APPLE-GO: Modeling high-spatial resolution forest canopy reflectance with effect of Adjacent Pixels using Path Length Extended Geometric Optical theory
Forests are the key component of terrestrial ecosystems, playing a vital role in the global carbon and water cycles as well as in climate change. Satellite remote sensing imagery has the advantage of quantitatively monitoring and assessing the health status of forest canopies at large scales. With t...
Saved in:
| Published in: | Remote sensing of environment Vol. 331; p. 115043 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
15.12.2025
|
| Subjects: | |
| ISSN: | 0034-4257 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Forests are the key component of terrestrial ecosystems, playing a vital role in the global carbon and water cycles as well as in climate change. Satellite remote sensing imagery has the advantage of quantitatively monitoring and assessing the health status of forest canopies at large scales. With the improvement in spatial resolution of satellite sensors, it has become feasible to conduct quantitative research at high spatial resolutions (< 10 m). However, classic physical models that are based on simplified assumptions and only account for the radiative transfer process within the target pixel face challenges in supporting quantitative analysis at high-resolution scales, as high-resolution pixels are subject to significant radiative influences from adjacent pixels. In this study, we propose a high-spatial resolution forest canopy reflectance model, APPLE-GO, which comprehensively considers the shading effect and cross-radiation caused by adjacent pixels. The two-dimensional path length distribution (2-PLD) method is used to calculate the area fractions of each component, while shading factors are introduced to quantitatively calculate the reductions in the area fractions of sunlit components due to adjacent pixels. Multiple scattering energy is calculated based on the spectral invariant theory and the eight-neighborhood convolution algorithm. The bi-directional reflectance factor (BRF) calculated by the APPLE-GO model was evaluated against the three-dimensional (3D) radiative transfer model LESS, yielding RMSEs/RRMSEs of 0.008/10.2 % and 0.054/15.9 % in the red and near-infrared (NIR) bands, respectively. The model was also validated with satellite observations, showing RMSEs below 0.01 (RRMSE <27 %) for larch forests and under 0.017 (RRMSE <35 %) for mixed forests in the visible bands. These results demonstrate that the proposed model can accurately calculate the BRF in the nadir viewing direction, highlighting its potential for extracting vegetation parameters from high-resolution remotely sensed imagery.
•A high-resolution forest canopy reflectance model APPLE-GO is developed.•Radiative influence of adjacent pixels is analytically expressed.•2D path length distribution is introduced to calculate component area fractions.•Shading factors are introduced to quantify the shading effect of adjacent pixels.•APPLE-GO can separate BRF contributions of the target pixel and adjacent pixels. |
|---|---|
| AbstractList | Forests are the key component of terrestrial ecosystems, playing a vital role in the global carbon and water cycles as well as in climate change. Satellite remote sensing imagery has the advantage of quantitatively monitoring and assessing the health status of forest canopies at large scales. With the improvement in spatial resolution of satellite sensors, it has become feasible to conduct quantitative research at high spatial resolutions (< 10 m). However, classic physical models that are based on simplified assumptions and only account for the radiative transfer process within the target pixel face challenges in supporting quantitative analysis at high-resolution scales, as high-resolution pixels are subject to significant radiative influences from adjacent pixels. In this study, we propose a high-spatial resolution forest canopy reflectance model, APPLE-GO, which comprehensively considers the shading effect and cross-radiation caused by adjacent pixels. The two-dimensional path length distribution (2-PLD) method is used to calculate the area fractions of each component, while shading factors are introduced to quantitatively calculate the reductions in the area fractions of sunlit components due to adjacent pixels. Multiple scattering energy is calculated based on the spectral invariant theory and the eight-neighborhood convolution algorithm. The bi-directional reflectance factor (BRF) calculated by the APPLE-GO model was evaluated against the three-dimensional (3D) radiative transfer model LESS, yielding RMSEs/RRMSEs of 0.008/10.2 % and 0.054/15.9 % in the red and near-infrared (NIR) bands, respectively. The model was also validated with satellite observations, showing RMSEs below 0.01 (RRMSE <27 %) for larch forests and under 0.017 (RRMSE <35 %) for mixed forests in the visible bands. These results demonstrate that the proposed model can accurately calculate the BRF in the nadir viewing direction, highlighting its potential for extracting vegetation parameters from high-resolution remotely sensed imagery.
•A high-resolution forest canopy reflectance model APPLE-GO is developed.•Radiative influence of adjacent pixels is analytically expressed.•2D path length distribution is introduced to calculate component area fractions.•Shading factors are introduced to quantify the shading effect of adjacent pixels.•APPLE-GO can separate BRF contributions of the target pixel and adjacent pixels. |
| ArticleNumber | 115043 |
| Author | Peng, Naijie Fan, Wenjie Ren, Huazhong Yang, Siqi Zhai, Dechao Yan, Guangjian Cao, Biao He, Qunchao Mu, Xihan Huang, Zhicheng |
| Author_xml | – sequence: 1 givenname: Qunchao surname: He fullname: He, Qunchao organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 2 givenname: Siqi surname: Yang fullname: Yang, Siqi organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 3 givenname: Naijie surname: Peng fullname: Peng, Naijie organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 4 givenname: Wenjie surname: Fan fullname: Fan, Wenjie email: fanwj@pku.edu.cn organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 5 givenname: Xihan surname: Mu fullname: Mu, Xihan organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 6 givenname: Biao surname: Cao fullname: Cao, Biao organization: State Key Laboratory of Remote Sensing Science, Advanced Interdisciplinary Institute of Satellite Applications, Beijing Normal University, Beijing 100875, China – sequence: 7 givenname: Dechao surname: Zhai fullname: Zhai, Dechao organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 8 givenname: Zhicheng surname: Huang fullname: Huang, Zhicheng organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 9 givenname: Huazhong surname: Ren fullname: Ren, Huazhong organization: Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China – sequence: 10 givenname: Guangjian surname: Yan fullname: Yan, Guangjian organization: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China |
| BookMark | eNp9kEFOwzAQRb0oEm3hAOx8gRTbSZwAq6oqBamoWcDacuxJ4yq1K9sFehKui6uyZjUa_fl_Zt4EjayzgNAdJTNKKL_fzXyAGSOsnFFakiIfoTEheZEVrKyu0SSEHSG0rCs6Rj_zplkvs9XmEb85DYOxW9ybbZ-Fg4xGDthDcMMxGmdx51ITsZLWHU5J6AZQUVoF-MvEHkPXpR67Ds_1TiqwETfmG4aAj-Ec28g0tAa7TWX5HcFq0HgFbg_RG4U3h2hUWhh7cP50g646OQS4_atT9PG8fF-8ZOvN6nUxX2eKlTRmlHdQFqytuGxlrRiv8xw0ZzmTGroqXUSrlnIuSa3zWnICnD3Uuk0yUboq8ymil1zlXQjpJ3HwZi_9SVAizjTFTiSa4kxTXGgmz9PFk36DTwNeBGUgcdDGJwJCO_OP-xezY4QR |
| Cites_doi | 10.1016/0034-4257(88)90026-0 10.1016/j.rse.2024.114027 10.1109/36.581987 10.1016/j.rse.2018.06.009 10.1016/j.jqsrt.2010.06.014 10.1016/j.rse.2023.113985 10.1080/02757250009532389 10.1016/j.rse.2014.06.015 10.1029/98JD02462 10.1016/j.rse.2021.112586 10.17520/biods.2018054 10.1109/TGRS.2005.852480 10.1038/s41558-020-00976-6 10.1016/j.rse.2023.113810 10.1016/j.rse.2006.08.001 10.1109/TGRS.1985.289389 10.3390/rs5084045 10.1016/j.rse.2023.113859 10.3390/rs10101508 10.3390/rs11091138 10.3390/f12081134 10.1007/s11430-016-5082-6 10.1029/97JD03380 10.1109/JSTARS.2015.2416254 10.1109/36.628798 10.1016/j.rse.2019.01.031 10.1016/j.rse.2014.08.032 10.1016/j.rse.2018.11.036 10.1109/LGRS.2023.3330867 10.1109/36.134078 10.1109/JSTARS.2013.2292817 10.3390/rs12061046 10.1016/j.rse.2012.06.018 10.1016/j.rse.2020.111841 10.1109/36.662732 10.1016/j.rse.2025.114616 10.1016/j.rse.2004.10.010 10.1016/j.isprsjprs.2018.07.015 10.3390/ijgi9080478 10.1016/j.rse.2019.01.005 10.3390/rs9121336 10.1016/j.agrformet.2017.06.009 10.1080/17538947.2021.1968047 10.1016/j.rse.2007.02.015 10.1016/j.scib.2023.05.004 10.1016/j.rse.2006.12.014 10.1109/36.3017 10.1016/j.rse.2016.05.013 10.3390/s90301768 10.1111/j.1365-3040.1992.tb00992.x 10.1109/JSTARS.2021.3130738 10.1109/36.921424 10.1080/0143116031000115166 10.1109/TGRS.1986.289706 10.1016/j.rse.2023.113497 10.11834/jrs.20219274 10.1016/S0034-4257(00)00129-2 10.1364/AO.18.003775 10.3390/rs8060501 10.1016/j.rse.2024.114048 10.1016/j.rse.2013.01.013 10.1016/j.rse.2019.111383 10.1038/s41586-020-2824-5 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.rse.2025.115043 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| ExternalDocumentID | 10_1016_j_rse_2025_115043 S003442572500447X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABUFD ACDAQ ACGFS ACIWK ACLOT ACLVX ACPRK ACRLP ACSBN ACVFH ADBBV ADCNI ADEZE ADVLN AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~HD ~KM 29P 41~ 6TJ 9DU AAQXK AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AEGFY AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP VOH WUQ XOL |
| ID | FETCH-LOGICAL-c251t-16fe542b76aba8c26833ed6232adef7ffe17b166a08d38a60e6298db2ad0cd753 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589366100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sat Nov 29 07:12:39 EST 2025 Sat Nov 08 18:20:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High spatial resolution Adjacent pixels Shading factors Two-dimensional path length distribution BRF Forest canopy APPLE-GO |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-16fe542b76aba8c26833ed6232adef7ffe17b166a08d38a60e6298db2ad0cd753 |
| ParticipantIDs | crossref_primary_10_1016_j_rse_2025_115043 elsevier_sciencedirect_doi_10_1016_j_rse_2025_115043 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-15 |
| PublicationDateYYYYMMDD | 2025-12-15 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Schneider, Leiterer, Morsdorf, Gastellu-Etchegorry, Lauret, Pfeifer, Schaepman (bb0235) 2014; 152 Knyazikhin, Schull, Xu, Myneni, Samanta (bb0155) 2011; 112 Yang, Peng, Zhai, Tao, He, Mu, Li, Fan (bb0320) 2023; 20 Alonzo, Dial, Schulz, Andersen, Lewis-Clark, Cook, Morton (bb0005) 2020; 245 Li, Jupp, Thankappan, Lymburner, Mueller, Lewis, Held (bb0185) 2012; 124 Huang, Knyazikhin, Dickinson, Rautiainen, Stenberg, Disney, Lewis, Cescatti, Tian, Verhoef, Martonchik, Myneni (bb0110) 2007; 106 Ihalainen, Juola, Mõttus (bb0125) 2023; 298 Knyazikhin, Martonchik, Myneni, Diner, Running (bb0150) 1998; 103 Verhoef (bb0275) 1998 Yin, Montesano, Cook, Chavanon, Neigh, Shean, Peng, Lauret, Mkaouar, Morton, Regaieg, Zhen, Gastellu-Etchegorry (bb0330) 2023; 298 Huang, Tian, Chen (bb0120) 2024; 16 Disney, Lewis, North (bb0055) 2000; 18 Huang, Qin, Liu (bb0115) 2013; 132 Li, Liu, Wang, Zhao, Qi, Zeng, Li, Guo, Yu, Lin, Liu, Huang (bb0195) 2025; 318 Qin, Gerstl (bb0220) 2000; 74 Han, Dian, Xia, Zhou, Jian, Yao, Wang, Li (bb0090) 2020; 9 Gastellu-Etchegorry, Martin, Gascon (bb0065) 2004; 25 Li, Strahler (bb0175) 1988; 26 Li, Yan, Mu, Tong, Zhou, Xie (bb0190) 2024; 303 Xiao, Chevallier, Gomez, Guanter, Hicke, Huete, Ichii, Ni, Pang, Rahman, Sun, Yuan, Zhang, Zhang (bb0305) 2019; 233 Wan, Ryu, Dechant, Lee, Zhong, Feng (bb0285) 2024; 304 Wu, Wen, Gastellu-Etchegorry, Liu, You, Xiao, Hao, Lin, Yin (bb0300) 2019; 225 Knyazikhin, Kranigk, Myneni, Panfyorov, Gravenhorst (bb0145) 1998; 103 Song, Wang, Zhao, Yang, Lee, Guo, Detto, Alberton, Morellato, Nelson, Wu (bb0255) 2024; 304 Yin, Li, Wu, Fan, Zeng, Yan, Xu, Li, Liu (bb0325) 2018; 215 Wen, Liu, Tang, Dou, You, Xiao, Liu, Li (bb0290) 2015; 8 Chen, Leblanc (bb0045) 2001; 39 Hu, Yan, Mu, Luo (bb0100) 2014; 155 Zarco-Tejada, Hornero, Beck, Kattenborn, Kempeneers, Hernández-Clemente (bb0340) 2019; 223 Zeng, Xu, Yin, Wu, Hu, Yan, Yang, Song, Li (bb0345) 2018; 10 Hu, Bournez, Cheng, Jiang, Nerry, Landes, Saudreau, Kastendeuch, Najjar, Colin, Yan (bb0105) 2018; 144 Jia, Wang, Mao, Ren, Song, Zhao, Wang, Xiao, Wang (bb0135) 2023; 68 Li, Strahler (bb0180) 1992; 30 Mu, Hu, Zeng, McVicar, Ren, Song, Wang, Casa, Qi, Xie, Yan (bb0210) 2017; 246 Carmon, Berk, Bohn, Brodrick, Dozier, Johnson, Miller, Thompson, Turmon, Bachmann, Green, Eckert, Liggett, Nguyen, Ochoa, Okin, Samuels, Schimel, Song, Susiluoto (bb0025) 2023; 288 Torres, Rodes-Blanco, Viana-Soto, Nieto, García (bb0270) 2021; 12 Cao, Qi, Chen, Xiao, Liu, Li (bb0020) 2021; 14 Bian, Qi, Wu, Wang, Liu, Xu, Du, Cao, Li, Huang, Xiao, Liu (bb0010) 2021; 25 Li, Strahler (bb0165) 1985; GE-23 Qi, Xie, Yin, Yan, Gastellu-Etchegorry, Li, Zhang, Mu, Norford (bb0215) 2019; 221 Brandt, Tucker, Kariryaa, Rasmussen, Abel, Small, Chave, Rasmussen, Hiernaux, Diouf, Kergoat, Mertz, Igel, Gieseke, Schöning, Li, Melocik, Meyer, Sinno, Romero, Glennie, Montagu, Dendoncker, Fensholt (bb0015) 2020; 587 Cook, Corp, Nelson, Middleton, Morton, McCorkel, Masek, Ranson, Ly, Montesano (bb0050) 2013; 5 Guimarães, Pádua, Marques, Silva, Peres, Sousa (bb0080) 2020; 12 Yáñez-Rausell, Malenovský, Clevers, Schaepman (bb0315) 2014; 7 Roy, Huang, Houborg, Martins (bb0230) 2021; 264 Kuusk (bb0160) 1991 Wu, Li (bb0295) 2009; 9 Carvalho, Magalhães, Pena (bb0030) 2020 Mõttus (bb0205) 2007; 110 Smolander, Stenberg (bb0240) 2005; 94 Goldblatt, Rivera Ballesteros, Burney (bb0070) 2017; 9 Chen, Black (bb0035) 1992; 15 Stenberg, Mõttus, Rautiainen (bb0265) 2016; 183 Guo, Hu, Jiang, Jin, Wang, Guan, Yang, Li, Wu, Zhai, Liu, Su (bb0085) 2018; 26 Stenberg (bb0260) 2007; 109 Jiang, Yan, Tong, Cheng, Yang, Hu, Li, Mu, Xie, Zhang, Zhou, Morsdorf (bb0140) 2021; 14 Li, Strahler (bb0170) 1986; GE-24 Vermote, Tanre, Deuze, Herman, Morcette (bb0280) 1997; 35 Harris, Gibbs, Baccini, Birdsey, de Bruin, Farina, Fatoyinbo, Hansen, Herold, Houghton, Potapov, Suarez, Roman-Cuesta, Saatchi, Slay, Turubanova, Tyukavina (bb0095) 2021; 11 Fang (bb0060) 2023; 299 Soenen, Peddle, Coburn (bb0245) 2005; 43 Xu, Fan, Li, Zhao, Chen (bb0310) 2017; 60 Yue, Wang, Zhang, Chen (bb0335) 2008; 23 Song (bb0250) 2017 Chen, Leblanc (bb0040) 1997; 35 Ross, Marshak (bb0225) 1988; 24 Govaerts, Verstraete (bb0075) 1998; 36 Zhang, Qi, Wan, Wang, Xie, Wang, Yan (bb0350) 2016; 8 Jackson, Reginato, Pinter, Idso (bb0130) 1979; 18 McCabe, Miralles, Holmes, Fisher (bb0200) 2019; 11 Li (10.1016/j.rse.2025.115043_bb0195) 2025; 318 Guo (10.1016/j.rse.2025.115043_bb0085) 2018; 26 Stenberg (10.1016/j.rse.2025.115043_bb0265) 2016; 183 Huang (10.1016/j.rse.2025.115043_bb0115) 2013; 132 Li (10.1016/j.rse.2025.115043_bb0185) 2012; 124 Chen (10.1016/j.rse.2025.115043_bb0045) 2001; 39 Zeng (10.1016/j.rse.2025.115043_bb0345) 2018; 10 Song (10.1016/j.rse.2025.115043_bb0250) 2017 Huang (10.1016/j.rse.2025.115043_bb0110) 2007; 106 Li (10.1016/j.rse.2025.115043_bb0190) 2024; 303 Yin (10.1016/j.rse.2025.115043_bb0330) 2023; 298 Yang (10.1016/j.rse.2025.115043_bb0320) 2023; 20 Zarco-Tejada (10.1016/j.rse.2025.115043_bb0340) 2019; 223 Cook (10.1016/j.rse.2025.115043_bb0050) 2013; 5 Hu (10.1016/j.rse.2025.115043_bb0105) 2018; 144 Jackson (10.1016/j.rse.2025.115043_bb0130) 1979; 18 Cao (10.1016/j.rse.2025.115043_bb0020) 2021; 14 Torres (10.1016/j.rse.2025.115043_bb0270) 2021; 12 Soenen (10.1016/j.rse.2025.115043_bb0245) 2005; 43 Jiang (10.1016/j.rse.2025.115043_bb0140) 2021; 14 Jia (10.1016/j.rse.2025.115043_bb0135) 2023; 68 Wu (10.1016/j.rse.2025.115043_bb0295) 2009; 9 Li (10.1016/j.rse.2025.115043_bb0170) 1986; GE-24 Song (10.1016/j.rse.2025.115043_bb0255) 2024; 304 Li (10.1016/j.rse.2025.115043_bb0180) 1992; 30 Hu (10.1016/j.rse.2025.115043_bb0100) 2014; 155 Mõttus (10.1016/j.rse.2025.115043_bb0205) 2007; 110 Qi (10.1016/j.rse.2025.115043_bb0215) 2019; 221 Guimarães (10.1016/j.rse.2025.115043_bb0080) 2020; 12 Brandt (10.1016/j.rse.2025.115043_bb0015) 2020; 587 Carvalho (10.1016/j.rse.2025.115043_bb0030) 2020 Yin (10.1016/j.rse.2025.115043_bb0325) 2018; 215 Bian (10.1016/j.rse.2025.115043_bb0010) 2021; 25 Chen (10.1016/j.rse.2025.115043_bb0035) 1992; 15 Knyazikhin (10.1016/j.rse.2025.115043_bb0145) 1998; 103 Ihalainen (10.1016/j.rse.2025.115043_bb0125) 2023; 298 Schneider (10.1016/j.rse.2025.115043_bb0235) 2014; 152 Xiao (10.1016/j.rse.2025.115043_bb0305) 2019; 233 Fang (10.1016/j.rse.2025.115043_bb0060) 2023; 299 Yáñez-Rausell (10.1016/j.rse.2025.115043_bb0315) 2014; 7 Vermote (10.1016/j.rse.2025.115043_bb0280) 1997; 35 Han (10.1016/j.rse.2025.115043_bb0090) 2020; 9 Stenberg (10.1016/j.rse.2025.115043_bb0260) 2007; 109 Qin (10.1016/j.rse.2025.115043_bb0220) 2000; 74 Wu (10.1016/j.rse.2025.115043_bb0300) 2019; 225 Li (10.1016/j.rse.2025.115043_bb0175) 1988; 26 Knyazikhin (10.1016/j.rse.2025.115043_bb0150) 1998; 103 Zhang (10.1016/j.rse.2025.115043_bb0350) 2016; 8 Harris (10.1016/j.rse.2025.115043_bb0095) 2021; 11 Ross (10.1016/j.rse.2025.115043_bb0225) 1988; 24 Chen (10.1016/j.rse.2025.115043_bb0040) 1997; 35 Goldblatt (10.1016/j.rse.2025.115043_bb0070) 2017; 9 Alonzo (10.1016/j.rse.2025.115043_bb0005) 2020; 245 Govaerts (10.1016/j.rse.2025.115043_bb0075) 1998; 36 Knyazikhin (10.1016/j.rse.2025.115043_bb0155) 2011; 112 Wan (10.1016/j.rse.2025.115043_bb0285) 2024; 304 Mu (10.1016/j.rse.2025.115043_bb0210) 2017; 246 Roy (10.1016/j.rse.2025.115043_bb0230) 2021; 264 McCabe (10.1016/j.rse.2025.115043_bb0200) 2019; 11 Li (10.1016/j.rse.2025.115043_bb0165) 1985; GE-23 Yue (10.1016/j.rse.2025.115043_bb0335) 2008; 23 Kuusk (10.1016/j.rse.2025.115043_bb0160) 1991 Wen (10.1016/j.rse.2025.115043_bb0290) 2015; 8 Verhoef (10.1016/j.rse.2025.115043_bb0275) 1998 Huang (10.1016/j.rse.2025.115043_bb0120) 2024; 16 Carmon (10.1016/j.rse.2025.115043_bb0025) 2023; 288 Xu (10.1016/j.rse.2025.115043_bb0310) 2017; 60 Gastellu-Etchegorry (10.1016/j.rse.2025.115043_bb0065) 2004; 25 Disney (10.1016/j.rse.2025.115043_bb0055) 2000; 18 Smolander (10.1016/j.rse.2025.115043_bb0240) 2005; 94 |
| References_xml | – volume: 25 start-page: 559 year: 2021 end-page: 576 ident: bb0010 article-title: A review on the development and application of three dimensional computer simulation mode of optical remote sensing publication-title: Natl. Remote Sens. Bull. – volume: 26 start-page: 161 year: 1988 end-page: 170 ident: bb0175 article-title: Modeling the gap probability of a discontinuous vegetation canopy publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 144 start-page: 357 year: 2018 end-page: 368 ident: bb0105 article-title: Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 11 start-page: 234 year: 2021 end-page: 240 ident: bb0095 article-title: Global maps of twenty-first century forest carbon fluxes publication-title: Nat. Clim. Chang. – volume: 103 start-page: 32257 year: 1998 end-page: 32275 ident: bb0150 article-title: Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data publication-title: J. Geophys. Res.-Atmos. – volume: 215 start-page: 184 year: 2018 end-page: 198 ident: bb0325 article-title: PLC: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction publication-title: Remote Sens. Environ. – volume: 106 start-page: 106 year: 2007 end-page: 122 ident: bb0110 article-title: Canopy spectral invariants for remote sensing and model applications publication-title: Remote Sens. Environ. – volume: 109 start-page: 221 year: 2007 end-page: 224 ident: bb0260 article-title: Simple analytical formula for calculating average photon recollision probability in vegetation canopies publication-title: Remote Sens. Environ. – year: 2020 ident: bb0030 article-title: Spatial and temporal variability regarding forest: From tree to the landscape publication-title: Spatial Variability in Environmental Science—Patterns, Processes, and Analyses – volume: 103 start-page: 6133 year: 1998 end-page: 6144 ident: bb0145 article-title: Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies publication-title: J. Geophys. Res.-Atmos. – year: 1998 ident: bb0275 article-title: Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies – volume: 8 year: 2016 ident: bb0350 article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation publication-title: Remote Sens – volume: 36 start-page: 493 year: 1998 end-page: 505 ident: bb0075 article-title: Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 1046 year: 2020 ident: bb0080 article-title: Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities publication-title: Remote Sens – volume: 318 year: 2025 ident: bb0195 article-title: Seeing into individual trees: tree-specific retrieval of tree-level traits using 3D radiative transfer model and spatial adjacency constraint from UAV multispectral imagery publication-title: Remote Sens. Environ. – volume: 223 start-page: 320 year: 2019 end-page: 335 ident: bb0340 article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline publication-title: Remote Sens. Environ. – volume: 233 year: 2019 ident: bb0305 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. – volume: 35 start-page: 675 year: 1997 end-page: 686 ident: bb0280 article-title: Second simulation of the satellite signal in the solar Spectrum, 6S: an overview publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 18 start-page: 3775 year: 1979 ident: bb0130 article-title: Plant canopy information extraction from composite scene reflectance of row crops publication-title: Appl. Opt. – volume: 303 year: 2024 ident: bb0190 article-title: Modeling the hotspot effect for vegetation canopies based on path length distribution publication-title: Remote Sens. Environ. – year: 2017 ident: bb0250 article-title: Vegetation Ecology – volume: 124 start-page: 756 year: 2012 end-page: 770 ident: bb0185 article-title: A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain publication-title: Remote Sens. Environ. – volume: 20 start-page: 1 year: 2023 end-page: 5 ident: bb0320 article-title: Fisheye-based forest LAI field measurements for remote sensing validation at high spatial resolution publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 26 start-page: 789 year: 2018 end-page: 806 ident: bb0085 article-title: Advances in remote sensing application for biodiversity research publication-title: Biodivers. Sci. – start-page: 139 year: 1991 end-page: 159 ident: bb0160 article-title: The hot spot effect in plant canopy reflectance publication-title: Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology – volume: 14 start-page: 12386 year: 2021 end-page: 12402 ident: bb0140 article-title: Correcting crown-level clumping effect for improving leaf area index retrieval from large-footprint LiDAR: a study based on the simulated waveform and GLAS data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 24 start-page: 213 year: 1988 end-page: 225 ident: bb0225 article-title: Calculation of canopy bidirectional reflectance using the Monte Carlo method publication-title: Remote Sens. Environ. – volume: 152 start-page: 235 year: 2014 end-page: 250 ident: bb0235 article-title: Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data publication-title: Remote Sens. Environ. – volume: 7 start-page: 406 year: 2014 end-page: 420 ident: bb0315 article-title: Minimizing measurement uncertainties of coniferous needle-leaf optical properties. Part II: experimental setup and error analysis publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 304 year: 2024 ident: bb0285 article-title: Improving retrieval of leaf chlorophyll content from Sentinel-2 and Landsat-7/8 imagery by correcting for canopy structural effects publication-title: Remote Sens. Environ. – volume: 10 year: 2018 ident: bb0345 article-title: Spectral invariant provides a practical modeling approach for future biophysical variable estimations publication-title: Remote Sens – volume: 298 year: 2023 ident: bb0125 article-title: Physically based illumination correction for sub-centimeter spatial resolution hyperspectral data publication-title: Remote Sens. Environ. – volume: 16 year: 2024 ident: bb0120 article-title: Evaluating the point cloud of individual trees generated from images based on neural radiance fields (NeRF) method publication-title: Remote Sens – volume: 183 start-page: 98 year: 2016 end-page: 108 ident: bb0265 article-title: Photon recollision probability in modelling the radiation regime of canopies—a review publication-title: Remote Sens. Environ. – volume: 132 start-page: 221 year: 2013 end-page: 237 ident: bb0115 article-title: RAPID: a radiosity applicable to porous IndiviDual objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. – volume: 12 start-page: 1134 year: 2021 ident: bb0270 article-title: The role of remote sensing for the assessment and monitoring of forest health: a systematic evidence synthesis publication-title: Forests – volume: 68 start-page: 1306 year: 2023 end-page: 1316 ident: bb0135 article-title: Mapping global distribution of mangrove forests at 10-m resolution publication-title: Sci. Bull. – volume: 30 start-page: 276 year: 1992 end-page: 292 ident: bb0180 article-title: Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 463 year: 2017 end-page: 477 ident: bb0310 article-title: A unified model of bidirectional reflectance distribution function for the vegetation canopy publication-title: Sci. China-Earth Sci. – volume: 43 start-page: 2148 year: 2005 end-page: 2159 ident: bb0245 article-title: SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 74 start-page: 145 year: 2000 end-page: 162 ident: bb0220 article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime publication-title: Remote Sens. Environ. – volume: 18 start-page: 163 year: 2000 end-page: 196 ident: bb0055 article-title: Monte Carlo ray tracing in optical canopy reflectance modelling publication-title: Remote Sens. Rev. – volume: GE-23 start-page: 705 year: 1985 end-page: 721 ident: bb0165 article-title: Geometric-optical modeling of a conifer forest canopy publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 110 start-page: 176 year: 2007 end-page: 185 ident: bb0205 article-title: Photon recollision probability in discrete crown canopies publication-title: Remote Sens. Environ. – volume: 299 year: 2023 ident: bb0060 article-title: Photon recollision probability and the spectral invariant theory: principles, methods, and applications publication-title: Remote Sens. Environ. – volume: 9 start-page: 478 year: 2020 ident: bb0090 article-title: Comparing fully deep convolutional neural networks for land cover classification with high-spatial-resolution Gaofen-2 images publication-title: ISPRS Int. J. Geo Inf. – volume: 94 start-page: 355 year: 2005 end-page: 363 ident: bb0240 article-title: Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies publication-title: Remote Sens. Environ. – volume: 245 year: 2020 ident: bb0005 article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar publication-title: Remote Sens. Environ. – volume: 221 start-page: 695 year: 2019 end-page: 706 ident: bb0215 article-title: LESS: LargE-scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. – volume: 35 start-page: 1316 year: 1997 end-page: 1337 ident: bb0040 article-title: A four-scale bidirectional reflectance model based on canopy architecture publication-title: IEEE Trans. Geosci. Remote Sens. – volume: GE-24 start-page: 906 year: 1986 end-page: 919 ident: bb0170 article-title: Geometric-optical bidirectional reflectance modeling of a conifer forest canopy publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 15 start-page: 421 year: 1992 end-page: 429 ident: bb0035 article-title: Defining leaf area index for non-flat leaves publication-title: Plant Cell Environ. – volume: 11 start-page: 1138 year: 2019 ident: bb0200 article-title: Advances in the remote sensing of terrestrial evaporation publication-title: Remote Sens – volume: 587 start-page: 78 year: 2020 end-page: 82 ident: bb0015 article-title: An unexpectedly large count of trees in the west African Sahara and Sahel publication-title: Nature – volume: 8 start-page: 1506 year: 2015 end-page: 1518 ident: bb0290 article-title: Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe river basin, China publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 14 start-page: 1411 year: 2021 end-page: 1432 ident: bb0020 article-title: Fine scale optical remote sensing experiment of mixed stand over complex terrain (FOREST) in the Genhe reserve area: objective, observation and a case study publication-title: Int. J. Digit. Earth – volume: 155 start-page: 239 year: 2014 end-page: 247 ident: bb0100 article-title: Indirect measurement of leaf area index on the basis of path length distribution publication-title: Remote Sens. Environ. – volume: 264 year: 2021 ident: bb0230 article-title: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery publication-title: Remote Sens. Environ. – volume: 23 start-page: 471 year: 2008 end-page: 478 ident: bb0335 article-title: Applications of hyperspectral remote sensing in ecosystem: a review publication-title: Remote Sens. Technol. Appl. – volume: 288 year: 2023 ident: bb0025 article-title: Shape from spectra publication-title: Remote Sens. Environ. – volume: 246 start-page: 162 year: 2017 end-page: 177 ident: bb0210 article-title: Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components publication-title: Agric. For. Meteorol. – volume: 112 start-page: 727 year: 2011 end-page: 735 ident: bb0155 article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 304 year: 2024 ident: bb0255 article-title: Scale matters: spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model publication-title: Remote Sens. Environ. – volume: 39 start-page: 1061 year: 2001 end-page: 1071 ident: bb0045 article-title: Multiple-scattering scheme useful for geometric optical modeling publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 year: 2017 ident: bb0070 article-title: High spatial resolution visual band imagery outperforms medium resolution spectral imagery for ecosystem assessment in the semi-arid Brazilian Sertão publication-title: Remote Sens – volume: 225 start-page: 403 year: 2019 end-page: 415 ident: bb0300 article-title: The definition of remotely sensed reflectance quantities suitable for rugged terrain publication-title: Remote Sens. Environ. – volume: 25 start-page: 73 year: 2004 end-page: 96 ident: bb0065 article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget publication-title: Int. J. Remote Sens. – volume: 5 start-page: 4045 year: 2013 end-page: 4066 ident: bb0050 article-title: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager publication-title: Remote Sens – volume: 9 year: 2009 ident: bb0295 article-title: Scale issues in remote sensing: a review on analysis, processing and modeling publication-title: Sensors – volume: 298 year: 2023 ident: bb0330 article-title: Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data publication-title: Remote Sens. Environ. – volume: 16 year: 2024 ident: 10.1016/j.rse.2025.115043_bb0120 article-title: Evaluating the point cloud of individual trees generated from images based on neural radiance fields (NeRF) method publication-title: Remote Sens – volume: 298 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0330 article-title: Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data publication-title: Remote Sens. Environ. – volume: 24 start-page: 213 year: 1988 ident: 10.1016/j.rse.2025.115043_bb0225 article-title: Calculation of canopy bidirectional reflectance using the Monte Carlo method publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90026-0 – volume: 304 year: 2024 ident: 10.1016/j.rse.2025.115043_bb0255 article-title: Scale matters: spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114027 – volume: 35 start-page: 675 year: 1997 ident: 10.1016/j.rse.2025.115043_bb0280 article-title: Second simulation of the satellite signal in the solar Spectrum, 6S: an overview publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.581987 – year: 2020 ident: 10.1016/j.rse.2025.115043_bb0030 article-title: Spatial and temporal variability regarding forest: From tree to the landscape – volume: 215 start-page: 184 year: 2018 ident: 10.1016/j.rse.2025.115043_bb0325 article-title: PLC: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.009 – volume: 112 start-page: 727 year: 2011 ident: 10.1016/j.rse.2025.115043_bb0155 article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2010.06.014 – volume: 303 year: 2024 ident: 10.1016/j.rse.2025.115043_bb0190 article-title: Modeling the hotspot effect for vegetation canopies based on path length distribution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113985 – volume: 18 start-page: 163 year: 2000 ident: 10.1016/j.rse.2025.115043_bb0055 article-title: Monte Carlo ray tracing in optical canopy reflectance modelling publication-title: Remote Sens. Rev. doi: 10.1080/02757250009532389 – volume: 152 start-page: 235 year: 2014 ident: 10.1016/j.rse.2025.115043_bb0235 article-title: Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.015 – volume: 103 start-page: 32257 year: 1998 ident: 10.1016/j.rse.2025.115043_bb0150 article-title: Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/98JD02462 – volume: 264 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0230 article-title: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112586 – volume: 26 start-page: 789 year: 2018 ident: 10.1016/j.rse.2025.115043_bb0085 article-title: Advances in remote sensing application for biodiversity research publication-title: Biodivers. Sci. doi: 10.17520/biods.2018054 – start-page: 139 year: 1991 ident: 10.1016/j.rse.2025.115043_bb0160 article-title: The hot spot effect in plant canopy reflectance – volume: 43 start-page: 2148 year: 2005 ident: 10.1016/j.rse.2025.115043_bb0245 article-title: SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852480 – volume: 11 start-page: 234 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0095 article-title: Global maps of twenty-first century forest carbon fluxes publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00976-6 – volume: 298 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0125 article-title: Physically based illumination correction for sub-centimeter spatial resolution hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113810 – volume: 106 start-page: 106 year: 2007 ident: 10.1016/j.rse.2025.115043_bb0110 article-title: Canopy spectral invariants for remote sensing and model applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.08.001 – volume: GE-23 start-page: 705 year: 1985 ident: 10.1016/j.rse.2025.115043_bb0165 article-title: Geometric-optical modeling of a conifer forest canopy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1985.289389 – volume: 5 start-page: 4045 year: 2013 ident: 10.1016/j.rse.2025.115043_bb0050 article-title: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager publication-title: Remote Sens doi: 10.3390/rs5084045 – volume: 299 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0060 article-title: Photon recollision probability and the spectral invariant theory: principles, methods, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113859 – volume: 10 year: 2018 ident: 10.1016/j.rse.2025.115043_bb0345 article-title: Spectral invariant provides a practical modeling approach for future biophysical variable estimations publication-title: Remote Sens doi: 10.3390/rs10101508 – volume: 11 start-page: 1138 year: 2019 ident: 10.1016/j.rse.2025.115043_bb0200 article-title: Advances in the remote sensing of terrestrial evaporation publication-title: Remote Sens doi: 10.3390/rs11091138 – volume: 12 start-page: 1134 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0270 article-title: The role of remote sensing for the assessment and monitoring of forest health: a systematic evidence synthesis publication-title: Forests doi: 10.3390/f12081134 – volume: 60 start-page: 463 year: 2017 ident: 10.1016/j.rse.2025.115043_bb0310 article-title: A unified model of bidirectional reflectance distribution function for the vegetation canopy publication-title: Sci. China-Earth Sci. doi: 10.1007/s11430-016-5082-6 – volume: 103 start-page: 6133 year: 1998 ident: 10.1016/j.rse.2025.115043_bb0145 article-title: Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/97JD03380 – volume: 8 start-page: 1506 year: 2015 ident: 10.1016/j.rse.2025.115043_bb0290 article-title: Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe river basin, China publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2015.2416254 – volume: 35 start-page: 1316 year: 1997 ident: 10.1016/j.rse.2025.115043_bb0040 article-title: A four-scale bidirectional reflectance model based on canopy architecture publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.628798 – volume: 223 start-page: 320 year: 2019 ident: 10.1016/j.rse.2025.115043_bb0340 article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.031 – volume: 155 start-page: 239 year: 2014 ident: 10.1016/j.rse.2025.115043_bb0100 article-title: Indirect measurement of leaf area index on the basis of path length distribution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.032 – volume: 221 start-page: 695 year: 2019 ident: 10.1016/j.rse.2025.115043_bb0215 article-title: LESS: LargE-scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.036 – volume: 20 start-page: 1 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0320 article-title: Fisheye-based forest LAI field measurements for remote sensing validation at high spatial resolution publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2023.3330867 – volume: 30 start-page: 276 year: 1992 ident: 10.1016/j.rse.2025.115043_bb0180 article-title: Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134078 – volume: 7 start-page: 406 year: 2014 ident: 10.1016/j.rse.2025.115043_bb0315 article-title: Minimizing measurement uncertainties of coniferous needle-leaf optical properties. Part II: experimental setup and error analysis publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2292817 – year: 1998 ident: 10.1016/j.rse.2025.115043_bb0275 – volume: 12 start-page: 1046 year: 2020 ident: 10.1016/j.rse.2025.115043_bb0080 article-title: Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities publication-title: Remote Sens doi: 10.3390/rs12061046 – volume: 124 start-page: 756 year: 2012 ident: 10.1016/j.rse.2025.115043_bb0185 article-title: A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.018 – volume: 245 year: 2020 ident: 10.1016/j.rse.2025.115043_bb0005 article-title: Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111841 – volume: 36 start-page: 493 year: 1998 ident: 10.1016/j.rse.2025.115043_bb0075 article-title: Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.662732 – volume: 318 year: 2025 ident: 10.1016/j.rse.2025.115043_bb0195 article-title: Seeing into individual trees: tree-specific retrieval of tree-level traits using 3D radiative transfer model and spatial adjacency constraint from UAV multispectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2025.114616 – volume: 94 start-page: 355 year: 2005 ident: 10.1016/j.rse.2025.115043_bb0240 article-title: Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.10.010 – volume: 144 start-page: 357 year: 2018 ident: 10.1016/j.rse.2025.115043_bb0105 article-title: Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.015 – volume: 9 start-page: 478 year: 2020 ident: 10.1016/j.rse.2025.115043_bb0090 article-title: Comparing fully deep convolutional neural networks for land cover classification with high-spatial-resolution Gaofen-2 images publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi9080478 – volume: 225 start-page: 403 year: 2019 ident: 10.1016/j.rse.2025.115043_bb0300 article-title: The definition of remotely sensed reflectance quantities suitable for rugged terrain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.005 – year: 2017 ident: 10.1016/j.rse.2025.115043_bb0250 – volume: 9 year: 2017 ident: 10.1016/j.rse.2025.115043_bb0070 article-title: High spatial resolution visual band imagery outperforms medium resolution spectral imagery for ecosystem assessment in the semi-arid Brazilian Sertão publication-title: Remote Sens doi: 10.3390/rs9121336 – volume: 246 start-page: 162 year: 2017 ident: 10.1016/j.rse.2025.115043_bb0210 article-title: Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.06.009 – volume: 14 start-page: 1411 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0020 article-title: Fine scale optical remote sensing experiment of mixed stand over complex terrain (FOREST) in the Genhe reserve area: objective, observation and a case study publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2021.1968047 – volume: 110 start-page: 176 year: 2007 ident: 10.1016/j.rse.2025.115043_bb0205 article-title: Photon recollision probability in discrete crown canopies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.015 – volume: 68 start-page: 1306 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0135 article-title: Mapping global distribution of mangrove forests at 10-m resolution publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.05.004 – volume: 109 start-page: 221 year: 2007 ident: 10.1016/j.rse.2025.115043_bb0260 article-title: Simple analytical formula for calculating average photon recollision probability in vegetation canopies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.12.014 – volume: 26 start-page: 161 year: 1988 ident: 10.1016/j.rse.2025.115043_bb0175 article-title: Modeling the gap probability of a discontinuous vegetation canopy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.3017 – volume: 183 start-page: 98 year: 2016 ident: 10.1016/j.rse.2025.115043_bb0265 article-title: Photon recollision probability in modelling the radiation regime of canopies—a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.05.013 – volume: 9 year: 2009 ident: 10.1016/j.rse.2025.115043_bb0295 article-title: Scale issues in remote sensing: a review on analysis, processing and modeling publication-title: Sensors doi: 10.3390/s90301768 – volume: 15 start-page: 421 year: 1992 ident: 10.1016/j.rse.2025.115043_bb0035 article-title: Defining leaf area index for non-flat leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00992.x – volume: 14 start-page: 12386 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0140 article-title: Correcting crown-level clumping effect for improving leaf area index retrieval from large-footprint LiDAR: a study based on the simulated waveform and GLAS data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3130738 – volume: 23 start-page: 471 year: 2008 ident: 10.1016/j.rse.2025.115043_bb0335 article-title: Applications of hyperspectral remote sensing in ecosystem: a review publication-title: Remote Sens. Technol. Appl. – volume: 39 start-page: 1061 year: 2001 ident: 10.1016/j.rse.2025.115043_bb0045 article-title: Multiple-scattering scheme useful for geometric optical modeling publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921424 – volume: 25 start-page: 73 year: 2004 ident: 10.1016/j.rse.2025.115043_bb0065 article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000115166 – volume: GE-24 start-page: 906 year: 1986 ident: 10.1016/j.rse.2025.115043_bb0170 article-title: Geometric-optical bidirectional reflectance modeling of a conifer forest canopy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1986.289706 – volume: 288 year: 2023 ident: 10.1016/j.rse.2025.115043_bb0025 article-title: Shape from spectra publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113497 – volume: 25 start-page: 559 year: 2021 ident: 10.1016/j.rse.2025.115043_bb0010 article-title: A review on the development and application of three dimensional computer simulation mode of optical remote sensing publication-title: Natl. Remote Sens. Bull. doi: 10.11834/jrs.20219274 – volume: 74 start-page: 145 year: 2000 ident: 10.1016/j.rse.2025.115043_bb0220 article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00129-2 – volume: 18 start-page: 3775 year: 1979 ident: 10.1016/j.rse.2025.115043_bb0130 article-title: Plant canopy information extraction from composite scene reflectance of row crops publication-title: Appl. Opt. doi: 10.1364/AO.18.003775 – volume: 8 year: 2016 ident: 10.1016/j.rse.2025.115043_bb0350 article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation publication-title: Remote Sens doi: 10.3390/rs8060501 – volume: 304 year: 2024 ident: 10.1016/j.rse.2025.115043_bb0285 article-title: Improving retrieval of leaf chlorophyll content from Sentinel-2 and Landsat-7/8 imagery by correcting for canopy structural effects publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114048 – volume: 132 start-page: 221 year: 2013 ident: 10.1016/j.rse.2025.115043_bb0115 article-title: RAPID: a radiosity applicable to porous IndiviDual objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.013 – volume: 233 year: 2019 ident: 10.1016/j.rse.2025.115043_bb0305 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111383 – volume: 587 start-page: 78 year: 2020 ident: 10.1016/j.rse.2025.115043_bb0015 article-title: An unexpectedly large count of trees in the west African Sahara and Sahel publication-title: Nature doi: 10.1038/s41586-020-2824-5 |
| SSID | ssj0015871 |
| Score | 2.4934328 |
| Snippet | Forests are the key component of terrestrial ecosystems, playing a vital role in the global carbon and water cycles as well as in climate change. Satellite... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 115043 |
| SubjectTerms | Adjacent pixels APPLE-GO BRF Forest canopy High spatial resolution Shading factors Two-dimensional path length distribution |
| Title | APPLE-GO: Modeling high-spatial resolution forest canopy reflectance with effect of Adjacent Pixels using Path Length Extended Geometric Optical theory |
| URI | https://dx.doi.org/10.1016/j.rse.2025.115043 |
| Volume | 331 |
| WOSCitedRecordID | wos001589366100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0015871 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FFFQ2CAJVy0uzYEXkyhnb4wm7CKUFVKUGFZGdZY_H4AickKRV-iX8Bp_Ivb4eOxQq0QUbJxonk5HOyX35Phh7IbSrsceLo4QGByXzXSfNhHYQfanzUA5zXQ2bCCcTNZ0Oo07np62FufgalqXabIaL_wo1rAHYWDp7A7ibTWEB3gPocAXY4fpPwI-i6GTsHJ-ir4-Tzqp6c-xK7Kwwe7pq5G9PgEmGoBYw9Wu-uIQbOUbxqyqCKkBL2R6VtZrNEkzk7EfFBtRp_7yKMURgP_ZPTPkZXsZ1OB3D7N9wTpfuny4oUr62DQAaO_iDAYqY_grT5ynteqviro3PIgHeg-b9kswb8WQD3MX3opXrtDZJilnRMPWIYrufTGkX6-iGCDBThOo7rcT2fAflyrbEtkVeJHPRpqVWT3-oA4pMzA6XK-yIKoLD9rO_t96-ohKbREWbAzeLYYsYt4hpi1tsR4TBUHXZzujtePqueXIVqJCmNNbntk_Sq5zCK-f4uy20Zd-c3Wf3aseEj4hQD1jHlD22N25RgZu1Ilj12C6ATL3Oe-zOcTUd-vIh-2G594pb5vFt5vGWeZyYx4l5fIt5HJnHiXl8nnPLPE7M4xXzODKPE_O4ZR5vmMdr5nFi3iP28Wh89vqNU0_-cDTY22tnIHMT-CINZZImSgupPM9kYKmLJDN5CCcYhOlAysRVmacS6RophipL4barM_DA91i3nJdmn3FwT4xS6BcI7eeDQeq7qedpqaSfh9qVB-ylxSBeUIOX-FrUD5hvUYprC5UszxgYd_3XHt_kN56wu-0f4Snrrpfn5hm7rS_WxWr5vKbbL2__tKk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPLE-GO%3A+Modeling+high-spatial+resolution+forest+canopy+reflectance+with+effect+of+Adjacent+Pixels+using+Path+Length+Extended+Geometric+Optical+theory&rft.jtitle=Remote+sensing+of+environment&rft.au=He%2C+Qunchao&rft.au=Yang%2C+Siqi&rft.au=Peng%2C+Naijie&rft.au=Fan%2C+Wenjie&rft.date=2025-12-15&rft.issn=0034-4257&rft.volume=331&rft.spage=115043&rft_id=info:doi/10.1016%2Fj.rse.2025.115043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2025_115043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |