Multifractal analysis of the power-2-decaying Gauss-like expansion

Each real number x∈[0,1] admits a unique power-2-decaying Gauss-like expansion (P2GLE for short) as x=∑i∈N2−(d1(x)+d2(x)+⋯+di(x)), where di(x)∈N. For any x∈(0,1], the Khintchine exponent γ(x) is defined by γ(x):=limn→∞⁡1n∑j=1ndj(x) if the limit exists. We investigate the sizes of the level sets E(ξ)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 542; číslo 1; s. 128834
Hlavní autor: Wang, Xue-Jiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2025
Témata:
ISSN:0022-247X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Each real number x∈[0,1] admits a unique power-2-decaying Gauss-like expansion (P2GLE for short) as x=∑i∈N2−(d1(x)+d2(x)+⋯+di(x)), where di(x)∈N. For any x∈(0,1], the Khintchine exponent γ(x) is defined by γ(x):=limn→∞⁡1n∑j=1ndj(x) if the limit exists. We investigate the sizes of the level sets E(ξ):={x∈(0,1]:γ(x)=ξ} for ξ≥1. Utilizing the Ruelle operator theory, we obtain the Khintchine spectrum ξ↦dimH⁡E(ξ), where dimH denotes the Hausdorff dimension. We establish the remarkable fact that the Khintchine spectrum has exactly one inflection point, which was never proved for the corresponding spectrum in continued fractions. As a direct consequence, we also obtain the Lyapunov spectrum. Furthermore, we find the Hausdorff dimensions of the level sets {x∈(0,1]:limn→∞⁡1n∑j=1nlog⁡(dj(x))=ξ} and {x∈(0,1]:limn→∞⁡1n∑j=1n2dj(x)=ξ}.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128834