Finite element method analysis of flutter: Comparing Scott–Vogelius and Taylor–Hood elements

This paper focuses on the numerical simulation of the fluid–structure interaction (FSI) problem of an incompressible flow and a vibrating airfoil. The fluid flow is governed by the incompressible Navier–Stokes equations. The finite element method (FEM) is employed for the discretization of the weak...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 469; p. 116662
Main Authors: Vacek, Karel, Sváček, Petr
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2025
Subjects:
ISSN:0377-0427
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses on the numerical simulation of the fluid–structure interaction (FSI) problem of an incompressible flow and a vibrating airfoil. The fluid flow is governed by the incompressible Navier–Stokes equations. The finite element method (FEM) is employed for the discretization of the weak form of equations. The main attention is paid to comparison of performance for different choices of finite element spaces together with a proper stabilization method. Two choices of the couple of finite element spaces are considered for velocity–pressure approximations. The first one is the standard Taylor–Hood finite element, the second one is the Scott–Vogelius element consisting of continuous piecewise quadratic velocities combined with discontinuous piecewise linear pressures. The barycentric refined mesh is used for the case of the Scott–Vogelius element in order to satisfy the Babuška–Brezzi inf-sup condition. The finite element approximations further require additional stabilization of the dominating convection. Here, the performance of the stream-line upwind Petrov–Galerkin (SUPG) stabilization, the SUPG together with the grad-div stabilization, the streamline-diffusion/local-projection stabilization approach is tested. The numerical results are presented and compared with the available data.
AbstractList This paper focuses on the numerical simulation of the fluid–structure interaction (FSI) problem of an incompressible flow and a vibrating airfoil. The fluid flow is governed by the incompressible Navier–Stokes equations. The finite element method (FEM) is employed for the discretization of the weak form of equations. The main attention is paid to comparison of performance for different choices of finite element spaces together with a proper stabilization method. Two choices of the couple of finite element spaces are considered for velocity–pressure approximations. The first one is the standard Taylor–Hood finite element, the second one is the Scott–Vogelius element consisting of continuous piecewise quadratic velocities combined with discontinuous piecewise linear pressures. The barycentric refined mesh is used for the case of the Scott–Vogelius element in order to satisfy the Babuška–Brezzi inf-sup condition. The finite element approximations further require additional stabilization of the dominating convection. Here, the performance of the stream-line upwind Petrov–Galerkin (SUPG) stabilization, the SUPG together with the grad-div stabilization, the streamline-diffusion/local-projection stabilization approach is tested. The numerical results are presented and compared with the available data.
ArticleNumber 116662
Author Vacek, Karel
Sváček, Petr
Author_xml – sequence: 1
  givenname: Karel
  orcidid: 0000-0002-4350-0553
  surname: Vacek
  fullname: Vacek, Karel
  email: karel.vacek@fs.cvut.cz
  organization: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
– sequence: 2
  givenname: Petr
  orcidid: 0000-0003-1078-7882
  surname: Sváček
  fullname: Sváček, Petr
  organization: Czech Technical University in Prague, Faculty of Mechanical Engineering, Dep. of Technical Mathematics, Karlovo nam. 13, Praha 2, Czech Republic
BookMark eNp9kEFOwzAQAH0oEm3hAdz8gQSvkzgJnFBFKVIlDhSuxnU2xVViV7aL1Bt_4Ie8hFTtmdNKq53RaiZkZJ1FQm6ApcBA3G5TrfqUM16kAEIIPiJjlpVlwnJeXpJJCFvGmKghH5OPubEmIsUOe7SR9hg_XUOVVd0hmEBdS9tuHyP6Ozpz_U55Yzf0VbsYf79_3t0GO7MPw31DV-rQOT9sF24wnIXhily0qgt4fZ5T8jZ_XM0WyfLl6Xn2sEw0LyAmwLBe13mRK85zRNBMqYJXTQ0ci7ZUbY4Vy6CpgK1FpVvOmVoLAVUtcl1UkE0JnLzauxA8tnLnTa_8QQKTxyxyK4cs8phFnrIMzP2JweGxL4NeBm3QamyMRx1l48w_9B_0t3Ed
Cites_doi 10.1016/0045-7825(92)90085-X
10.1016/j.cma.2008.08.016
10.1007/s10444-013-9316-1
10.1093/imanum/drad021
10.4064/-29-1-85-104
10.5802/smai-jcm.44
10.1016/j.compfluid.2011.05.004
10.1016/j.cam.2023.115125
10.1016/j.compfluid.2010.10.018
10.1002/num.21752
10.1016/j.paerosci.2005.03.003
10.1016/j.apnum.2007.11.001
10.14311/TPFM.2024.031
10.1016/j.jfluidstructs.2006.10.005
10.1016/0045-7825(95)00946-9
10.1137/100794250
10.2514/3.45291
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2025.116662
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2025_116662
S0377042725001761
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFLBG
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c251t-10e9b9454a224ee1c0aa528d912e5f7af4e8031d810b68cf220ab6618964c5813
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 06:56:58 EST 2025
Sat Aug 09 17:31:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Fluid–structure interaction
Scott–Vogelius element
Navier–Stokes equation
Taylor–Hood element
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-10e9b9454a224ee1c0aa528d912e5f7af4e8031d810b68cf220ab6618964c5813
ORCID 0000-0003-1078-7882
0000-0002-4350-0553
ParticipantIDs crossref_primary_10_1016_j_cam_2025_116662
elsevier_sciencedirect_doi_10_1016_j_cam_2025_116662
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Olshanskii, Rebholz (b15) 2011; 38
Theodorsen (b22) 1934
Jenkins, John, Linke, Rebholz (b10) 2014; 40
Feistauer, Horacek, Ruzika, Svacek (b16) 2011; 49
Naudascher (b1) 1994
Burman, Linke (b17) 2008; 58
Kufner, John, Fucik (b25) 1977
Arnold, Qin (b9) 1992; 7
Case, Ervin, Linke, Rebholz (b11) 2011; 49
Gauger, Linke, Schroeder (b12) 2019; 5
John, Schmeyer (b26) 2008; 198
Triebstein (b21) 1986; 23
Vacek, Sváček (b29) 2024
Ciarlet (b14) 2002
Dowell (b2) 1995
Ekaterinaris (b3) 2005; 41
Sváček, Feistauer, Horáček (b4) 2007; 23
Girault, Raviart (b8) 1986
Cecrdle, Malecek (b23) 2002
Ferrer, Willden (b5) 2011; 46
Beirão da Veiga, Dassi, Vacca (b27) 2024; 44
Cousins, Borne, Linke, Rebholz, Wang (b13) 2013; 29
Temam (b28) 1966; 262
Sváček (b18) 2023; 427
Beirão da Veiga, Dassi, Vacca (b19) 2024; 44
Turek (b24) 1999
Lube (b30) 1994; 29
Babuška, Guo (b6) 1996; 133
Takashi, Hughes (b7) 1992; 95
Benetka, Kladrubskỳ, Valenta (b20) 1998
Dowell (10.1016/j.cam.2025.116662_b2) 1995
Feistauer (10.1016/j.cam.2025.116662_b16) 2011; 49
Theodorsen (10.1016/j.cam.2025.116662_b22) 1934
Lube (10.1016/j.cam.2025.116662_b30) 1994; 29
Turek (10.1016/j.cam.2025.116662_b24) 1999
Takashi (10.1016/j.cam.2025.116662_b7) 1992; 95
Girault (10.1016/j.cam.2025.116662_b8) 1986
Ciarlet (10.1016/j.cam.2025.116662_b14) 2002
Temam (10.1016/j.cam.2025.116662_b28) 1966; 262
Case (10.1016/j.cam.2025.116662_b11) 2011; 49
Sváček (10.1016/j.cam.2025.116662_b18) 2023; 427
Vacek (10.1016/j.cam.2025.116662_b29) 2024
Beirão da Veiga (10.1016/j.cam.2025.116662_b27) 2024; 44
Benetka (10.1016/j.cam.2025.116662_b20) 1998
Triebstein (10.1016/j.cam.2025.116662_b21) 1986; 23
Babuška (10.1016/j.cam.2025.116662_b6) 1996; 133
Kufner (10.1016/j.cam.2025.116662_b25) 1977
Ekaterinaris (10.1016/j.cam.2025.116662_b3) 2005; 41
Arnold (10.1016/j.cam.2025.116662_b9) 1992; 7
Jenkins (10.1016/j.cam.2025.116662_b10) 2014; 40
John (10.1016/j.cam.2025.116662_b26) 2008; 198
Naudascher (10.1016/j.cam.2025.116662_b1) 1994
Beirão da Veiga (10.1016/j.cam.2025.116662_b19) 2024; 44
Burman (10.1016/j.cam.2025.116662_b17) 2008; 58
Sváček (10.1016/j.cam.2025.116662_b4) 2007; 23
Gauger (10.1016/j.cam.2025.116662_b12) 2019; 5
Cousins (10.1016/j.cam.2025.116662_b13) 2013; 29
Cecrdle (10.1016/j.cam.2025.116662_b23) 2002
Olshanskii (10.1016/j.cam.2025.116662_b15) 2011; 38
Ferrer (10.1016/j.cam.2025.116662_b5) 2011; 46
References_xml – volume: 5
  start-page: 89
  year: 2019
  end-page: 129
  ident: b12
  article-title: On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond
  publication-title: SMAI J. Comput. Math.
– year: 1999
  ident: b24
  article-title: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approache
– volume: 198
  start-page: 475
  year: 2008
  end-page: 494
  ident: b26
  article-title: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 23
  start-page: 391
  year: 2007
  end-page: 411
  ident: b4
  article-title: Numerical simulation of flow induced airfoil vibrations with large amplitudes
  publication-title: J. Fluids Struct.
– year: 2002
  ident: b14
  article-title: The Finite Element Method for Elliptic Problems
– year: 1934
  ident: b22
  article-title: General Theory of Aerodynamic Instability and the Mechanism of Flutter
– volume: 7
  start-page: 28
  year: 1992
  end-page: 34
  ident: b9
  article-title: Quadratic velocity/linear pressure Stokes elements
  publication-title: Adv. Comput. Methods Partial. Differ. Equations
– year: 1994
  ident: b1
  article-title: Flow-induced vibrations: an engineering guide: IAHR hydraulic structures design manuals 7
– volume: 41
  start-page: 192
  year: 2005
  end-page: 300
  ident: b3
  article-title: High-order accurate, low numerical diffusion methods for aerodynamics
  publication-title: Prog. Aerosp. Sci.
– year: 2024
  ident: b29
  article-title: Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
  publication-title: Top. Probl. Fluid Mech. 2024
– volume: 46
  start-page: 224
  year: 2011
  end-page: 230
  ident: b5
  article-title: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations
  publication-title: Comput. & Fluids
– volume: 23
  start-page: 213
  year: 1986
  end-page: 219
  ident: b21
  article-title: Steady and unsteady transonic pressure distributions on NACA 0012
  publication-title: J. Aircr.
– volume: 38
  start-page: 258
  year: 2011
  end-page: 274
  ident: b15
  article-title: Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics
  publication-title: Electron. Trans. Numer. Anal.
– volume: 427
  start-page: 115
  year: 2023
  end-page: 125
  ident: b18
  article-title: On numerical simulation of fluid-structure interaction problems using variational multiscale methods
  publication-title: J. Comput. Appl. Math.
– volume: 49
  start-page: 1461
  year: 2011
  end-page: 1481
  ident: b11
  article-title: A connection between scott—Vogelius and grad-div stabilized taylor—Hood FE approximations of the Navier—Stokes equations
  publication-title: SIAM J. Numer. Anal.
– volume: 44
  start-page: 710
  year: 2024
  end-page: 750
  ident: b19
  article-title: Pressure robust SUPG-stabilized finite elements for the unsteady Navier–Stokes equation
  publication-title: IMA J. Numer. Anal.
– volume: 40
  start-page: 491
  year: 2014
  end-page: 516
  ident: b10
  article-title: On the parameter choice in grad-div stabilization for the Stokes equations
  publication-title: Adv. Comput. Math.
– volume: 49
  start-page: 110
  year: 2011
  end-page: 127
  ident: b16
  article-title: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom
  publication-title: Comput. & Fluids
– year: 2002
  ident: b23
  article-title: Verification fem model of an aircraft construction with two and three degrees of freedom
– year: 1986
  ident: b8
  article-title: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms
  publication-title: Computational Mathematics Series
– year: 1995
  ident: b2
  article-title: A modern course in aeroelasticity
– volume: 58
  start-page: 1704
  year: 2008
  end-page: 1719
  ident: b17
  article-title: Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements
  publication-title: Appl. Numer. Math.
– year: 1998
  ident: b20
  article-title: Measurement of NACA 0012 Profile in a Slotted Measurement Section
– year: 1977
  ident: b25
  publication-title: Function Spaces
– volume: 29
  start-page: 85
  year: 1994
  end-page: 104
  ident: b30
  article-title: Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems
  publication-title: Banach Center Publ.
– volume: 29
  start-page: 1217
  year: 2013
  end-page: 1237
  ident: b13
  article-title: Efficient linear solvers for incompressible flow simulations using scott-vogelius finite elements
  publication-title: Numer. Methods Partial Differential Equations
– volume: 133
  start-page: 319
  year: 1996
  end-page: 346
  ident: b6
  article-title: Approximation properties of the h-p version of the finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 262
  start-page: 219
  year: 1966
  end-page: 221
  ident: b28
  article-title: Sur l’approximation des équations de Navier-Stokes
  publication-title: C. R Acad Sci Paris
– volume: 95
  start-page: 115
  year: 1992
  end-page: 138
  ident: b7
  article-title: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 44
  start-page: 710
  year: 2024
  end-page: 750
  ident: b27
  article-title: Pressure robust SUPG-stabilized finite elements for the unsteady Navier–Stokes equation
  publication-title: IMA J. Numer. Anal.
– year: 2002
  ident: 10.1016/j.cam.2025.116662_b23
– volume: 95
  start-page: 115
  issue: 1
  year: 1992
  ident: 10.1016/j.cam.2025.116662_b7
  article-title: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90085-X
– volume: 198
  start-page: 475
  issue: 3–4
  year: 2008
  ident: 10.1016/j.cam.2025.116662_b26
  article-title: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.08.016
– volume: 40
  start-page: 491
  year: 2014
  ident: 10.1016/j.cam.2025.116662_b10
  article-title: On the parameter choice in grad-div stabilization for the Stokes equations
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-013-9316-1
– volume: 44
  start-page: 710
  issue: 2
  year: 2024
  ident: 10.1016/j.cam.2025.116662_b19
  article-title: Pressure robust SUPG-stabilized finite elements for the unsteady Navier–Stokes equation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drad021
– volume: 29
  start-page: 85
  issue: 1
  year: 1994
  ident: 10.1016/j.cam.2025.116662_b30
  article-title: Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems
  publication-title: Banach Center Publ.
  doi: 10.4064/-29-1-85-104
– volume: 5
  start-page: 89
  year: 2019
  ident: 10.1016/j.cam.2025.116662_b12
  article-title: On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond
  publication-title: SMAI J. Comput. Math.
  doi: 10.5802/smai-jcm.44
– volume: 49
  start-page: 110
  issue: 1
  year: 2011
  ident: 10.1016/j.cam.2025.116662_b16
  article-title: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2011.05.004
– year: 1994
  ident: 10.1016/j.cam.2025.116662_b1
– year: 1977
  ident: 10.1016/j.cam.2025.116662_b25
– volume: 262
  start-page: 219
  year: 1966
  ident: 10.1016/j.cam.2025.116662_b28
  article-title: Sur l’approximation des équations de Navier-Stokes
  publication-title: C. R Acad Sci Paris
– year: 1934
  ident: 10.1016/j.cam.2025.116662_b22
– year: 1998
  ident: 10.1016/j.cam.2025.116662_b20
– year: 1995
  ident: 10.1016/j.cam.2025.116662_b2
– volume: 427
  start-page: 115
  year: 2023
  ident: 10.1016/j.cam.2025.116662_b18
  article-title: On numerical simulation of fluid-structure interaction problems using variational multiscale methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115125
– volume: 46
  start-page: 224
  issue: 1
  year: 2011
  ident: 10.1016/j.cam.2025.116662_b5
  article-title: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2010.10.018
– volume: 38
  start-page: 258
  year: 2011
  ident: 10.1016/j.cam.2025.116662_b15
  article-title: Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics
  publication-title: Electron. Trans. Numer. Anal.
– volume: 7
  start-page: 28
  year: 1992
  ident: 10.1016/j.cam.2025.116662_b9
  article-title: Quadratic velocity/linear pressure Stokes elements
  publication-title: Adv. Comput. Methods Partial. Differ. Equations
– volume: 29
  start-page: 1217
  issue: 4
  year: 2013
  ident: 10.1016/j.cam.2025.116662_b13
  article-title: Efficient linear solvers for incompressible flow simulations using scott-vogelius finite elements
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.21752
– volume: 41
  start-page: 192
  issue: 3
  year: 2005
  ident: 10.1016/j.cam.2025.116662_b3
  article-title: High-order accurate, low numerical diffusion methods for aerodynamics
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2005.03.003
– volume: 58
  start-page: 1704
  issue: 11
  year: 2008
  ident: 10.1016/j.cam.2025.116662_b17
  article-title: Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2007.11.001
– volume: 44
  start-page: 710
  issue: 2
  year: 2024
  ident: 10.1016/j.cam.2025.116662_b27
  article-title: Pressure robust SUPG-stabilized finite elements for the unsteady Navier–Stokes equation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drad021
– year: 2002
  ident: 10.1016/j.cam.2025.116662_b14
– year: 2024
  ident: 10.1016/j.cam.2025.116662_b29
  article-title: Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
  publication-title: Top. Probl. Fluid Mech. 2024
  doi: 10.14311/TPFM.2024.031
– volume: 23
  start-page: 391
  issue: 3
  year: 2007
  ident: 10.1016/j.cam.2025.116662_b4
  article-title: Numerical simulation of flow induced airfoil vibrations with large amplitudes
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2006.10.005
– volume: 133
  start-page: 319
  issue: 3
  year: 1996
  ident: 10.1016/j.cam.2025.116662_b6
  article-title: Approximation properties of the h-p version of the finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(95)00946-9
– year: 1986
  ident: 10.1016/j.cam.2025.116662_b8
  article-title: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms
– volume: 49
  start-page: 1461
  issue: 3/4
  year: 2011
  ident: 10.1016/j.cam.2025.116662_b11
  article-title: A connection between scott—Vogelius and grad-div stabilized taylor—Hood FE approximations of the Navier—Stokes equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100794250
– year: 1999
  ident: 10.1016/j.cam.2025.116662_b24
– volume: 23
  start-page: 213
  issue: 3
  year: 1986
  ident: 10.1016/j.cam.2025.116662_b21
  article-title: Steady and unsteady transonic pressure distributions on NACA 0012
  publication-title: J. Aircr.
  doi: 10.2514/3.45291
SSID ssj0006914
Score 2.4577138
Snippet This paper focuses on the numerical simulation of the fluid–structure interaction (FSI) problem of an incompressible flow and a vibrating airfoil. The fluid...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116662
SubjectTerms Finite element method
Fluid–structure interaction
Navier–Stokes equation
Scott–Vogelius element
Taylor–Hood element
Title Finite element method analysis of flutter: Comparing Scott–Vogelius and Taylor–Hood elements
URI https://dx.doi.org/10.1016/j.cam.2025.116662
Volume 469
WOSCitedRecordID wos001462287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQ9NAeqtKHCrSVD5yKIiVeO7Z7QzwESCAkKNpbanvtanlkEbsgjvyH_sP-Esav7AqKVCr1EkVOMolmRuPPzsw3CK1yyqyyrCrgallQVrpCG6WLUlgia8e1VTQ0m-AHB6Lfl4epumQc2gnwthW3t_Lyv5oaxsDYvnT2GebuhMIAnIPR4Qhmh-NfGX576GHkmo154alF9JqaIR9x56E7td8M2IhtCD0rtydpyKkPvZPRT3s-vI4EzmlVn6_teCLkJH78BLg1oVlE3mgMhLAJ7l50PLEdmj9Rxp7lyrQu4-PoJvzErwLc3Yw3-P5fs_sUhD3I-XhcQBOLtjgvfLuP2YBMY_OWR8E97jOcwsLdUwgQBuEeFl9kOpN1-YVHXq4XCwAPQo5fHi8QziSEvYX13a3-XjdZ1zLSv-fvyD--Qwrggxf9GbrMwJHjN-h1UjVej_ZfRHO2fYte7U-V-w79iJ6Ak6lw9AScPQGPHE6e8A13foCDH_y--5U9AO4f4OgBMOptnwWO36Pv21vHGztFaqhRGICxE5hyrdSSMqoAuFlbmVIpRsRAVsQyx5WjVkCQH4iq1LUwjpBSaQBwQtbUMFH1PqD5dtTajwjTShmta2u443TAPUWR0YRUZU9pZ7hdQl-zrprLyJvS5ITC0wYU23jFNlGxS4hmbTYJ-EVA14Dpn35s-d8eW0Evp_75Cc1Prq7tZ_TC3EyG46svyUHuAQ3ffW8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+method+analysis+of+flutter%3A+Comparing+Scott%E2%80%93Vogelius+and+Taylor%E2%80%93Hood+elements&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Vacek%2C+Karel&rft.au=Sv%C3%A1%C4%8Dek%2C+Petr&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.volume=469&rft_id=info:doi/10.1016%2Fj.cam.2025.116662&rft.externalDocID=S0377042725001761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon