Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data

The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications Jg. 21; H. 2; S. 20
1. Verfasser: Kayri, Murat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 24.05.2016
ISSN:2297-8747, 2297-8747
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning algorithms. It is concluded that the Bayesian regularization training algorithm shows better performance than the Levenberg–Marquardt algorithm. The advantage of a Bayesian regularization artificial neural network is its ability to reveal potentially complex relationships, meaning it can be used in quantitative studies to provide a robust model.
AbstractList The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning algorithms. It is concluded that the Bayesian regularization training algorithm shows better performance than the Levenberg–Marquardt algorithm. The advantage of a Bayesian regularization artificial neural network is its ability to reveal potentially complex relationships, meaning it can be used in quantitative studies to provide a robust model.
Author Kayri, Murat
Author_xml – sequence: 1
  givenname: Murat
  surname: Kayri
  fullname: Kayri, Murat
BookMark eNptkEtOw0AQREcoSISQFReYPQrM2E5sszMhfKTwEYF11DNuhwZ_wsw4KKy4AxfgbJwEJ7CIEFJL1YtXVVLtslZZlcjYvhSHvh-Lo0KDJ4Unmttibc-Lw14UBmFr499hXWufRIPIYEW22eetwZS0owXyRFFOjtDyKuMnsERLUPI7nNU5GHoDR1XJoUz5GBdYKjSzr_ePKzAvNZjU8SSfVYbcY2E5lTwxjjLSBDm_xtqsxb1W5tke84QPq2IOBta1o2JOhnRDTFydLnlTMqnWxlNwsMe2M8gtdn-1wx7ORvfDi9745vxymIx72utL0cv6KYRh7AdKR8FARAL7GpT0pB_GSoNUUqAMMjUIMUrDQGGG0Dg9qfqeRh_9Djv4ydWmstZgNp0bKsAsp1JMV_tON_ZtaPmH1uTWAzkDlP_r-QZmAIQ1
CitedBy_id crossref_primary_10_1002_isaf_1519
crossref_primary_10_1007_s00604_022_05393_4
crossref_primary_10_1016_j_conbuildmat_2021_126072
crossref_primary_10_1371_journal_pone_0247391
crossref_primary_10_1088_1742_6596_1566_1_012106
crossref_primary_10_1080_00218464_2021_2001335
crossref_primary_10_1088_1755_1315_463_1_012014
crossref_primary_10_1007_s12517_018_4218_7
crossref_primary_10_1038_s41598_021_00097_w
crossref_primary_10_1007_s41660_024_00430_6
crossref_primary_10_1007_s43452_022_00411_x
crossref_primary_10_1155_2021_5577547
crossref_primary_10_1016_j_nexus_2023_100210
crossref_primary_10_1038_s41598_022_13532_3
crossref_primary_10_1016_j_sandf_2022_101203
crossref_primary_10_1155_2020_8627824
crossref_primary_10_4271_04_18_01_0005
crossref_primary_10_3390_app11167523
crossref_primary_10_1080_02772248_2025_2532741
crossref_primary_10_1016_j_gca_2020_07_019
crossref_primary_10_1007_s13344_025_0007_8
crossref_primary_10_1029_2020JC016988
crossref_primary_10_1016_j_eswa_2024_125986
crossref_primary_10_1109_ACCESS_2020_3012671
crossref_primary_10_1007_s10479_023_05754_z
crossref_primary_10_3390_app13053128
crossref_primary_10_3390_w14040552
crossref_primary_10_61435_ijred_2025_60848
crossref_primary_10_1080_03610918_2024_2330700
crossref_primary_10_2478_acss_2024_0004
crossref_primary_10_1080_09720502_2021_1964740
crossref_primary_10_3390_w14193061
crossref_primary_10_1002_cjce_24715
crossref_primary_10_1080_15325008_2020_1736211
crossref_primary_10_3390_s17122897
crossref_primary_10_1108_COMPEL_11_2019_0449
crossref_primary_10_3390_en15134933
crossref_primary_10_1007_s11408_022_00421_y
crossref_primary_10_3390_s21196354
crossref_primary_10_1007_s10163_024_02083_6
crossref_primary_10_1016_j_ifacol_2018_07_183
crossref_primary_10_1080_02626667_2023_2273402
crossref_primary_10_1371_journal_pone_0188553
crossref_primary_10_3390_jmse11091807
crossref_primary_10_1088_1755_1315_1348_1_012046
crossref_primary_10_1016_j_advengsoft_2024_103861
crossref_primary_10_1186_s13673_018_0151_8
crossref_primary_10_1142_S2424786325500033
crossref_primary_10_1088_1742_6596_1529_5_052058
crossref_primary_10_1016_j_conbuildmat_2023_132464
crossref_primary_10_1109_TMTT_2018_2859929
crossref_primary_10_1108_JES_06_2021_0316
crossref_primary_10_1007_s13563_022_00311_9
crossref_primary_10_1109_TEMC_2019_2916837
crossref_primary_10_3233_JIFS_189587
crossref_primary_10_3233_JIFS_189620
crossref_primary_10_1109_TNNLS_2021_3076060
crossref_primary_10_1007_s00170_020_06407_2
crossref_primary_10_1109_ACCESS_2021_3124629
crossref_primary_10_3390_computation7010010
crossref_primary_10_1109_TCPMT_2017_2672498
crossref_primary_10_3390_w14071173
crossref_primary_10_3390_polym12102319
crossref_primary_10_1007_s13563_022_00357_9
crossref_primary_10_1007_s12008_025_02404_5
crossref_primary_10_1007_s00024_021_02724_z
crossref_primary_10_3390_f14122429
crossref_primary_10_3390_plants12193473
crossref_primary_10_1016_j_conbuildmat_2023_131361
crossref_primary_10_3390_s20071968
crossref_primary_10_1080_15440478_2023_2259101
crossref_primary_10_2514_1_J063599
crossref_primary_10_1007_s43674_022_00045_9
crossref_primary_10_1080_03019233_2023_2218243
crossref_primary_10_21597_jist_1502928
crossref_primary_10_1007_s11630_021_1497_1
crossref_primary_10_1002_suco_202400231
crossref_primary_10_3390_pr12071362
crossref_primary_10_1016_j_enbuild_2022_112502
crossref_primary_10_1016_j_iswa_2022_200084
crossref_primary_10_1108_ECON_05_2022_0026
crossref_primary_10_3390_app12020674
crossref_primary_10_3390_en14133965
crossref_primary_10_1080_14680629_2020_1822202
crossref_primary_10_1155_2021_6631564
crossref_primary_10_3390_s23073680
crossref_primary_10_1108_AJEB_05_2022_0051
crossref_primary_10_1051_e3sconf_202128703001
crossref_primary_10_1007_s00521_022_07309_y
crossref_primary_10_1109_ACCESS_2021_3122331
crossref_primary_10_1109_ACCESS_2021_3126775
crossref_primary_10_3390_rs11151769
crossref_primary_10_1007_s10706_017_0436_0
crossref_primary_10_1016_j_eswa_2022_117937
crossref_primary_10_3390_sym17020228
crossref_primary_10_1108_AJEB_01_2024_0007
crossref_primary_10_51537_chaos_1375866
crossref_primary_10_1021_acsomega_5c01602
crossref_primary_10_3390_coatings13071140
crossref_primary_10_1007_s43674_023_00054_2
crossref_primary_10_26636_jtit_2020_143520
crossref_primary_10_3390_beverages5020033
crossref_primary_10_3390_jmse10111627
crossref_primary_10_1177_03611981221111367
crossref_primary_10_1080_15567036_2023_2291449
crossref_primary_10_1007_s42496_024_00206_8
crossref_primary_10_1080_00103624_2021_1984515
crossref_primary_10_1007_s11244_020_01409_6
crossref_primary_10_1016_j_ijheatfluidflow_2021_108897
crossref_primary_10_1007_s11831_023_09963_4
crossref_primary_10_3390_en14164850
crossref_primary_10_1080_19475705_2024_2449134
crossref_primary_10_1109_JRFID_2023_3267361
crossref_primary_10_1016_j_tafmec_2024_104761
crossref_primary_10_1061__ASCE_MT_1943_5533_0004686
crossref_primary_10_1080_10835547_2022_2110668
crossref_primary_10_34172_apb_2022_060
crossref_primary_10_1108_PM_11_2022_0086
crossref_primary_10_1007_s40313_022_00972_5
crossref_primary_10_3390_su132011366
crossref_primary_10_1680_jgrim_18_00092
crossref_primary_10_1007_s12541_021_00601_2
crossref_primary_10_1016_j_iswa_2022_200061
crossref_primary_10_3390_educsci15050519
crossref_primary_10_3390_en14133949
crossref_primary_10_3390_rs12071194
crossref_primary_10_38088_jise_1375510
crossref_primary_10_3390_s23021020
crossref_primary_10_1016_j_jallcom_2023_172895
crossref_primary_10_1088_1742_6596_1255_1_012027
crossref_primary_10_1109_ACCESS_2022_3229171
crossref_primary_10_1186_s40537_023_00739_y
crossref_primary_10_3390_s22228655
crossref_primary_10_1155_2020_8845768
crossref_primary_10_1007_s13399_023_04812_7
crossref_primary_10_3390_cli10060078
crossref_primary_10_1108_JFMPC_08_2022_0041
crossref_primary_10_1063_5_0274063
crossref_primary_10_47115_bsagriculture_1181444
crossref_primary_10_3390_pr13092843
crossref_primary_10_32604_csse_2023_036724
crossref_primary_10_3390_sym17010091
crossref_primary_10_1108_JM2_09_2023_0207
crossref_primary_10_36899_JAPS_2023_4_0676
crossref_primary_10_1016_j_iswa_2021_200052
crossref_primary_10_1109_TGRS_2019_2891426
crossref_primary_10_1109_TGRS_2021_3113087
crossref_primary_10_3390_catal9090738
crossref_primary_10_1088_1757_899X_1147_1_012012
crossref_primary_10_1029_2024GB008371
crossref_primary_10_3389_fenvs_2023_1132159
crossref_primary_10_3103_S0967091221040069
crossref_primary_10_1021_acs_iecr_2c02318
crossref_primary_10_1088_1742_6596_1964_6_062117
crossref_primary_10_3390_s20216086
crossref_primary_10_1108_ECAM_05_2022_0464
crossref_primary_10_1088_1361_665X_ac093d
crossref_primary_10_1088_1755_1315_682_1_012020
crossref_primary_10_3390_jintelligence11070128
crossref_primary_10_3390_w14030344
crossref_primary_10_3992_jgb_17_4_79
Cites_doi 10.1016/S0013-7952(03)00142-X
10.1109/TNN.2007.899170
10.1016/j.enconman.2007.09.009
10.1109/TPEL.2007.897128
10.1016/j.patrec.2007.03.004
10.1016/S0893-6080(05)80056-5
10.1021/ci0504014
10.1109/72.329697
10.1017/S0016672310000662
10.1021/ci034108k
10.1186/1471-2156-12-87
10.1162/neco.1992.4.3.415
10.1111/j.1365-2052.2012.02326.x
10.1016/j.epsr.2007.11.003
10.1109/TNN.2006.877532
10.1007/11766247
10.1016/j.eswa.2013.04.013
10.1016/S1010-6030(01)00640-2
10.1111/j.1751-1097.2004.tb00095.x
10.1007/s10822-005-3321-5
10.1214/088342304000000099
10.1186/s12863-014-0149-9
10.1109/34.667885
10.1007/s11270-005-9068-8
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/mca21020020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2297-8747
ExternalDocumentID 10_3390_mca21020020
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GIY
GROUPED_DOAJ
MODMG
M~E
OK1
ID FETCH-LOGICAL-c2510-f5da77934bc846080e5cab121379bca1b10e14fb67e8d74befeac2521b52ce3e3
ISSN 2297-8747
IngestDate Thu Oct 16 04:44:52 EDT 2025
Tue Nov 18 22:38:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2510-f5da77934bc846080e5cab121379bca1b10e14fb67e8d74befeac2521b52ce3e3
OpenAccessLink https://www.mdpi.com/2297-8747/21/2/20/pdf?version=1464099067
ParticipantIDs crossref_primary_10_3390_mca21020020
crossref_citationtrail_10_3390_mca21020020
PublicationCentury 2000
PublicationDate 2016-05-24
PublicationDateYYYYMMDD 2016-05-24
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-24
  day: 24
PublicationDecade 2010
PublicationTitle Mathematical and computational applications
PublicationYear 2016
References Okut (ref_24) 2013; 45
Xu (ref_20) 2006; 172
Khomfoi (ref_2) 2007; 22
Mackay (ref_10) 1992; 4
Felipe (ref_16) 2014; 15
Sorich (ref_19) 2003; 43
ref_11
Kelemen (ref_22) 2008; 2
Hagan (ref_7) 1994; 5
ref_18
Bishop (ref_12) 1998; 20
Burden (ref_13) 2008; 458
Bruneau (ref_31) 2006; 46
Pareek (ref_30) 2002; 149
Titterington (ref_15) 2004; 19
Saini (ref_8) 2008; 78
Marwalla (ref_14) 2007; 28
Lee (ref_29) 2004; 71
ref_25
Gianola (ref_23) 2012; 43
Lauret (ref_32) 2008; 5
Wayg (ref_34) 2005; 19
Gianola (ref_5) 2011; 12
Bui (ref_28) 2012; 171
Alaniz (ref_1) 2007; 18
Vigdor (ref_4) 2006; 17
Moller (ref_6) 1993; 6
ref_27
Ticknor (ref_33) 2013; 14
ref_26
Okut (ref_3) 2011; 93
ref_9
Mackay (ref_21) 1996; 8
Alados (ref_17) 2004; 80
References_xml – volume: 45
  start-page: 1
  year: 2013
  ident: ref_24
  article-title: Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models
  publication-title: Genet. Sel. Evolut.
– volume: 71
  start-page: 289
  year: 2004
  ident: ref_29
  article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(03)00142-X
– volume: 18
  start-page: 1185
  year: 2007
  ident: ref_1
  article-title: Discrete-time adaptive back stepping nonlinear control via high-order neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.899170
– ident: ref_9
– volume: 5
  start-page: 1156
  year: 2008
  ident: ref_32
  article-title: Bayesian Neural Network approach to short time load forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.09.009
– volume: 22
  start-page: 1062
  year: 2007
  ident: ref_2
  article-title: Fault diagnostic system for a multilevel inverter using a neural network
  publication-title: IEEE Trans Power Electron.
  doi: 10.1109/TPEL.2007.897128
– volume: 28
  start-page: 1452
  year: 2007
  ident: ref_14
  article-title: Bayesian training of neural networks using genetic programming
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.03.004
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_6
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– ident: ref_11
– volume: 2
  start-page: 43
  year: 2008
  ident: ref_22
  article-title: Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex
  publication-title: Dis. Stat. Surv.
– volume: 46
  start-page: 1379
  year: 2006
  ident: ref_31
  article-title: LogD7.4 modeling using Bayesian regularized neural networks assessment and correction of the errors of prediction
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci0504014
– ident: ref_18
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_7
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 93
  start-page: 189
  year: 2011
  ident: ref_3
  article-title: Prediction of body mass index in mice using dense molecular markers and a regularized neural network
  publication-title: Genet. Res. Camb.
  doi: 10.1017/S0016672310000662
– volume: 43
  start-page: 2019
  year: 2003
  ident: ref_19
  article-title: Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-Glucuronosyl transferesa isoforms
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034108k
– volume: 12
  start-page: 1
  year: 2011
  ident: ref_5
  article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-87
– volume: 4
  start-page: 415
  year: 1992
  ident: ref_10
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 43
  start-page: 19
  year: 2012
  ident: ref_23
  article-title: On measures of association among genetic variables
  publication-title: Anim. Genet.
  doi: 10.1111/j.1365-2052.2012.02326.x
– volume: 78
  start-page: 1302
  year: 2008
  ident: ref_8
  article-title: Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2007.11.003
– ident: ref_25
– ident: ref_27
– volume: 17
  start-page: 1288
  year: 2006
  ident: ref_4
  article-title: Accurate and fast off and online fuzzy ARTMAP-based image classification with application to genetic abnormality diagnosis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.877532
– ident: ref_26
  doi: 10.1007/11766247
– volume: 14
  start-page: 5501
  year: 2013
  ident: ref_33
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.04.013
– volume: 149
  start-page: 139
  year: 2002
  ident: ref_30
  article-title: Artificial neural network modeling of a multiphase photo degradation system
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/S1010-6030(01)00640-2
– volume: 80
  start-page: 351
  year: 2004
  ident: ref_17
  article-title: Estimating UV erythemal irradiance by means of neural networks
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2004.tb00095.x
– volume: 19
  start-page: 137
  year: 2005
  ident: ref_34
  article-title: An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian regularized neural network
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-005-3321-5
– volume: 19
  start-page: 128
  year: 2004
  ident: ref_15
  article-title: Bayesian methods for neural networks and related models
  publication-title: Stat. Sci.
  doi: 10.1214/088342304000000099
– volume: 15
  start-page: 1
  year: 2014
  ident: ref_16
  article-title: Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data
  publication-title: BMC Genet.
  doi: 10.1186/s12863-014-0149-9
– volume: 8
  start-page: 1
  year: 1996
  ident: ref_21
  article-title: Comparison of approximate methods for handling hyperparameters
  publication-title: Neural Comput.
– volume: 20
  start-page: 281
  year: 1998
  ident: ref_12
  article-title: A hierarchical latent variable model for data visualization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.667885
– volume: 458
  start-page: 25
  year: 2008
  ident: ref_13
  article-title: Bayesian regularization of neural networks
  publication-title: Methods Mol. Biol.
– volume: 172
  start-page: 167
  year: 2006
  ident: ref_20
  article-title: Application of Bayesian regularized BP neural network model for trend analysis. Acidity and chemical composition of precipitation in North
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-005-9068-8
– volume: 171
  start-page: 12
  year: 2012
  ident: ref_28
  article-title: Landslide susceptibility assessment in the HoaBinh province of Vieatnam: A comparison of the Levenberg–Marqardt and Bayesian regularized neural networks
  publication-title: Geomorphology
SSID ssj0002140200
Score 2.5434477
Snippet The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 20
Title Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2297-8747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140200
  issn: 2297-8747
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2297-8747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140200
  issn: 2297-8747
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwgEOiE9RWiofeqIK5MOJE26hFHHoVhUUqbeV7XUg0m52yaZVe0H8B-6ov41f0hk7cQLaQzlwSVaWvbvKvNjj8bw3hOzKTEeBnipPsmnqsaJgXiYT7cWCpX5SILvTVC055EdH6elpdjwa_eq4MOczXlXpxUW2_K-mhjYwNlJn_8Hc7kuhAT6D0eEKZofrjQx_XOPZi8kIyk3ma2l1Zd-KS20Ykx9N-fm6JWCa04ND1HEymV5t7kM0FvU3RE-zl8--LOqy-To3mbN5bZKLMM6Ouh7mZhLJVx3HvVcTP5gvS6tA8slKV1d7LRv4nWXEObd47MRjW-kCZYpNdIHK4Sm7WyHEpSXJA1REMwxeBAmeu1vOtJ3jwjCDRZJb0c1Xek1bO0lbGnULxnA44_rrFoIoyjBzcq4EbmnRJ-7Xu-6M_69l0CUnwrYIh08Gg2-R2yGPM0wZHH_vY3hhgLtvDOO5_2wpoDj-9WD8wOkZeC8nD8j9dttBcwuXh2Skq0fkXv_YV4_JVQ8c6oBDFwXtgEP_BA4FO1EHnN8_fjrI0B4ytKxoDxlqIUM7yLyhOR0AhjrAUAMYCj9iAUMRME_I5_cHJ_sfvLZ-h6fAa_a9Ip4KDvM_kwq8XHjtdayERA1BnkklAhn4OmCFTLhOp5xJXYAXEII_KeNQ6UhHT8lGtaj0M0IjnjIZgz_H44TpBNxSgVXXAp9FzFdSb5KX3QOeqFbcHmuszCZrrLlJdl3npdV0Wdft-c26bZG7PbK3yUZTn-kX5I46b8pVvWNiPDsGNteFGp6v
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Abilities+of+Bayesian+Regularization+and+Levenberg%E2%80%93Marquardt+Algorithms+in+Artificial+Neural+Networks%3A+A+Comparative+Empirical+Study+on+Social+Data&rft.jtitle=Mathematical+and+computational+applications&rft.au=Kayri%2C+Murat&rft.date=2016-05-24&rft.issn=2297-8747&rft.eissn=2297-8747&rft.volume=21&rft.issue=2&rft.spage=20&rft_id=info:doi/10.3390%2Fmca21020020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mca21020020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8747&client=summon