFpBBdofDnZDJhs1l6OBj8crUw52dJWbKLi7T-r6KGMRC2Lp29gbjXk8IAnIPQ4Qhih-M_Cf6tUrVrBnHs6VVKmn43rhyxXungjLMU30-m067D_EjfncmQy2xquiEF5z3eEi553Q1W8LK0NZwjfnZcrRbtiWU-d6S2Jr2gS7gFvSV0g5ae76xzF8xNfvcXdbJU7Wi8XKyxOl001jn7DR7BvWH9E2GkHa6mQtOqMTCQPB0a7utc0_PFYov2FajvmLGtPu0YEP5U9MbncPqKN5rUNYw6ElaryS-Ral9Z7NYpiC677TSHKXI9Ra4z_AJ2C22HSZSChtzOPo5nn9YxqTBJjMfOPo-LkXfZglfu4-9WTs9yObqP7tktB84MVB6ggSqHaC9rdBCkWv7AL3B3bnxczRDt9Dgqh-jOoRl_iH5qZOHLyMIOWRiQhTfIwlWBNbKwRhY2yHqNM9zDFXa40p91uMJ9XOENrh6hr-_GR28-eLZ3hyfAYm69QIZCSRXA9poHMRiCYHZLX3LKIyJjUpCE8ZjLohApo2nMacgLKiMflltfgBVKdtFWWZVqD-E0SlkRSSLnilFF5ZzClpkJyiQntIjTffTS_dZ5bSha8mulu4-ok0ZubUxjO-aArOu_dnCTazxGdzd_hCdoq119V0_RbXHeLprVMwur35h3ocY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+modeling+and+prediction+of+GNSS+time+series%3A+A+comparative+analysis+of+adaptive+optimization+algorithms&rft.jtitle=Advances+in+space+research&rft.au=Tabar%2C+Mehmet+Emin&rft.au=Sisman%2C+Yasemin&rft.date=2025-08-15&rft.issn=0273-1177&rft.volume=76&rft.issue=4&rft.spage=2086&rft.epage=2103&rft_id=info:doi/10.1016%2Fj.asr.2025.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2025_06_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |