Multifractal analysis of the power-2-decaying Gauss-like expansion
Each real number x∈[0,1] admits a unique power-2-decaying Gauss-like expansion (P2GLE for short) as x=∑i∈N2−(d1(x)+d2(x)+⋯+di(x)), where di(x)∈N. For any x∈(0,1], the Khintchine exponent γ(x) is defined by γ(x):=limn→∞1n∑j=1ndj(x) if the limit exists. We investigate the sizes of the level sets E(ξ)...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 542; číslo 1; s. 128834 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.02.2025
|
| Predmet: | |
| ISSN: | 0022-247X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Each real number x∈[0,1] admits a unique power-2-decaying Gauss-like expansion (P2GLE for short) as x=∑i∈N2−(d1(x)+d2(x)+⋯+di(x)), where di(x)∈N. For any x∈(0,1], the Khintchine exponent γ(x) is defined by γ(x):=limn→∞1n∑j=1ndj(x) if the limit exists. We investigate the sizes of the level sets E(ξ):={x∈(0,1]:γ(x)=ξ} for ξ≥1. Utilizing the Ruelle operator theory, we obtain the Khintchine spectrum ξ↦dimHE(ξ), where dimH denotes the Hausdorff dimension. We establish the remarkable fact that the Khintchine spectrum has exactly one inflection point, which was never proved for the corresponding spectrum in continued fractions. As a direct consequence, we also obtain the Lyapunov spectrum. Furthermore, we find the Hausdorff dimensions of the level sets {x∈(0,1]:limn→∞1n∑j=1nlog(dj(x))=ξ} and {x∈(0,1]:limn→∞1n∑j=1n2dj(x)=ξ}. |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2024.128834 |