Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATL...
Gespeichert in:
| Veröffentlicht in: | Mathematical and computational applications Jg. 21; H. 2; S. 20 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
24.05.2016
|
| ISSN: | 2297-8747, 2297-8747 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning algorithms. It is concluded that the Bayesian regularization training algorithm shows better performance than the Levenberg–Marquardt algorithm. The advantage of a Bayesian regularization artificial neural network is its ability to reveal potentially complex relationships, meaning it can be used in quantitative studies to provide a robust model. |
|---|---|
| AbstractList | The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning algorithms. It is concluded that the Bayesian regularization training algorithm shows better performance than the Levenberg–Marquardt algorithm. The advantage of a Bayesian regularization artificial neural network is its ability to reveal potentially complex relationships, meaning it can be used in quantitative studies to provide a robust model. |
| Author | Kayri, Murat |
| Author_xml | – sequence: 1 givenname: Murat surname: Kayri fullname: Kayri, Murat |
| BookMark | eNptkEtOw0AQREcoSISQFReYPQrM2E5sszMhfKTwEYF11DNuhwZ_wsw4KKy4AxfgbJwEJ7CIEFJL1YtXVVLtslZZlcjYvhSHvh-Lo0KDJ4Unmttibc-Lw14UBmFr499hXWufRIPIYEW22eetwZS0owXyRFFOjtDyKuMnsERLUPI7nNU5GHoDR1XJoUz5GBdYKjSzr_ePKzAvNZjU8SSfVYbcY2E5lTwxjjLSBDm_xtqsxb1W5tke84QPq2IOBta1o2JOhnRDTFydLnlTMqnWxlNwsMe2M8gtdn-1wx7ORvfDi9745vxymIx72utL0cv6KYRh7AdKR8FARAL7GpT0pB_GSoNUUqAMMjUIMUrDQGGG0Dg9qfqeRh_9Djv4ydWmstZgNp0bKsAsp1JMV_tON_ZtaPmH1uTWAzkDlP_r-QZmAIQ1 |
| CitedBy_id | crossref_primary_10_1002_isaf_1519 crossref_primary_10_1007_s00604_022_05393_4 crossref_primary_10_1016_j_conbuildmat_2021_126072 crossref_primary_10_1371_journal_pone_0247391 crossref_primary_10_1088_1742_6596_1566_1_012106 crossref_primary_10_1080_00218464_2021_2001335 crossref_primary_10_1088_1755_1315_463_1_012014 crossref_primary_10_1007_s12517_018_4218_7 crossref_primary_10_1038_s41598_021_00097_w crossref_primary_10_1007_s41660_024_00430_6 crossref_primary_10_1007_s43452_022_00411_x crossref_primary_10_1155_2021_5577547 crossref_primary_10_1016_j_nexus_2023_100210 crossref_primary_10_1038_s41598_022_13532_3 crossref_primary_10_1016_j_sandf_2022_101203 crossref_primary_10_1155_2020_8627824 crossref_primary_10_4271_04_18_01_0005 crossref_primary_10_3390_app11167523 crossref_primary_10_1080_02772248_2025_2532741 crossref_primary_10_1016_j_gca_2020_07_019 crossref_primary_10_1007_s13344_025_0007_8 crossref_primary_10_1029_2020JC016988 crossref_primary_10_1016_j_eswa_2024_125986 crossref_primary_10_1109_ACCESS_2020_3012671 crossref_primary_10_1007_s10479_023_05754_z crossref_primary_10_3390_app13053128 crossref_primary_10_3390_w14040552 crossref_primary_10_61435_ijred_2025_60848 crossref_primary_10_1080_03610918_2024_2330700 crossref_primary_10_2478_acss_2024_0004 crossref_primary_10_1080_09720502_2021_1964740 crossref_primary_10_3390_w14193061 crossref_primary_10_1002_cjce_24715 crossref_primary_10_1080_15325008_2020_1736211 crossref_primary_10_3390_s17122897 crossref_primary_10_1108_COMPEL_11_2019_0449 crossref_primary_10_3390_en15134933 crossref_primary_10_1007_s11408_022_00421_y crossref_primary_10_3390_s21196354 crossref_primary_10_1007_s10163_024_02083_6 crossref_primary_10_1016_j_ifacol_2018_07_183 crossref_primary_10_1080_02626667_2023_2273402 crossref_primary_10_1371_journal_pone_0188553 crossref_primary_10_3390_jmse11091807 crossref_primary_10_1088_1755_1315_1348_1_012046 crossref_primary_10_1016_j_advengsoft_2024_103861 crossref_primary_10_1186_s13673_018_0151_8 crossref_primary_10_1142_S2424786325500033 crossref_primary_10_1088_1742_6596_1529_5_052058 crossref_primary_10_1016_j_conbuildmat_2023_132464 crossref_primary_10_1109_TMTT_2018_2859929 crossref_primary_10_1108_JES_06_2021_0316 crossref_primary_10_1007_s13563_022_00311_9 crossref_primary_10_1109_TEMC_2019_2916837 crossref_primary_10_3233_JIFS_189587 crossref_primary_10_3233_JIFS_189620 crossref_primary_10_1109_TNNLS_2021_3076060 crossref_primary_10_1007_s00170_020_06407_2 crossref_primary_10_1109_ACCESS_2021_3124629 crossref_primary_10_3390_computation7010010 crossref_primary_10_1109_TCPMT_2017_2672498 crossref_primary_10_3390_w14071173 crossref_primary_10_3390_polym12102319 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_1007_s12008_025_02404_5 crossref_primary_10_1007_s00024_021_02724_z crossref_primary_10_3390_f14122429 crossref_primary_10_3390_plants12193473 crossref_primary_10_1016_j_conbuildmat_2023_131361 crossref_primary_10_3390_s20071968 crossref_primary_10_1080_15440478_2023_2259101 crossref_primary_10_2514_1_J063599 crossref_primary_10_1007_s43674_022_00045_9 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_21597_jist_1502928 crossref_primary_10_1007_s11630_021_1497_1 crossref_primary_10_1002_suco_202400231 crossref_primary_10_3390_pr12071362 crossref_primary_10_1016_j_enbuild_2022_112502 crossref_primary_10_1016_j_iswa_2022_200084 crossref_primary_10_1108_ECON_05_2022_0026 crossref_primary_10_3390_app12020674 crossref_primary_10_3390_en14133965 crossref_primary_10_1080_14680629_2020_1822202 crossref_primary_10_1155_2021_6631564 crossref_primary_10_3390_s23073680 crossref_primary_10_1108_AJEB_05_2022_0051 crossref_primary_10_1051_e3sconf_202128703001 crossref_primary_10_1007_s00521_022_07309_y crossref_primary_10_1109_ACCESS_2021_3122331 crossref_primary_10_1109_ACCESS_2021_3126775 crossref_primary_10_3390_rs11151769 crossref_primary_10_1007_s10706_017_0436_0 crossref_primary_10_1016_j_eswa_2022_117937 crossref_primary_10_3390_sym17020228 crossref_primary_10_1108_AJEB_01_2024_0007 crossref_primary_10_51537_chaos_1375866 crossref_primary_10_1021_acsomega_5c01602 crossref_primary_10_3390_coatings13071140 crossref_primary_10_1007_s43674_023_00054_2 crossref_primary_10_26636_jtit_2020_143520 crossref_primary_10_3390_beverages5020033 crossref_primary_10_3390_jmse10111627 crossref_primary_10_1177_03611981221111367 crossref_primary_10_1080_15567036_2023_2291449 crossref_primary_10_1007_s42496_024_00206_8 crossref_primary_10_1080_00103624_2021_1984515 crossref_primary_10_1007_s11244_020_01409_6 crossref_primary_10_1016_j_ijheatfluidflow_2021_108897 crossref_primary_10_1007_s11831_023_09963_4 crossref_primary_10_3390_en14164850 crossref_primary_10_1080_19475705_2024_2449134 crossref_primary_10_1109_JRFID_2023_3267361 crossref_primary_10_1016_j_tafmec_2024_104761 crossref_primary_10_1061__ASCE_MT_1943_5533_0004686 crossref_primary_10_1080_10835547_2022_2110668 crossref_primary_10_34172_apb_2022_060 crossref_primary_10_1108_PM_11_2022_0086 crossref_primary_10_1007_s40313_022_00972_5 crossref_primary_10_3390_su132011366 crossref_primary_10_1680_jgrim_18_00092 crossref_primary_10_1007_s12541_021_00601_2 crossref_primary_10_1016_j_iswa_2022_200061 crossref_primary_10_3390_educsci15050519 crossref_primary_10_3390_en14133949 crossref_primary_10_3390_rs12071194 crossref_primary_10_38088_jise_1375510 crossref_primary_10_3390_s23021020 crossref_primary_10_1016_j_jallcom_2023_172895 crossref_primary_10_1088_1742_6596_1255_1_012027 crossref_primary_10_1109_ACCESS_2022_3229171 crossref_primary_10_1186_s40537_023_00739_y crossref_primary_10_3390_s22228655 crossref_primary_10_1155_2020_8845768 crossref_primary_10_1007_s13399_023_04812_7 crossref_primary_10_3390_cli10060078 crossref_primary_10_1108_JFMPC_08_2022_0041 crossref_primary_10_1063_5_0274063 crossref_primary_10_47115_bsagriculture_1181444 crossref_primary_10_3390_pr13092843 crossref_primary_10_32604_csse_2023_036724 crossref_primary_10_3390_sym17010091 crossref_primary_10_1108_JM2_09_2023_0207 crossref_primary_10_36899_JAPS_2023_4_0676 crossref_primary_10_1016_j_iswa_2021_200052 crossref_primary_10_1109_TGRS_2019_2891426 crossref_primary_10_1109_TGRS_2021_3113087 crossref_primary_10_3390_catal9090738 crossref_primary_10_1088_1757_899X_1147_1_012012 crossref_primary_10_1029_2024GB008371 crossref_primary_10_3389_fenvs_2023_1132159 crossref_primary_10_3103_S0967091221040069 crossref_primary_10_1021_acs_iecr_2c02318 crossref_primary_10_1088_1742_6596_1964_6_062117 crossref_primary_10_3390_s20216086 crossref_primary_10_1108_ECAM_05_2022_0464 crossref_primary_10_1088_1361_665X_ac093d crossref_primary_10_1088_1755_1315_682_1_012020 crossref_primary_10_3390_jintelligence11070128 crossref_primary_10_3390_w14030344 crossref_primary_10_3992_jgb_17_4_79 |
| Cites_doi | 10.1016/S0013-7952(03)00142-X 10.1109/TNN.2007.899170 10.1016/j.enconman.2007.09.009 10.1109/TPEL.2007.897128 10.1016/j.patrec.2007.03.004 10.1016/S0893-6080(05)80056-5 10.1021/ci0504014 10.1109/72.329697 10.1017/S0016672310000662 10.1021/ci034108k 10.1186/1471-2156-12-87 10.1162/neco.1992.4.3.415 10.1111/j.1365-2052.2012.02326.x 10.1016/j.epsr.2007.11.003 10.1109/TNN.2006.877532 10.1007/11766247 10.1016/j.eswa.2013.04.013 10.1016/S1010-6030(01)00640-2 10.1111/j.1751-1097.2004.tb00095.x 10.1007/s10822-005-3321-5 10.1214/088342304000000099 10.1186/s12863-014-0149-9 10.1109/34.667885 10.1007/s11270-005-9068-8 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.3390/mca21020020 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2297-8747 |
| ExternalDocumentID | 10_3390_mca21020020 |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GIY GROUPED_DOAJ MODMG M~E OK1 |
| ID | FETCH-LOGICAL-c2510-f5da77934bc846080e5cab121379bca1b10e14fb67e8d74befeac2521b52ce3e3 |
| ISSN | 2297-8747 |
| IngestDate | Thu Oct 16 04:44:52 EDT 2025 Tue Nov 18 22:38:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2510-f5da77934bc846080e5cab121379bca1b10e14fb67e8d74befeac2521b52ce3e3 |
| OpenAccessLink | https://www.mdpi.com/2297-8747/21/2/20/pdf?version=1464099067 |
| ParticipantIDs | crossref_primary_10_3390_mca21020020 crossref_citationtrail_10_3390_mca21020020 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-24 |
| PublicationDateYYYYMMDD | 2016-05-24 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationTitle | Mathematical and computational applications |
| PublicationYear | 2016 |
| References | Okut (ref_24) 2013; 45 Xu (ref_20) 2006; 172 Khomfoi (ref_2) 2007; 22 Mackay (ref_10) 1992; 4 Felipe (ref_16) 2014; 15 Sorich (ref_19) 2003; 43 ref_11 Kelemen (ref_22) 2008; 2 Hagan (ref_7) 1994; 5 ref_18 Bishop (ref_12) 1998; 20 Burden (ref_13) 2008; 458 Bruneau (ref_31) 2006; 46 Pareek (ref_30) 2002; 149 Titterington (ref_15) 2004; 19 Saini (ref_8) 2008; 78 Marwalla (ref_14) 2007; 28 Lee (ref_29) 2004; 71 ref_25 Gianola (ref_23) 2012; 43 Lauret (ref_32) 2008; 5 Wayg (ref_34) 2005; 19 Gianola (ref_5) 2011; 12 Bui (ref_28) 2012; 171 Alaniz (ref_1) 2007; 18 Vigdor (ref_4) 2006; 17 Moller (ref_6) 1993; 6 ref_27 Ticknor (ref_33) 2013; 14 ref_26 Okut (ref_3) 2011; 93 ref_9 Mackay (ref_21) 1996; 8 Alados (ref_17) 2004; 80 |
| References_xml | – volume: 45 start-page: 1 year: 2013 ident: ref_24 article-title: Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models publication-title: Genet. Sel. Evolut. – volume: 71 start-page: 289 year: 2004 ident: ref_29 article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network publication-title: Eng. Geol. doi: 10.1016/S0013-7952(03)00142-X – volume: 18 start-page: 1185 year: 2007 ident: ref_1 article-title: Discrete-time adaptive back stepping nonlinear control via high-order neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.899170 – ident: ref_9 – volume: 5 start-page: 1156 year: 2008 ident: ref_32 article-title: Bayesian Neural Network approach to short time load forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.09.009 – volume: 22 start-page: 1062 year: 2007 ident: ref_2 article-title: Fault diagnostic system for a multilevel inverter using a neural network publication-title: IEEE Trans Power Electron. doi: 10.1109/TPEL.2007.897128 – volume: 28 start-page: 1452 year: 2007 ident: ref_14 article-title: Bayesian training of neural networks using genetic programming publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.03.004 – volume: 6 start-page: 525 year: 1993 ident: ref_6 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – ident: ref_11 – volume: 2 start-page: 43 year: 2008 ident: ref_22 article-title: Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex publication-title: Dis. Stat. Surv. – volume: 46 start-page: 1379 year: 2006 ident: ref_31 article-title: LogD7.4 modeling using Bayesian regularized neural networks assessment and correction of the errors of prediction publication-title: J. Chem. Inf. Model. doi: 10.1021/ci0504014 – ident: ref_18 – volume: 5 start-page: 989 year: 1994 ident: ref_7 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329697 – volume: 93 start-page: 189 year: 2011 ident: ref_3 article-title: Prediction of body mass index in mice using dense molecular markers and a regularized neural network publication-title: Genet. Res. Camb. doi: 10.1017/S0016672310000662 – volume: 43 start-page: 2019 year: 2003 ident: ref_19 article-title: Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyl transferesa isoforms publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034108k – volume: 12 start-page: 1 year: 2011 ident: ref_5 article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat publication-title: BMC Genet. doi: 10.1186/1471-2156-12-87 – volume: 4 start-page: 415 year: 1992 ident: ref_10 article-title: Bayesian interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 43 start-page: 19 year: 2012 ident: ref_23 article-title: On measures of association among genetic variables publication-title: Anim. Genet. doi: 10.1111/j.1365-2052.2012.02326.x – volume: 78 start-page: 1302 year: 2008 ident: ref_8 article-title: Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2007.11.003 – ident: ref_25 – ident: ref_27 – volume: 17 start-page: 1288 year: 2006 ident: ref_4 article-title: Accurate and fast off and online fuzzy ARTMAP-based image classification with application to genetic abnormality diagnosis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.877532 – ident: ref_26 doi: 10.1007/11766247 – volume: 14 start-page: 5501 year: 2013 ident: ref_33 article-title: A Bayesian regularized artificial neural network for stock market forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.04.013 – volume: 149 start-page: 139 year: 2002 ident: ref_30 article-title: Artificial neural network modeling of a multiphase photo degradation system publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/S1010-6030(01)00640-2 – volume: 80 start-page: 351 year: 2004 ident: ref_17 article-title: Estimating UV erythemal irradiance by means of neural networks publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2004.tb00095.x – volume: 19 start-page: 137 year: 2005 ident: ref_34 article-title: An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian regularized neural network publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-005-3321-5 – volume: 19 start-page: 128 year: 2004 ident: ref_15 article-title: Bayesian methods for neural networks and related models publication-title: Stat. Sci. doi: 10.1214/088342304000000099 – volume: 15 start-page: 1 year: 2014 ident: ref_16 article-title: Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data publication-title: BMC Genet. doi: 10.1186/s12863-014-0149-9 – volume: 8 start-page: 1 year: 1996 ident: ref_21 article-title: Comparison of approximate methods for handling hyperparameters publication-title: Neural Comput. – volume: 20 start-page: 281 year: 1998 ident: ref_12 article-title: A hierarchical latent variable model for data visualization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.667885 – volume: 458 start-page: 25 year: 2008 ident: ref_13 article-title: Bayesian regularization of neural networks publication-title: Methods Mol. Biol. – volume: 172 start-page: 167 year: 2006 ident: ref_20 article-title: Application of Bayesian regularized BP neural network model for trend analysis. Acidity and chemical composition of precipitation in North publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-005-9068-8 – volume: 171 start-page: 12 year: 2012 ident: ref_28 article-title: Landslide susceptibility assessment in the HoaBinh province of Vieatnam: A comparison of the Levenberg–Marqardt and Bayesian regularized neural networks publication-title: Geomorphology |
| SSID | ssj0002140200 |
| Score | 2.5434477 |
| Snippet | The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 20 |
| Title | Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2297-8747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140200 issn: 2297-8747 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2297-8747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140200 issn: 2297-8747 databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwgEOiE9RWiofeqIK5MOJE26hFHHoVhUUqbeV7XUg0m52yaZVe0H8B-6ov41f0hk7cQLaQzlwSVaWvbvKvNjj8bw3hOzKTEeBnipPsmnqsaJgXiYT7cWCpX5SILvTVC055EdH6elpdjwa_eq4MOczXlXpxUW2_K-mhjYwNlJn_8Hc7kuhAT6D0eEKZofrjQx_XOPZi8kIyk3ma2l1Zd-KS20Ykx9N-fm6JWCa04ND1HEymV5t7kM0FvU3RE-zl8--LOqy-To3mbN5bZKLMM6Ouh7mZhLJVx3HvVcTP5gvS6tA8slKV1d7LRv4nWXEObd47MRjW-kCZYpNdIHK4Sm7WyHEpSXJA1REMwxeBAmeu1vOtJ3jwjCDRZJb0c1Xek1bO0lbGnULxnA44_rrFoIoyjBzcq4EbmnRJ-7Xu-6M_69l0CUnwrYIh08Gg2-R2yGPM0wZHH_vY3hhgLtvDOO5_2wpoDj-9WD8wOkZeC8nD8j9dttBcwuXh2Skq0fkXv_YV4_JVQ8c6oBDFwXtgEP_BA4FO1EHnN8_fjrI0B4ytKxoDxlqIUM7yLyhOR0AhjrAUAMYCj9iAUMRME_I5_cHJ_sfvLZ-h6fAa_a9Ip4KDvM_kwq8XHjtdayERA1BnkklAhn4OmCFTLhOp5xJXYAXEII_KeNQ6UhHT8lGtaj0M0IjnjIZgz_H44TpBNxSgVXXAp9FzFdSb5KX3QOeqFbcHmuszCZrrLlJdl3npdV0Wdft-c26bZG7PbK3yUZTn-kX5I46b8pVvWNiPDsGNteFGp6v |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Abilities+of+Bayesian+Regularization+and+Levenberg%E2%80%93Marquardt+Algorithms+in+Artificial+Neural+Networks%3A+A+Comparative+Empirical+Study+on+Social+Data&rft.jtitle=Mathematical+and+computational+applications&rft.au=Kayri%2C+Murat&rft.date=2016-05-24&rft.issn=2297-8747&rft.eissn=2297-8747&rft.volume=21&rft.issue=2&rft.spage=20&rft_id=info:doi/10.3390%2Fmca21020020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mca21020020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8747&client=summon |