Artificial neural network algorithm for hybrid nanofluid in Jeffery-Hamel flow under Thompson and Troian velocity slip effects: Comparison of Xue and Yamada-Ota models

•Artificial Neural Network Algorithm for hybrid nanofluid in Jeffery-Hamel flow.•Thomson and Troian Velocity Slip Effects.•Comparison of Xue and Yamada-Ota models.•The governing equations solved using the Explicit Runge-Kutta Method (ERKM).•Advanced thermal management optimization with hybrid nanofl...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science Vol. 321; p. 122785
Main Authors: Nacereddine, Mohamed Kherief, Usman, Rashid, Farhan Lafta, Shah, Nehad Ali, Ali Yousif, Badria Almaz, Mahariq, Ibrahim, Kezzar, Mohamed, Sari, Mohamed Rafik
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2026
Subjects:
ISSN:0009-2509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Artificial Neural Network Algorithm for hybrid nanofluid in Jeffery-Hamel flow.•Thomson and Troian Velocity Slip Effects.•Comparison of Xue and Yamada-Ota models.•The governing equations solved using the Explicit Runge-Kutta Method (ERKM).•Advanced thermal management optimization with hybrid nanofluids. Thermal management of fluid flow in convergent-divergence was a significant issue in thermo-physical applications and especially a problem of optimizing thermo-response and heat transfer process under the condition of magnetic fields and slip flow. The research focuses on the overall impacts of the Thomson-Troian velocity slip and magnetic fields on the hybrid nanofluids (Fe3O4-CoFe2O4/EG-water) in Jeffery-Hamel flow, and the impacts of nanofluids in presenting results on determining the thermal conductivity between Xue and Yamada-Ota with the study intending to fill a gap in clarifying the behavior of nanofluids under studied complex conditions. We then solve by using Explicit Runge-Kutta Method (ERKM) and Artificial Neural Network (ANN) algorithms to assess the transformed governing equations to determine flow and heat transfer characterizing these effects. Comprehensive results indicate that as the concentration of nanoparticles increases, the Nusselt number increases considerably for both convergent and divergent channels in accordance with the Xue and Yamada-Ota models. Further, by increasing Thompson slip parameter (ω1) and Troian (ω2) slip parameters, the velocity profiles increase in both convergent and divergent channels. In addition, the increase of Hartmann number makes grow the velocity and thus preventing the reversal flow. Xue model is always better than Yamada-Ota with higher Nusselt number Nu in convergent channels compared to Nusselt number Nu by the Yamada-Ota formulation showing that Xue model is much better in capturing interfacial effects. The presently-obtained results give practical information in designing the high-efficiency thermal system utilizing the hybrid nanofluids under magnetic and slip conditions. Carbon-based hybrid nanoparticles, experimental confirmation of Xue/Yamada-Ota models in the industrial context, and the use of machine learning in predictive nanofluids modelling of complex geometries to optimize the performance of the thermal systems could be the future working topics.
AbstractList •Artificial Neural Network Algorithm for hybrid nanofluid in Jeffery-Hamel flow.•Thomson and Troian Velocity Slip Effects.•Comparison of Xue and Yamada-Ota models.•The governing equations solved using the Explicit Runge-Kutta Method (ERKM).•Advanced thermal management optimization with hybrid nanofluids. Thermal management of fluid flow in convergent-divergence was a significant issue in thermo-physical applications and especially a problem of optimizing thermo-response and heat transfer process under the condition of magnetic fields and slip flow. The research focuses on the overall impacts of the Thomson-Troian velocity slip and magnetic fields on the hybrid nanofluids (Fe3O4-CoFe2O4/EG-water) in Jeffery-Hamel flow, and the impacts of nanofluids in presenting results on determining the thermal conductivity between Xue and Yamada-Ota with the study intending to fill a gap in clarifying the behavior of nanofluids under studied complex conditions. We then solve by using Explicit Runge-Kutta Method (ERKM) and Artificial Neural Network (ANN) algorithms to assess the transformed governing equations to determine flow and heat transfer characterizing these effects. Comprehensive results indicate that as the concentration of nanoparticles increases, the Nusselt number increases considerably for both convergent and divergent channels in accordance with the Xue and Yamada-Ota models. Further, by increasing Thompson slip parameter (ω1) and Troian (ω2) slip parameters, the velocity profiles increase in both convergent and divergent channels. In addition, the increase of Hartmann number makes grow the velocity and thus preventing the reversal flow. Xue model is always better than Yamada-Ota with higher Nusselt number Nu in convergent channels compared to Nusselt number Nu by the Yamada-Ota formulation showing that Xue model is much better in capturing interfacial effects. The presently-obtained results give practical information in designing the high-efficiency thermal system utilizing the hybrid nanofluids under magnetic and slip conditions. Carbon-based hybrid nanoparticles, experimental confirmation of Xue/Yamada-Ota models in the industrial context, and the use of machine learning in predictive nanofluids modelling of complex geometries to optimize the performance of the thermal systems could be the future working topics.
ArticleNumber 122785
Author Rashid, Farhan Lafta
Nacereddine, Mohamed Kherief
Ali Yousif, Badria Almaz
Mahariq, Ibrahim
Shah, Nehad Ali
Kezzar, Mohamed
Usman
Sari, Mohamed Rafik
Author_xml – sequence: 1
  givenname: Mohamed Kherief
  surname: Nacereddine
  fullname: Nacereddine, Mohamed Kherief
  email: kherief2006@yahoo.fr
  organization: Normal High School of Technology Education ENSET-azzaba Skikda Algeria, Algeria
– sequence: 2
  orcidid: 0000-0002-5989-3670
  surname: Usman
  fullname: Usman
  email: usman.malik.ms@gmail.com
  organization: School of Qilu Transportation, Shandong University, Jinan, China
– sequence: 3
  givenname: Farhan Lafta
  orcidid: 0000-0002-7609-6585
  surname: Rashid
  fullname: Rashid, Farhan Lafta
  email: farhan.lefta@uokerbala.edu.iq
  organization: Petroleum Engineering Department, University of Kerbala, Karbala 56001, Iraq
– sequence: 4
  givenname: Nehad Ali
  surname: Shah
  fullname: Shah, Nehad Ali
  email: nehadali199@yahoo.com
  organization: Departement of Mechanical Engineering, Sejong University, Seoul 05006, South Korea
– sequence: 5
  givenname: Badria Almaz
  surname: Ali Yousif
  fullname: Ali Yousif, Badria Almaz
  email: B.Yousif@qu.edu.sa
  organization: Department of Mathematics College of Science Qassim University Buraydah 51452, Saudi Arabia
– sequence: 6
  givenname: Ibrahim
  surname: Mahariq
  fullname: Mahariq, Ibrahim
  email: ibmahariq@gmail.com
  organization: Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105 Tamil Nadu, India
– sequence: 7
  givenname: Mohamed
  surname: Kezzar
  fullname: Kezzar, Mohamed
  email: kezzar_m@yahoo.com
  organization: Materials and Energy Engineering Laboratory (LMGE), Technology Department, Faculty of Technology, 20 Aout 1955 University of Skikda, P.O. Box 26, 21000, Skikda, Algeria
– sequence: 8
  givenname: Mohamed Rafik
  surname: Sari
  fullname: Sari, Mohamed Rafik
  email: mohamed-rafik.sari@univ-annaba.dz
  organization: Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Mechanical Engineering Department, Faculty of Technology, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba, 23000, Algeria
BookMark eNp9kM1OIzEMx3MAaYHdB9ibX2CKM0znA06o4lNIXIq0e4o8ibNNySRVMgX1iXhNpnTPnGxL_59l_07FUYiBhfgtcSZR1ufrmeY8K7Gcz2RZNu38SJwgYleUc-x-iNOc19PYNBJPxMd1Gp112pGHwNv0Vcb3mF6B_L-Y3LgawMYEq12fnIFAIVq_nToX4JGt5bQr7mlgD9bHd9gGwwmWqzhscgxAwcAyRUcB3thH7cYdZO82sCf1mC9hMSUpuX04Wviz5S_mLw1kqHgeCYZo2Oef4tiSz_zrfz0TL7c3y8V98fR897C4fip0OZdjITVhVVNf14xYoeESO9SV7Vo2tq87lGyqnriiutEttVhdtLau24Za2Zm-vDgT8rBXp5hzYqs2yQ2Udkqi2ttVazXZVXu76mB3Yq4OzHQnvzlOKmvHQbNxaXpSmei-oT8BKDmKIQ
Cites_doi 10.1016/j.jpcs.2018.10.015
10.1016/j.apt.2017.04.022
10.1016/j.icheatmasstransfer.2023.106903
10.1016/j.powtec.2021.02.021
10.1016/j.ces.2015.10.032
10.1166/jon.2020.1753
10.1016/j.cep.2014.06.009
10.1007/s13369-022-06925-z
10.1016/j.asej.2015.07.012
10.1016/j.icheatmasstransfer.2017.10.005
10.1016/j.ces.2021.116596
10.1080/14786440408635327
10.17654/HM018010207
10.1080/14786443409462550
10.1016/j.fluiddyn.2007.02.001
10.1063/1.5021485
10.1515/ntrev-2022-0486
10.1007/s13204-020-01647-w
10.1016/0142-727X(95)00001-7
10.1007/s41939-025-00835-x
10.1016/j.powtec.2018.11.023
10.1016/j.cjph.2017.05.008
10.1016/j.ijheatmasstransfer.2010.12.025
10.1016/0377-0257(84)80019-1
10.1016/j.icheatmasstransfer.2020.104882
10.1016/j.powtec.2020.05.059
10.1016/j.icheatmasstransfer.2016.02.009
10.1016/j.compfluid.2010.03.004
10.1016/j.ijheatmasstransfer.2011.12.015
10.1002/htj.22191
10.1108/HFF-01-2024-0060
10.1142/S0217979223503150
10.1016/j.compfluid.2014.05.016
10.1016/j.ijheatmasstransfer.2015.02.060
10.1016/j.euromechflu.2017.03.012
10.1140/epjp/s13360-021-02150-z
10.1002/zamm.19210010402
10.1016/j.enconman.2016.03.015
10.1177/23977914241261514
10.1016/j.rinp.2017.07.077
10.1007/s12043-022-02404-0
10.1108/HFF-04-2016-0160
10.1002/htj.21994
10.1016/j.chaos.2024.115552
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2025.122785
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ces_2025_122785
S0009250925016069
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACLOT
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
~HD
9DU
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AGQPQ
AI.
AIDUJ
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
LX7
M41
NDZJH
R2-
SC5
T9H
VH1
WUQ
Y6R
ZY4
ID FETCH-LOGICAL-c251t-1ca046ab66e0040de2090c4f98edfb6901ed4bae4a67c8a80438f6687a819db23
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001607902700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-2509
IngestDate Sat Nov 29 06:51:12 EST 2025
Sat Nov 22 16:51:11 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Explicit Runge-Kutta method
Artificial neural network algorithm
Thomson-Troian slip
Hybrid nanofluid
Xue and Yamada-Ota models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-1ca046ab66e0040de2090c4f98edfb6901ed4bae4a67c8a80438f6687a819db23
ORCID 0000-0002-5989-3670
0000-0002-7609-6585
ParticipantIDs crossref_primary_10_1016_j_ces_2025_122785
elsevier_sciencedirect_doi_10_1016_j_ces_2025_122785
PublicationCentury 2000
PublicationDate 2026-02-01
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References K. Abdul Hamid, W.H. Azmi, Rizalman Mamat, K.V. Sharma, Experimental investigation on heat transfer performance of TiO2 nanofluids in water–ethylene glycol mixture, International Communications in Heat and Mass Transfer, Volume 73, 2016, Pages 16-24, 0735-1933
Narayana, Venkateswarlu, Devika (b0035) 2016; 7
Ullah, Shoaib, Akbar (b0220) 2022; 47
Turkyilmazoglu, Naganthran, Pop (b0100) 2017; 27
Ijam, Saidur, Ganesan, Golsheikh (b0090) 2015; 87
Traciak, Sobczak, Zyła (b0150) 2023; 115494
Javed, Abbas, Sajid, Ali (b0180) 2011; 54
Saleem, Hussain, Inc (b0230) 2023; 37
Shafiq, Sindhu (b0040) 2017; 7
Hamel (b0010) 1917; 25
Sathyanarayanan, Mabood, Jamshed, Mishra, Nisar, Pattnaik, Zakarya (b0130) 2021; 27
Ghoneim (b0030) 1984; 15
Noor, Abbasbandy, Hashim (b0185) 2012; 55
Motsa, Sibanda, Awad, Shateyi (bib267) 2010; 39
Muhammad, Hayat, Alsaedi, Qayyum (b0045) 2017; 55
Vincely, Natarajan (b0080) 2016; 117
M. Turkyilmazoglu, ‘‘Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels,’’ Comput. Fluids, vol.100, pp.196–203.September.2014.
Asadi, Pourfattah (b0065) 2019; 343
Khan, Ahmed, Mohy-ud-Din (b0260) 2016; 141
Rahman, Sharif, Turkyilmazoglu, Siddiqui (b0105) 2022; 96
.
Mohanty, Mohanty, Mishra, Pattnaik (b0120) 2021; 136
Ahmad, Chishtie, Mahmood (b0050) 2017; 65
Ali, Umer Ilyas, Garg, Alsaady, Maqsood, Nasir, Abdulrahman, Zulfiqar, Bin Mahfouz, Ahmed, Ridha (b0165) 2020; 118
Khan, Hayat, Khan, Waqas, Alsaedi (b0060) 2019; 125
Shahzad, Abbas, Rafiq (b0205) 2024; 188
Pohlhausen (b0015) 1921; 1
Lemouedda, Badreddine, et al. “Ternary nanoparticles effect in rotating hydromagnetic Jeffery-Hamel flow of nanofluids.” Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems (2024): 23977914241261514.
W.R. Dean, LXXII. Note on the divergent flow of fluid, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 18 (121) (1934) 759–777.
Muhammad Yousuf Rafiq, Ayesha Sabeen, Aqeel ur Rehman, Zaheer Abbas; Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: stability analysis. International Journal of Numerical Methods for Heat & Fluid Flow 25 September 2024; 34 (10): 3793–3819.
Mohanty, Jena, Pattnaik (b0140) 2019; 10
Zhou, Yang, Liu, Zhang, Wang, Zhang, Zhou (b0075) 2021; 384
G.B. Jeffery, L. The two-dimensional steady motion of a viscous fluid, The London, Edinburgh, and Dublin philosophical magazine and journal of science 29 (172) (1915) 455–465.
Upreti, Alok Kumar Pandey, Manoj (bib266) 2021; 50
Turkyilmazoglu (b0115) 2021; 238
Saleem, Hussain Majeed, Ahmad, Ali (b0235) 2024; 104
Soltani, Toghraie, Karimipour (b0245) 2020; 371
Turkyilmazoglu, Pop (b0110) 2023; 146
Akbar, Ullah, Raja, Nisar, Islam, Shoaib (b0215) 2022; 1–24
Suganya, Muthtamilselvan, Alhussain (b0250) 2021; 11
Mathur, Mishra, Pattnaik, Dash (b0125) 2021; 50
Ahmad, Ali, Ashraf, Khalifa, Aziz ElSeabee, E.s.m. (b0085) 2022; 11
Leong, Idayu Razali, Ahmad, Ong, Rosdzimin, Rahman (b0160) 2018; 90
Ali (b0195) 1995; 16
Bhanvase, Sarode, Putterwar, Abdullah, Deosarkar, Sonawane (b0170) 2014; 82
Safa, Mohamed Rafik, Lafta Rashid, Hacen, Abdallah, Mohamed, Khan, Sabaoon Khan, Almaz ali Yousif (b0225) 2025; 18
Pattnaik, Mishra, Sharma (b0135) 2020; 9
Abbas, Rafiq, Fayyaz (b0210) 2025; 8
Magyari (b0025) 2007; 39
Dogonchi, Alizadeh, Ganji (b0070) 2017; 28
Hosseinzadeh, Afsharpanah, Zamani, Gholinia, Ganji (b0155) 2018; 12
Turkyilmazoglu (b0095) 2018; 30
Mohamed (b0055) 2018; 4
Cortell (b0190) 2007; 184
Pattnaik, Jena, Dei, Sahu (b0145) 2019; 18
Ahmad (10.1016/j.ces.2025.122785_b0050) 2017; 65
Narayana (10.1016/j.ces.2025.122785_b0035) 2016; 7
Upreti (10.1016/j.ces.2025.122785_bib266) 2021; 50
Ghoneim (10.1016/j.ces.2025.122785_b0030) 1984; 15
Noor (10.1016/j.ces.2025.122785_b0185) 2012; 55
Saleem (10.1016/j.ces.2025.122785_b0230) 2023; 37
Turkyilmazoglu (10.1016/j.ces.2025.122785_b0115) 2021; 238
Shafiq (10.1016/j.ces.2025.122785_b0040) 2017; 7
Leong (10.1016/j.ces.2025.122785_b0160) 2018; 90
Ali (10.1016/j.ces.2025.122785_b0165) 2020; 118
Mohanty (10.1016/j.ces.2025.122785_b0140) 2019; 10
Abbas (10.1016/j.ces.2025.122785_b0210) 2025; 8
10.1016/j.ces.2025.122785_b0265
10.1016/j.ces.2025.122785_b0020
Javed (10.1016/j.ces.2025.122785_b0180) 2011; 54
Safa (10.1016/j.ces.2025.122785_b0225) 2025; 18
Ijam (10.1016/j.ces.2025.122785_b0090) 2015; 87
Mohanty (10.1016/j.ces.2025.122785_b0120) 2021; 136
Pattnaik (10.1016/j.ces.2025.122785_b0145) 2019; 18
Vincely (10.1016/j.ces.2025.122785_b0080) 2016; 117
Saleem (10.1016/j.ces.2025.122785_b0235) 2024; 104
Mohamed (10.1016/j.ces.2025.122785_b0055) 2018; 4
Magyari (10.1016/j.ces.2025.122785_b0025) 2007; 39
Sathyanarayanan (10.1016/j.ces.2025.122785_b0130) 2021; 27
Ali (10.1016/j.ces.2025.122785_b0195) 1995; 16
Dogonchi (10.1016/j.ces.2025.122785_b0070) 2017; 28
Turkyilmazoglu (10.1016/j.ces.2025.122785_b0110) 2023; 146
Bhanvase (10.1016/j.ces.2025.122785_b0170) 2014; 82
10.1016/j.ces.2025.122785_b0175
Muhammad (10.1016/j.ces.2025.122785_b0045) 2017; 55
Shahzad (10.1016/j.ces.2025.122785_b0205) 2024; 188
10.1016/j.ces.2025.122785_b0255
Pattnaik (10.1016/j.ces.2025.122785_b0135) 2020; 9
Khan (10.1016/j.ces.2025.122785_b0060) 2019; 125
Motsa (10.1016/j.ces.2025.122785_bib267) 2010; 39
Mathur (10.1016/j.ces.2025.122785_b0125) 2021; 50
Rahman (10.1016/j.ces.2025.122785_b0105) 2022; 96
Ullah (10.1016/j.ces.2025.122785_b0220) 2022; 47
Hosseinzadeh (10.1016/j.ces.2025.122785_b0155) 2018; 12
Cortell (10.1016/j.ces.2025.122785_b0190) 2007; 184
Akbar (10.1016/j.ces.2025.122785_b0215) 2022; 1–24
Suganya (10.1016/j.ces.2025.122785_b0250) 2021; 11
Ahmad (10.1016/j.ces.2025.122785_b0085) 2022; 11
Turkyilmazoglu (10.1016/j.ces.2025.122785_b0095) 2018; 30
Soltani (10.1016/j.ces.2025.122785_b0245) 2020; 371
Asadi (10.1016/j.ces.2025.122785_b0065) 2019; 343
Turkyilmazoglu (10.1016/j.ces.2025.122785_b0100) 2017; 27
10.1016/j.ces.2025.122785_b0005
10.1016/j.ces.2025.122785_b0200
Traciak (10.1016/j.ces.2025.122785_b0150) 2023; 115494
Khan (10.1016/j.ces.2025.122785_b0260) 2016; 141
Zhou (10.1016/j.ces.2025.122785_b0075) 2021; 384
Pohlhausen (10.1016/j.ces.2025.122785_b0015) 1921; 1
Hamel (10.1016/j.ces.2025.122785_b0010) 1917; 25
References_xml – volume: 384
  start-page: 414
  year: 2021
  end-page: 422
  ident: b0075
  article-title: Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid
  publication-title: Powder Technol.
– volume: 238
  year: 2021
  ident: b0115
  article-title: Stagnation-point flow and heat transfer over stretchable plates and cylinders with an oncoming flow: exact solutions
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 207
  year: 2019
  end-page: 223
  ident: b0145
  article-title: Impact of chemical reaction on micropolar fluid past a stretching sheet
  publication-title: JP J. Heat Mass Transf.
– volume: 12
  start-page: 228
  year: 2018
  end-page: 236
  ident: b0155
  article-title: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption,, Case Stu
  publication-title: Therm. Eng.
– volume: 188
  year: 2024
  ident: b0205
  article-title: Molecular dynamics study of the thermal radiatively pressure-driven flow of two immiscible hybrid nanofluids through a curved pipe with viscous dissipation
  publication-title: Chaos Solitons Fractals
– volume: 25
  start-page: 34
  year: 1917
  end-page: 60
  ident: b0010
  article-title: Spiralf¨ormige Bewegungen z¨aher Flüssigkeiten
  publication-title: Jahresber. Deutsch. Math.-Verein.
– volume: 39
  start-page: 1219
  year: 2010
  end-page: 1225
  ident: bib267
  article-title: A new spectral-homotopy analysis method for the MHD JefferyHamel problem
  publication-title: Comput. Fluids
– reference: M. Turkyilmazoglu, ‘‘Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels,’’ Comput. Fluids, vol.100, pp.196–203.September.2014.
– volume: 7
  start-page: 1079
  year: 2016
  end-page: 1088
  ident: b0035
  article-title: Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel
  publication-title: Ain Shams Eng. J.
– volume: 50
  start-page: 105
  year: 2021
  end-page: 125
  ident: bib266
  article-title: Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation
  publication-title: Heat Transfer
– volume: 343
  start-page: 296
  year: 2019
  end-page: 308
  ident: b0065
  article-title: Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation
  publication-title: Powder Technol.
– volume: 54
  start-page: 2034
  year: 2011
  end-page: 2042
  ident: b0180
  article-title: Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet
  publication-title: Int. J. Heat Mass Tran.
– volume: 87
  start-page: 92
  year: 2015
  end-page: 103
  ident: b0090
  article-title: Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid
  publication-title: Int. J. Heat Mass Tran.
– volume: 82
  start-page: 123
  year: 2014
  end-page: 131
  ident: b0170
  article-title: Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles
  publication-title: Chem. Eng. Process.
– reference: Muhammad Yousuf Rafiq, Ayesha Sabeen, Aqeel ur Rehman, Zaheer Abbas; Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: stability analysis. International Journal of Numerical Methods for Heat & Fluid Flow 25 September 2024; 34 (10): 3793–3819.
– reference: Lemouedda, Badreddine, et al. “Ternary nanoparticles effect in rotating hydromagnetic Jeffery-Hamel flow of nanofluids.” Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems (2024): 23977914241261514.
– volume: 18
  year: 2025
  ident: b0225
  article-title: Thermally radiative MHD Jeffery-Hamel flow in a convergent-divergent conduit: A hybrid nanofluid fluid model under nanoparticles shape factor impact
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 55
  start-page: 1511
  year: 2017
  end-page: 1522
  ident: b0045
  article-title: Hydromagnetic unsteady squeezing flow of Jeffrey fluid between two parallel plates
  publication-title: Chin. J. Phys.
– volume: 115494
  year: 2023
  ident: b0150
  article-title: The experimental study of the surface tension of titanium dioxide–ethylene glycol nanofluids
  publication-title: Physica E 145
– reference: K. Abdul Hamid, W.H. Azmi, Rizalman Mamat, K.V. Sharma, Experimental investigation on heat transfer performance of TiO2 nanofluids in water–ethylene glycol mixture, International Communications in Heat and Mass Transfer, Volume 73, 2016, Pages 16-24, 0735-1933,
– reference: G.B. Jeffery, L. The two-dimensional steady motion of a viscous fluid, The London, Edinburgh, and Dublin philosophical magazine and journal of science 29 (172) (1915) 455–465.
– volume: 10
  start-page: 119
  year: 2019
  end-page: 125
  ident: b0140
  article-title: MHD nanofluid flow over stretching/shrinking surface in presence of heat radiation using numerical method
  publication-title: Int. J. Emerg. Technol.
– volume: 30
  year: 2018
  ident: b0095
  article-title: Unsteady flow over a decelerating rotating sphere
  publication-title: Phys. Fluids
– volume: 1
  start-page: 252
  year: 1921
  end-page: 290
  ident: b0015
  article-title: Zur n¨ aherungsweisen integration der differentialgleichung der iaminarengrenzschicht, ZAMM-Journal of Applied Mathematics and Mechanics/
  publication-title: Zeitschrift Für Angewandte Mathematik Und Mechanik
– volume: 15
  start-page: 375
  year: 1984
  end-page: 381
  ident: b0030
  article-title: On the converging flow of generalized Newtonian fluids
  publication-title: J. Nonnewton. Fluid Mech.
– volume: 96
  start-page: 170
  year: 2022
  ident: b0105
  article-title: Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction
  publication-title: Pramana
– volume: 8
  start-page: 250
  year: 2025
  ident: b0210
  article-title: Peristaltic flow of carbon nanotube-based hybrid nanofluid in the annular region of eccentric cylinders with a modified thermal conductivity model
  publication-title: Multiscale and Multidiscip. Model. Exp. and Des.
– volume: 28
  start-page: 1815
  year: 2017
  end-page: 1825
  ident: b0070
  article-title: Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect
  publication-title: Adv. Powder Technol.
– volume: 117
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0080
  article-title: Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation
  publication-title: Energy Convers. Manag.
– volume: 371
  start-page: 37
  year: 2020
  end-page: 44
  ident: b0245
  article-title: Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (wo3) and mwcnts inclusions
  publication-title: Powder Technol.
– volume: 65
  start-page: 192
  year: 2017
  end-page: 198
  ident: b0050
  article-title: Analytical technique for magnetohydrodynamic (MHD) fluid flow of a periodically accelerated plate with slippage
  publication-title: Eur. J. Mech.-B/fluids
– volume: 11
  start-page: 2903
  year: 2022
  end-page: 2915
  ident: b0085
  article-title: Tag El Din, Analysis of pure nanofluid (GO/engine oil) and hybrid nanofluid (GO–Fe3O4/engine oil): novel thermal and magnetic features
  publication-title: Nanotechnol. Rev.
– volume: 37
  year: 2023
  ident: b0230
  article-title: Significance of Darcy–Forchheimer law and magnetic field on the comparison of Williamson–Casson fluid subject to an exponential stretching sheet
  publication-title: Int. J. Mod Phys B
– volume: 136
  start-page: 1
  year: 2021
  end-page: 19
  ident: b0120
  article-title: Analysis of entropy on the peristaltic transport of micropolar nanofluid: a simulation obtained using approximate analytical technique
  publication-title: Euro. Phys. J. plus
– volume: 4
  start-page: 352
  year: 2018
  end-page: 364
  ident: b0055
  article-title: Heat transfer in hydro-magnetic nano-fluid flow between non- parallel plates using DTM
  publication-title: J. Appl. Comput. Mech.
– volume: 11
  start-page: 933
  year: 2021
  end-page: 949
  ident: b0250
  article-title: Activation energy and Coriolis force on Cu–TiO_2/water hybrid nanofluid flow in an existence of nonlinear radiation
  publication-title: Appl. Nanosci.
– volume: 90
  start-page: 23
  year: 2018
  end-page: 28
  ident: b0160
  article-title: Thermal conductivity of an ethylene glycol/ water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 1–24
  year: 2022
  ident: b0215
  article-title: A design of neural networks to study MHD and heat transfer in two phase model of nano-fluid flow in the presence of thermal radiation
  publication-title: Waves Random Complex Media
– volume: 9
  start-page: 354
  year: 2020
  end-page: 361
  ident: b0135
  article-title: Numerical simulation for flow through conducting metal and metallic oxide nanofluids
  publication-title: Journal of Nanofluids
– volume: 141
  start-page: 17
  year: 2016
  end-page: 27
  ident: b0260
  article-title: Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in convergent and divergent channel
  publication-title: Chem. Eng. Sci.
– volume: 146
  year: 2023
  ident: b0110
  article-title: Induced flow and heat transfer due to inner stretching and outer stationary coaxial cylinders
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 7
  start-page: 3059
  year: 2017
  end-page: 3067
  ident: b0040
  article-title: Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface
  publication-title: Results Phys.
– volume: 16
  start-page: 280
  year: 1995
  end-page: 290
  ident: b0195
  article-title: On thermal boundary layer on a power-law stretched surface with suction or injection
  publication-title: Int. J. Heat Fluid Flow
– reference: W.R. Dean, LXXII. Note on the divergent flow of fluid, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 18 (121) (1934) 759–777.
– volume: 47
  start-page: 16371
  year: 2022
  end-page: 16391
  ident: b0220
  article-title: Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates
  publication-title: Arab. J. Sci. Eng.
– volume: 27
  start-page: 1554
  year: 2017
  end-page: 1570
  ident: b0100
  article-title: Unsteady MHD rear stagnation-point flow over off-centred deformable surfaces
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 50
  start-page: 6529
  year: 2021
  end-page: 6547
  ident: b0125
  article-title: Characteristics of Darcy–Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid
  publication-title: Heat Transfer
– volume: 104
  year: 2024
  ident: b0235
  article-title: Symmetry-based analysis of nonlinear mixed convection in 3D EMHD nano-Carreau fluid flow with Riga stretched surface effects and multi-physical interactions
  publication-title: J. Appl. Math. Mech.
– reference: .
– volume: 184
  start-page: 864
  year: 2007
  end-page: 873
  ident: b0190
  article-title: Viscous flow and heat transfer over a nonlinearly stretching sheet
  publication-title: Appl. Math Comput.
– volume: 125
  start-page: 153
  year: 2019
  end-page: 164
  ident: b0060
  article-title: Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation
  publication-title: J. Phys. Chem. Solid
– volume: 39
  start-page: 493
  year: 2007
  end-page: 504
  ident: b0025
  article-title: Backward boundary layer heat transfers in a converging channel
  publication-title: Fluid Dyn. Res.
– volume: 118
  year: 2020
  ident: b0165
  article-title: Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 55
  start-page: 2122
  year: 2012
  end-page: 2128
  ident: b0185
  article-title: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink
  publication-title: Int. J. Heat Mass Tran.
– volume: 27
  year: 2021
  ident: b0130
  article-title: Irreversibility process characteristics of variant viscosity and conductivity on hybrid nanofluid flow through Poiseuille microchannel: a special case study
  publication-title: Case Stud. Therm. Eng.
– volume: 125
  start-page: 153
  year: 2019
  ident: 10.1016/j.ces.2025.122785_b0060
  article-title: Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation
  publication-title: J. Phys. Chem. Solid
  doi: 10.1016/j.jpcs.2018.10.015
– volume: 28
  start-page: 1815
  issue: 7
  year: 2017
  ident: 10.1016/j.ces.2025.122785_b0070
  article-title: Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.04.022
– volume: 146
  year: 2023
  ident: 10.1016/j.ces.2025.122785_b0110
  article-title: Induced flow and heat transfer due to inner stretching and outer stationary coaxial cylinders
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2023.106903
– volume: 10
  start-page: 119
  issue: 2
  year: 2019
  ident: 10.1016/j.ces.2025.122785_b0140
  article-title: MHD nanofluid flow over stretching/shrinking surface in presence of heat radiation using numerical method
  publication-title: Int. J. Emerg. Technol.
– volume: 384
  start-page: 414
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0075
  article-title: Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.02.021
– volume: 141
  start-page: 17
  year: 2016
  ident: 10.1016/j.ces.2025.122785_b0260
  article-title: Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in convergent and divergent channel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.10.032
– volume: 1–24
  year: 2022
  ident: 10.1016/j.ces.2025.122785_b0215
  article-title: A design of neural networks to study MHD and heat transfer in two phase model of nano-fluid flow in the presence of thermal radiation
  publication-title: Waves Random Complex Media
– volume: 9
  start-page: 354
  issue: 4
  year: 2020
  ident: 10.1016/j.ces.2025.122785_b0135
  article-title: Numerical simulation for flow through conducting metal and metallic oxide nanofluids
  publication-title: Journal of Nanofluids
  doi: 10.1166/jon.2020.1753
– volume: 82
  start-page: 123
  year: 2014
  ident: 10.1016/j.ces.2025.122785_b0170
  article-title: Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2014.06.009
– volume: 47
  start-page: 16371
  year: 2022
  ident: 10.1016/j.ces.2025.122785_b0220
  article-title: Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06925-z
– volume: 7
  start-page: 1079
  issue: 4
  year: 2016
  ident: 10.1016/j.ces.2025.122785_b0035
  article-title: Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2015.07.012
– volume: 90
  start-page: 23
  year: 2018
  ident: 10.1016/j.ces.2025.122785_b0160
  article-title: Thermal conductivity of an ethylene glycol/ water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.10.005
– volume: 238
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0115
  article-title: Stagnation-point flow and heat transfer over stretchable plates and cylinders with an oncoming flow: exact solutions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116596
– ident: 10.1016/j.ces.2025.122785_b0005
  doi: 10.1080/14786440408635327
– volume: 18
  start-page: 207
  issue: 1
  year: 2019
  ident: 10.1016/j.ces.2025.122785_b0145
  article-title: Impact of chemical reaction on micropolar fluid past a stretching sheet
  publication-title: JP J. Heat Mass Transf.
  doi: 10.17654/HM018010207
– volume: 115494
  year: 2023
  ident: 10.1016/j.ces.2025.122785_b0150
  article-title: The experimental study of the surface tension of titanium dioxide–ethylene glycol nanofluids
  publication-title: Physica E 145
– ident: 10.1016/j.ces.2025.122785_b0020
  doi: 10.1080/14786443409462550
– volume: 39
  start-page: 493
  issue: 6
  year: 2007
  ident: 10.1016/j.ces.2025.122785_b0025
  article-title: Backward boundary layer heat transfers in a converging channel
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2007.02.001
– volume: 30
  issue: 3
  year: 2018
  ident: 10.1016/j.ces.2025.122785_b0095
  article-title: Unsteady flow over a decelerating rotating sphere
  publication-title: Phys. Fluids
  doi: 10.1063/1.5021485
– volume: 11
  start-page: 2903
  issue: 1
  year: 2022
  ident: 10.1016/j.ces.2025.122785_b0085
  article-title: Tag El Din, Analysis of pure nanofluid (GO/engine oil) and hybrid nanofluid (GO–Fe3O4/engine oil): novel thermal and magnetic features
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2022-0486
– volume: 11
  start-page: 933
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0250
  article-title: Activation energy and Coriolis force on Cu–TiO_2/water hybrid nanofluid flow in an existence of nonlinear radiation
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01647-w
– volume: 16
  start-page: 280
  issue: 4
  year: 1995
  ident: 10.1016/j.ces.2025.122785_b0195
  article-title: On thermal boundary layer on a power-law stretched surface with suction or injection
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(95)00001-7
– volume: 8
  start-page: 250
  year: 2025
  ident: 10.1016/j.ces.2025.122785_b0210
  article-title: Peristaltic flow of carbon nanotube-based hybrid nanofluid in the annular region of eccentric cylinders with a modified thermal conductivity model
  publication-title: Multiscale and Multidiscip. Model. Exp. and Des.
  doi: 10.1007/s41939-025-00835-x
– volume: 343
  start-page: 296
  year: 2019
  ident: 10.1016/j.ces.2025.122785_b0065
  article-title: Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.11.023
– volume: 55
  start-page: 1511
  issue: 4
  year: 2017
  ident: 10.1016/j.ces.2025.122785_b0045
  article-title: Hydromagnetic unsteady squeezing flow of Jeffrey fluid between two parallel plates
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.05.008
– volume: 54
  start-page: 2034
  issue: 9–10
  year: 2011
  ident: 10.1016/j.ces.2025.122785_b0180
  article-title: Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2010.12.025
– volume: 4
  start-page: 352
  issue: 4
  year: 2018
  ident: 10.1016/j.ces.2025.122785_b0055
  article-title: Heat transfer in hydro-magnetic nano-fluid flow between non- parallel plates using DTM
  publication-title: J. Appl. Comput. Mech.
– volume: 15
  start-page: 375
  issue: 3
  year: 1984
  ident: 10.1016/j.ces.2025.122785_b0030
  article-title: On the converging flow of generalized Newtonian fluids
  publication-title: J. Nonnewton. Fluid Mech.
  doi: 10.1016/0377-0257(84)80019-1
– volume: 118
  year: 2020
  ident: 10.1016/j.ces.2025.122785_b0165
  article-title: Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104882
– volume: 371
  start-page: 37
  year: 2020
  ident: 10.1016/j.ces.2025.122785_b0245
  article-title: Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (wo3) and mwcnts inclusions
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.05.059
– ident: 10.1016/j.ces.2025.122785_b0175
  doi: 10.1016/j.icheatmasstransfer.2016.02.009
– volume: 39
  start-page: 1219
  year: 2010
  ident: 10.1016/j.ces.2025.122785_bib267
  article-title: A new spectral-homotopy analysis method for the MHD JefferyHamel problem
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.03.004
– volume: 55
  start-page: 2122
  issue: 7–8
  year: 2012
  ident: 10.1016/j.ces.2025.122785_b0185
  article-title: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2011.12.015
– volume: 18
  issue: 1
  year: 2025
  ident: 10.1016/j.ces.2025.122785_b0225
  article-title: Thermally radiative MHD Jeffery-Hamel flow in a convergent-divergent conduit: A hybrid nanofluid fluid model under nanoparticles shape factor impact
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 50
  start-page: 6529
  issue: 7
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0125
  article-title: Characteristics of Darcy–Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid
  publication-title: Heat Transfer
  doi: 10.1002/htj.22191
– ident: 10.1016/j.ces.2025.122785_b0200
  doi: 10.1108/HFF-01-2024-0060
– volume: 37
  issue: 27
  year: 2023
  ident: 10.1016/j.ces.2025.122785_b0230
  article-title: Significance of Darcy–Forchheimer law and magnetic field on the comparison of Williamson–Casson fluid subject to an exponential stretching sheet
  publication-title: Int. J. Mod Phys B
  doi: 10.1142/S0217979223503150
– ident: 10.1016/j.ces.2025.122785_b0255
  doi: 10.1016/j.compfluid.2014.05.016
– volume: 87
  start-page: 92
  year: 2015
  ident: 10.1016/j.ces.2025.122785_b0090
  article-title: Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.02.060
– volume: 27
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0130
  article-title: Irreversibility process characteristics of variant viscosity and conductivity on hybrid nanofluid flow through Poiseuille microchannel: a special case study
  publication-title: Case Stud. Therm. Eng.
– volume: 65
  start-page: 192
  year: 2017
  ident: 10.1016/j.ces.2025.122785_b0050
  article-title: Analytical technique for magnetohydrodynamic (MHD) fluid flow of a periodically accelerated plate with slippage
  publication-title: Eur. J. Mech.-B/fluids
  doi: 10.1016/j.euromechflu.2017.03.012
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.ces.2025.122785_b0120
  article-title: Analysis of entropy on the peristaltic transport of micropolar nanofluid: a simulation obtained using approximate analytical technique
  publication-title: Euro. Phys. J. plus
  doi: 10.1140/epjp/s13360-021-02150-z
– volume: 184
  start-page: 864
  issue: 2
  year: 2007
  ident: 10.1016/j.ces.2025.122785_b0190
  article-title: Viscous flow and heat transfer over a nonlinearly stretching sheet
  publication-title: Appl. Math Comput.
– volume: 1
  start-page: 252
  issue: 4
  year: 1921
  ident: 10.1016/j.ces.2025.122785_b0015
  article-title: Zur n¨ aherungsweisen integration der differentialgleichung der iaminarengrenzschicht, ZAMM-Journal of Applied Mathematics and Mechanics/
  publication-title: Zeitschrift Für Angewandte Mathematik Und Mechanik
  doi: 10.1002/zamm.19210010402
– volume: 117
  start-page: 1
  year: 2016
  ident: 10.1016/j.ces.2025.122785_b0080
  article-title: Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.03.015
– ident: 10.1016/j.ces.2025.122785_b0265
  doi: 10.1177/23977914241261514
– volume: 7
  start-page: 3059
  year: 2017
  ident: 10.1016/j.ces.2025.122785_b0040
  article-title: Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.077
– volume: 96
  start-page: 170
  issue: 4
  year: 2022
  ident: 10.1016/j.ces.2025.122785_b0105
  article-title: Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction
  publication-title: Pramana
  doi: 10.1007/s12043-022-02404-0
– volume: 12
  start-page: 228
  year: 2018
  ident: 10.1016/j.ces.2025.122785_b0155
  article-title: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption,, Case Stu
  publication-title: Therm. Eng.
– volume: 104
  issue: 9
  year: 2024
  ident: 10.1016/j.ces.2025.122785_b0235
  article-title: Symmetry-based analysis of nonlinear mixed convection in 3D EMHD nano-Carreau fluid flow with Riga stretched surface effects and multi-physical interactions
  publication-title: J. Appl. Math. Mech.
– volume: 25
  start-page: 34
  year: 1917
  ident: 10.1016/j.ces.2025.122785_b0010
  article-title: Spiralf¨ormige Bewegungen z¨aher Flüssigkeiten
  publication-title: Jahresber. Deutsch. Math.-Verein.
– volume: 27
  start-page: 1554
  issue: 7
  year: 2017
  ident: 10.1016/j.ces.2025.122785_b0100
  article-title: Unsteady MHD rear stagnation-point flow over off-centred deformable surfaces
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-04-2016-0160
– volume: 50
  start-page: 105
  issue: 1
  year: 2021
  ident: 10.1016/j.ces.2025.122785_bib266
  article-title: Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation
  publication-title: Heat Transfer
  doi: 10.1002/htj.21994
– volume: 188
  year: 2024
  ident: 10.1016/j.ces.2025.122785_b0205
  article-title: Molecular dynamics study of the thermal radiatively pressure-driven flow of two immiscible hybrid nanofluids through a curved pipe with viscous dissipation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115552
SSID ssj0007710
Score 2.4881513
Snippet •Artificial Neural Network Algorithm for hybrid nanofluid in Jeffery-Hamel flow.•Thomson and Troian Velocity Slip Effects.•Comparison of Xue and Yamada-Ota...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122785
SubjectTerms Artificial neural network algorithm
Explicit Runge-Kutta method
Hybrid nanofluid
Thomson-Troian slip
Xue and Yamada-Ota models
Title Artificial neural network algorithm for hybrid nanofluid in Jeffery-Hamel flow under Thompson and Troian velocity slip effects: Comparison of Xue and Yamada-Ota models
URI https://dx.doi.org/10.1016/j.ces.2025.122785
Volume 321
WOSCitedRecordID wos001607902700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0009-2509
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007710
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bj5NAFMcnddcHfTBe43rLPPgkoQHKbXxrNrtZNVbjdpP6RA7DIGwoNJSuu5_I7-Cn8wzDAN4SNfGhtCEdaPr_ZeZw5lwIee4JtOEZMDNmXJguCGYyiyUmT9w0mfEZBK5qNhEsFuFqxd5PJl91LsxFEZRleHnJNv9VajyHYsvU2b-Qu78onsDPKDoeUXY8_pHw87oN_5GecFmssn1rQ70NKD5Vdd5k6za2MLuSyVpGCWWVFrtc1mBq87pEfWWewFoURlpUn9s-ubWh40bavYZlXclpQUYbcWnEo6m60YEh0sNwOO5taKx2aofiI6whAfNdA6r9znZsF_d1C8RQH9HoVufeXw1cNhZNcuWEfVtl-CsT443MYBSp_tbZdj0A_0G2imoZPoY6kx2KIW36heg0g9aptBAZJMa8yMcuEKePmtZ-OZ2bMwRCqbmemWjgsfFcP1Pp2D-tG8qFcT7FuXmKd_CmtkwR9oZFsg9dPJXXlZfFl41Pf-wa2XcCj-GMuj9_dbR63dsBQWBbuo-fHKD31Nvowh9u9GuraGTpLG-TW90jCp0rtO6QiSjvkpujwpX3yJcBMqogox1ktIeMImRUQUZ7yGhe0u8goxIy2kJGNWQUcaEKMqohoxIy2kH2kg6I0SqliFg7ZkCMKsTuk7Pjo-Xhidm1_DA5GtqNaXOwXB9i3xdyeUmEYzGLuykLRZLGsnmaSNwYhAt-wEMI5T526vthAGjZJrEze0D2yqoUDwkNrZR7sWvbsXBc8BzmMoGq8TiYpcBtOCAv9F8ebVRll0iHPJ5HqE8k9YmUPgfE1aJEHfzK5IyQoN8Pe_Rvwx6TGwPmT8heU-_EU3KdXzT5tn7WcfYN90y7mA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+algorithm+for+hybrid+nanofluid+in+Jeffery-Hamel+flow+under+Thompson+and+Troian+velocity+slip+effects%3A+Comparison+of+Xue+and+Yamada-Ota+models&rft.jtitle=Chemical+engineering+science&rft.au=Nacereddine%2C+Mohamed+Kherief&rft.au=Usman&rft.au=Rashid%2C+Farhan+Lafta&rft.au=Shah%2C+Nehad+Ali&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.volume=321&rft_id=info:doi/10.1016%2Fj.ces.2025.122785&rft.externalDocID=S0009250925016069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon