Difference Enhancement and Spatial-Spectral Nonlocal Network for Change Detection in VHR Remote Sensing Images

The popular Siamese convolutional neural networks (CNNs) for remote sensing (RS) image change detection (CD) often suffer from two problems. First, they either ignore the original information of bitemporal images or insufficiently utilize the difference information between bitemporal images, which l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13
Main Authors: Lei, Tao, Wang, Jie, Ning, Hailong, Wang, Xingwu, Xue, Dinghua, Wang, Qi, Nandi, Asoke K.
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The popular Siamese convolutional neural networks (CNNs) for remote sensing (RS) image change detection (CD) often suffer from two problems. First, they either ignore the original information of bitemporal images or insufficiently utilize the difference information between bitemporal images, which leads to the low tightness of the changed objects. Second, Siamese CNNs always employ dual-branch encoders for CD, which increases computational cost. To address the above issues, this article proposes a network based on difference enhancement and spatial-spectral nonlocal (DESSN) for CD in very-high-resolution (VHR) images. This article makes threefold contributions. First, we design a difference enhancement (DE) module that can effectively learn the difference representation between foreground and background to reduce the impact of irrelevant changes on the detection results. Second, we present a spatial-spectral nonlocal (SSN) module that is different from vanilla nonlocal because multiscale spatial global features are incorporated to model the large-scale variation of objects during CD. The module can be used to strengthen the edge integrity and internal tightness of changed objects. Third, the asymmetric double convolution with Ghost (ADCG) module is exploited instead of standard convolution. The ADCG can not only refine the edge information of the changed objects, since horizontal and vertical convolutional kernels have good contour preservation advantages, but also greatly reduce the computational complexity of the proposed model. The experiments on two public VHR CD datasets demonstrate that the proposed network can provide higher detection accuracy and requires smaller memory usage than state-of-the-art networks.
AbstractList The popular Siamese convolutional neural networks (CNNs) for remote sensing (RS) image change detection (CD) often suffer from two problems. First, they either ignore the original information of bitemporal images or insufficiently utilize the difference information between bitemporal images, which leads to the low tightness of the changed objects. Second, Siamese CNNs always employ dual-branch encoders for CD, which increases computational cost. To address the above issues, this article proposes a network based on difference enhancement and spatial–spectral nonlocal (DESSN) for CD in very-high-resolution (VHR) images. This article makes threefold contributions. First, we design a difference enhancement (DE) module that can effectively learn the difference representation between foreground and background to reduce the impact of irrelevant changes on the detection results. Second, we present a spatial–spectral nonlocal (SSN) module that is different from vanilla nonlocal because multiscale spatial global features are incorporated to model the large-scale variation of objects during CD. The module can be used to strengthen the edge integrity and internal tightness of changed objects. Third, the asymmetric double convolution with Ghost (ADCG) module is exploited instead of standard convolution. The ADCG can not only refine the edge information of the changed objects, since horizontal and vertical convolutional kernels have good contour preservation advantages, but also greatly reduce the computational complexity of the proposed model. The experiments on two public VHR CD datasets demonstrate that the proposed network can provide higher detection accuracy and requires smaller memory usage than state-of-the-art networks.
Author Wang, Xingwu
Xue, Dinghua
Nandi, Asoke K.
Ning, Hailong
Wang, Qi
Lei, Tao
Wang, Jie
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  email: leitao@sust.edu.cn
  organization: Shaanxi Joint Laboratory of Artificial Intelligence and the School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  email: wcjsust@163.com
  organization: School of Electronical and Control Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Hailong
  orcidid: 0000-0001-8375-1181
  surname: Ning
  fullname: Ning, Hailong
  email: ninghailong93@gmail.com
  organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 4
  givenname: Xingwu
  surname: Wang
  fullname: Wang, Xingwu
  email: wangxwu1949@163.com
  organization: Shaanxi Joint Laboratory of Artificial Intelligence and the School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 5
  givenname: Dinghua
  surname: Xue
  fullname: Xue, Dinghua
  email: 903438920@qq.com
  organization: School of Electronical and Control Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 6
  givenname: Qi
  orcidid: 0000-0002-7028-4956
  surname: Wang
  fullname: Wang, Qi
  email: crabwq@gmail.com
  organization: School of Computer Science and the School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
– sequence: 7
  givenname: Asoke K.
  orcidid: 0000-0001-6248-2875
  surname: Nandi
  fullname: Nandi, Asoke K.
  email: asoke.nandi@brunel.ac.uk
  organization: Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, U.K
BookMark eNp9kMFKxDAQhoMouKs-gHgJeO6aSZtse5R13RVEYateS5pO1mib1LSL-Pa2rHjw4GkG5v9mmG9KDp13SMg5sBkAy66eVpt8xhmHWQxxIjM4IBMQIo2YTJJDMmGQyYinGT8m0657YwwSAfMJcTfWGAzoNNKle1VDbdD1VLmK5q3qraqjvEXdB1XTB-9qr8cG-08f3qnxgS4GaIv0BvshZb2j1tGX9YZusPE90hxdZ92W3jVqi90pOTKq7vDsp56Q59vl02Id3T-u7hbX95HmAiAqWVVyCWUqQM9NWXEpoDRlnIAWqLSUGUfJSzAiK9NUy9RAmiasEiiFFlUSn5DL_d42-I8ddn3x5nfBDScLLmPBEglxPKRgn9LBd11AU7TBNip8FcCKUWsxai1GrcWP1oGZ_2G07dX4-KDI1v-SF3vSIuLvpUwOQ5HF31OEh0A
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1109_TGRS_2023_3268294
crossref_primary_10_1109_JSTARS_2024_3379565
crossref_primary_10_1109_TIM_2025_3608333
crossref_primary_10_1109_TGRS_2024_3390206
crossref_primary_10_1109_TNNLS_2023_3282935
crossref_primary_10_1109_TGRS_2023_3328334
crossref_primary_10_1109_JSTARS_2024_3390427
crossref_primary_10_1109_TGRS_2023_3275819
crossref_primary_10_1109_TGRS_2025_3584115
crossref_primary_10_1080_01431161_2024_2433758
crossref_primary_10_3390_s25010103
crossref_primary_10_3390_rs17111840
crossref_primary_10_1109_JSTARS_2022_3217082
crossref_primary_10_1109_TGRS_2025_3591087
crossref_primary_10_1109_TGRS_2024_3386334
crossref_primary_10_1109_TGRS_2024_3424317
crossref_primary_10_1109_TGRS_2025_3550973
crossref_primary_10_1016_j_neucom_2025_130607
crossref_primary_10_1109_TGRS_2025_3556237
crossref_primary_10_1109_TGRS_2023_3320288
crossref_primary_10_1109_TGRS_2023_3241436
crossref_primary_10_1109_TGRS_2023_3300533
crossref_primary_10_1109_ACCESS_2025_3560591
crossref_primary_10_1109_LGRS_2023_3310676
crossref_primary_10_1109_TGRS_2023_3324025
crossref_primary_10_1109_JSTARS_2024_3452948
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_1109_TGRS_2025_3560977
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_JSTARS_2025_3525595
crossref_primary_10_1109_TGRS_2023_3337816
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1109_TGRS_2022_3199502
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_1109_TGRS_2023_3344948
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_1109_TGRS_2024_3399215
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_3390_s25185832
crossref_primary_10_3390_s24217040
crossref_primary_10_1109_TGRS_2022_3174276
crossref_primary_10_1109_JSTARS_2025_3556096
crossref_primary_10_1109_TGRS_2023_3317701
crossref_primary_10_1109_TGRS_2023_3346879
crossref_primary_10_1109_TGRS_2025_3548562
crossref_primary_10_1109_TGRS_2023_3321752
crossref_primary_10_1109_TGRS_2023_3281711
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_JSTARS_2023_3323372
Cites_doi 10.3390/rs12101662
10.1109/CVPR.2015.7299064
10.1016/j.isprsjprs.2020.06.003
10.1080/01431160801950162
10.1109/TNNLS.2015.2435783
10.1016/j.asoc.2017.11.045
10.1109/CVPR.2016.308
10.1109/TGRS.2020.3033009
10.1109/TGRS.2021.3079907
10.1109/JSTARS.2020.3046838
10.1109/CVPR.2017.195
10.1109/CVPRW.2017.193
10.1016/j.ins.2010.10.016
10.1109/TGRS.2019.2951160
10.1109/CVPR.2018.00745
10.1016/j.rse.2009.02.004
10.1109/JSTARS.2016.2541678
10.1109/ICIP.2018.8451652
10.1007/978-3-030-01234-2_1
10.1117/1.JRS.13.024512
10.3390/rs10091381
10.1109/TGRS.2013.2248738
10.1109/36.843009
10.1016/j.cviu.2019.07.003
10.1109/TASL.2011.2109382
10.1109/TGRS.2018.2863224
10.1109/CVPR.2018.00813
10.1109/CVPR.2019.00326
10.1109/LGRS.2017.2738149
10.1109/LGRS.2018.2889307
10.1109/Multi-Temp.2019.8866947
10.1109/TGRS.2019.2956756
10.1109/TIP.2010.2040763
10.1109/TGRS.2018.2802785
10.1007/s10514-018-9734-5
10.1109/IGARSS.2016.7730344
10.1109/TIP.2021.3055613
10.1109/IGARSS.2011.6048935
10.1109/JSTARS.2020.3037893
10.1080/0143116031000139863
10.1162/neco.1989.1.4.541
10.1109/TGRS.2019.2948659
10.1109/IGARSS.2009.5418265
10.1109/TIP.2019.2916757
10.1016/j.neucom.2015.11.044
10.5194/isprs-archives-XLII-2-565-2018
10.1109/CVPR42600.2020.00165
10.1109/CVPR.2005.202
10.3390/rs11232844
10.1109/TGRS.2021.3060705
10.1007/978-3-319-24574-4_28
10.1142/9789812797926_0003
10.1109/LGRS.2017.2681198
10.1109/TPAMI.2021.3072117
10.1080/014311600750037552
10.1016/s0034-4257(97)00162-4
10.24963/ijcai.2017/307
10.1109/TGRS.2019.2931801
10.1007/s13753-017-0143-8
10.1109/TGRS.2020.2981051
10.1080/014311600210128
10.1109/CVPR.2015.7298965
10.1109/JPROC.2012.2197169
10.1109/TFUZZ.2013.2249072
10.1016/j.landurbplan.2004.12.005
10.1109/ICCV.2019.00200
10.1016/j.isprsjprs.2013.03.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3134691
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2021_3134691
9646959
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China-Royal Society, U.K.
  grantid: 61811530325 (IECnNSFCn170396)
  funderid: 10.13039/501100000288
– fundername: National Natural Science Foundation of China
  grantid: 61871259; 61861024
  funderid: 10.13039/501100001809
– fundername: Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education
– fundername: Key Research and Development Program of Shaanxi
  grantid: 2021ZDLGY08-07
– fundername: Shaanxi Joint Laboratory of Artificial Intelligence
  grantid: 2020SS-03
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2021JC-47
  funderid: 10.13039/501100017596
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c2511-b0db261b851c7fbd2651bfb341c5eac6692e62b1f59b88c68f18840d5e65c5d43
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:24 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 02:50:18 EST 2025
Wed Aug 27 02:49:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2511-b0db261b851c7fbd2651bfb341c5eac6692e62b1f59b88c68f18840d5e65c5d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6248-2875
0000-0002-7028-4956
0000-0001-8375-1181
0000-0002-2104-9298
OpenAccessLink https://ieeexplore.ieee.org/document/9646959
PQID 2635046133
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3134691
proquest_journals_2635046133
ieee_primary_9646959
crossref_primary_10_1109_TGRS_2021_3134691
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Denton (ref64)
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
Qian (ref62)
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Vaswani (ref56) 2017
ref70
ref73
ref72
ref24
Han (ref66) 2015
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref63
ref22
ref21
ref65
ref28
Kingma (ref71) 2014
ref27
ref29
Zhang (ref60)
ref61
References_xml – ident: ref33
  doi: 10.3390/rs12101662
– ident: ref51
  doi: 10.1109/CVPR.2015.7299064
– year: 2017
  ident: ref56
  article-title: Attention is all you need
  publication-title: arXiv:1706.03762
– ident: ref32
  doi: 10.1016/j.isprsjprs.2020.06.003
– year: 2014
  ident: ref71
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref7
  doi: 10.1080/01431160801950162
– ident: ref48
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref47
  doi: 10.1016/j.asoc.2017.11.045
– ident: ref69
  doi: 10.1109/CVPR.2016.308
– ident: ref55
  doi: 10.1109/TGRS.2020.3033009
– ident: ref42
  doi: 10.1109/TGRS.2021.3079907
– ident: ref41
  doi: 10.1109/JSTARS.2020.3046838
– start-page: 561
  volume-title: Proc. Eur. Conf. Comput. Vis. (ECCV)
  ident: ref62
  article-title: Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation
– ident: ref65
  doi: 10.1109/CVPR.2017.195
– ident: ref30
  doi: 10.1109/CVPRW.2017.193
– ident: ref12
  doi: 10.1016/j.ins.2010.10.016
– ident: ref54
  doi: 10.1109/TGRS.2019.2951160
– ident: ref57
  doi: 10.1109/CVPR.2018.00745
– ident: ref3
  doi: 10.1016/j.rse.2009.02.004
– ident: ref15
  doi: 10.1109/JSTARS.2016.2541678
– ident: ref26
  doi: 10.1109/ICIP.2018.8451652
– ident: ref58
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref23
  doi: 10.1117/1.JRS.13.024512
– ident: ref40
  doi: 10.3390/rs10091381
– ident: ref14
  doi: 10.1109/TGRS.2013.2248738
– ident: ref6
  doi: 10.1109/36.843009
– ident: ref28
  doi: 10.1016/j.cviu.2019.07.003
– ident: ref18
  doi: 10.1109/TASL.2011.2109382
– ident: ref31
  doi: 10.1109/TGRS.2018.2863224
– ident: ref59
  doi: 10.1109/CVPR.2018.00813
– ident: ref61
  doi: 10.1109/CVPR.2019.00326
– ident: ref49
  doi: 10.1109/LGRS.2017.2738149
– ident: ref24
  doi: 10.1109/LGRS.2018.2889307
– start-page: 7354
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref60
  article-title: Self-attention generative adversarial networks
– ident: ref53
  doi: 10.1109/Multi-Temp.2019.8866947
– ident: ref34
  doi: 10.1109/TGRS.2019.2956756
– ident: ref38
  doi: 10.1109/TIP.2010.2040763
– ident: ref46
  doi: 10.1109/TGRS.2018.2802785
– ident: ref22
  doi: 10.1007/s10514-018-9734-5
– ident: ref29
  doi: 10.1109/IGARSS.2016.7730344
– ident: ref43
  doi: 10.1109/TIP.2021.3055613
– ident: ref37
  doi: 10.1109/IGARSS.2011.6048935
– ident: ref52
  doi: 10.1109/JSTARS.2020.3037893
– ident: ref1
  doi: 10.1080/0143116031000139863
– ident: ref20
  doi: 10.1162/neco.1989.1.4.541
– ident: ref72
  doi: 10.1109/TGRS.2019.2948659
– ident: ref8
  doi: 10.1109/IGARSS.2009.5418265
– ident: ref44
  doi: 10.1109/TIP.2019.2916757
– ident: ref19
  doi: 10.1016/j.neucom.2015.11.044
– ident: ref70
  doi: 10.5194/isprs-archives-XLII-2-565-2018
– ident: ref67
  doi: 10.1109/CVPR42600.2020.00165
– ident: ref25
  doi: 10.1109/CVPR.2005.202
– start-page: 1269
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref64
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
– ident: ref27
  doi: 10.3390/rs11232844
– ident: ref45
  doi: 10.1109/TGRS.2021.3060705
– ident: ref35
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref50
  doi: 10.1142/9789812797926_0003
– ident: ref9
  doi: 10.1109/LGRS.2017.2681198
– ident: ref17
  doi: 10.1109/TPAMI.2021.3072117
– ident: ref36
  doi: 10.1080/014311600750037552
– ident: ref10
  doi: 10.1016/s0034-4257(97)00162-4
– ident: ref16
  doi: 10.24963/ijcai.2017/307
– ident: ref63
  doi: 10.1109/TGRS.2019.2931801
– ident: ref4
  doi: 10.1007/s13753-017-0143-8
– ident: ref73
  doi: 10.1109/TGRS.2020.2981051
– ident: ref5
  doi: 10.1080/014311600210128
– ident: ref21
  doi: 10.1109/CVPR.2015.7298965
– year: 2015
  ident: ref66
  article-title: Learning both weights and connections for efficient neural networks
  publication-title: arXiv:1506.02626
– ident: ref13
  doi: 10.1109/JPROC.2012.2197169
– ident: ref39
  doi: 10.1109/TFUZZ.2013.2249072
– ident: ref2
  doi: 10.1016/j.landurbplan.2004.12.005
– ident: ref68
  doi: 10.1109/ICCV.2019.00200
– ident: ref11
  doi: 10.1016/j.isprsjprs.2013.03.006
SSID ssj0014517
Score 2.662127
Snippet The popular Siamese convolutional neural networks (CNNs) for remote sensing (RS) image change detection (CD) often suffer from two problems. First, they either...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Change detection
Change detection (CD)
Clustering algorithms
Coders
Computer applications
Computing costs
Convolution
Detection
difference enhancement (DE) module
Feature extraction
Image edge detection
Image enhancement
Image resolution
Information processing
Modules
Neural networks
Remote sensing
Robustness
Siamese convolutional neural networks (CNNs)
spatial-spectral nonlocal (SSN) module
Spectra
Task analysis
Tightness
Title Difference Enhancement and Spatial-Spectral Nonlocal Network for Change Detection in VHR Remote Sensing Images
URI https://ieeexplore.ieee.org/document/9646959
https://www.proquest.com/docview/2635046133
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BolJ7aCkUdSlFPnCqmuIka8c-VuWrl1W10IpbtB5PYCXwVuzS38_YMSsQVaXecrCtJM-e8bNn5gHsD62ZlNapQqM0BVtJXTgkZq3SN51CmnTYJbGJZjQyFxf2xwp8XubCEFEKPqMv8THd5fsZ3sWjsgOrmcwpuwqrTdP0uVrLG4OhKnNqtC6YRFT5BrOU9uD8ZHzGTLAqmaDWPEL5xAclUZVnlji5l-M3__diG_A6byPF1x73t7BCYRNePSouuAkvUnAnzrcgHGYVFCRxFK4iznE8MQleRElinoJF1KGPhx5iNAvJv4lRHyAueFcr-hwEcUiLFLkVxDSIX6djMSZGmsRZjIIPl-L7DVun-Tv4eXx0_u20yDoLBUaCUTjpHRMpx5svbDrnK61K1zn2b6jYLmttK9KVKztlnTGoTVca5oVekVao_LDehrUwC_QeBEmsydQovfVDngUGVSM9IZOaquZPHYB8-PMt5iLkUQvjuk1kRNo2gtVGsNoM1gA-Lbv87itw_KvxVkRn2TADM4DdB3jbvEbnbSzDE8vN1_XO33t9gJdVTHZIBy67sLa4vaOPsI5_FtP57V6afvcbYtgB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VAioc-GhBLBTwgRMi1Pmw1z4i2rIVJULbBfUWrccTqFS8qLvl9zN23BUIhMQtB9tK8uwZP3tmHsCLxpp5aZ0qNEpTsJXUhUNi1ir9uFdI8x77JDYxbltzemo_bsCrdS4MEaXgM3odH9Ndvl_gZTwq27OayZyy1-C6apqqHLK11ncGjSpzcrQumEZU-Q6zlHZv9m56wlywKpmi1jxG-ZsXSrIqf9ji5GAO7_7fq92DO3kjKd4MyN-HDQrbcPuX8oLbcDOFd-JyB8J-1kFBEgfha0Q6jifmwYsoSsyTsIhK9PHYQ7SLkDycaIcQccH7WjFkIYh9WqXYrSDOgvg8mYopMdYkTmIcfPgijr6xfVo-gE-HB7O3kyIrLRQYKUbhpHdMpRxvv3DcO19pVbresYdDxZZZa1uRrlzZK-uMQW360jAz9Iq0QuWb-iFshkWgRyBIYk2mRumtb3geGFRj6QmZ1lQ1f-oI5NWf7zCXIY9qGOddoiPSdhGsLoLVZbBG8HLd5ftQg-NfjXciOuuGGZgR7F7B2-VVuuxiIZ5YcL6uH_-913PYmsw-HHfHR-37J3CriqkP6fhlFzZXF5f0FG7gj9XZ8uJZmoo_AX-O20g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+Enhancement+and+Spatial%E2%80%93Spectral+Nonlocal+Network+for+Change+Detection+in+VHR+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lei%2C+Tao&rft.au=Wang%2C+Jie&rft.au=Ning%2C+Hailong&rft.au=Wang%2C+Xingwu&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2021.3134691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3134691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon