Approximation by Unimodular Functions

The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [4; 5; 10]. In § 1, we show that a function bounded by 1, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian journal of mathematics Ročník 23; číslo 2; s. 257 - 269
Hlavní autor: Fisher, Stephen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.04.1971
ISSN:0008-414X, 1496-4279
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [4; 5; 10]. In § 1, we show that a function bounded by 1, which is analytic in the open unit disc Δ and continuous on may be approximated uniformly on the set where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a finite Blaschke product; that is, by a function of the form * where |λ| = 1 and |αi | < 1, i = 1, …, N. In § 1 we also discuss pointwise approximation by Blaschke products with restricted zeros.
AbstractList The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [ 4; 5; 10 ]. In § 1, we show that a function bounded by 1, which is analytic in the open unit disc Δ and continuous on may be approximated uniformly on the set where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a finite Blaschke product; that is, by a function of the form * where | λ | = 1 and | α i | < 1, i = 1, …, N . In § 1 we also discuss pointwise approximation by Blaschke products with restricted zeros.
The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [4; 5; 10]. In § 1, we show that a function bounded by 1, which is analytic in the open unit disc Δ and continuous on may be approximated uniformly on the set where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a finite Blaschke product; that is, by a function of the form * where |λ| = 1 and |αi | < 1, i = 1, …, N. In § 1 we also discuss pointwise approximation by Blaschke products with restricted zeros.
Author Fisher, Stephen
Author_xml – sequence: 1
  givenname: Stephen
  surname: Fisher
  fullname: Fisher, Stephen
  organization: Northwestern University, Evanston, Illinois
BookMark eNp1j89LwzAUgINMsJtePffiMTMvTX8dR3FOmXhx4C0kaSoZbVqSFtx_b6o7CTs93oPv8X1LtLC91QjdA1kzSJPH6vUNQ5kDJjTF7ApFwMoMM5qXCxQRQgrMgH3eoKX3x7AmWQoRetgMg-u_TSdG09tYnuKDNV1fT61w8Xayaj77W3TdiNbru_NcocP26aPa4f3780u12WNFUzJiyUDVOdMCiA5KOm9A5wBUskYxJSmtZVEWWUKCCFFKFWUuUlEIDUkthWqSFVr__VWu997phg8uqLkTB8LnSB4i-RzJQyRnAWD_AGXG35TRCdNexsgZE510pv7S_NhPzoa2S8gPF-hnEA
CitedBy_id crossref_primary_10_1016_0022_1236_77_90074_X
crossref_primary_10_1080_17476933_2021_1968381
ContentType Journal Article
Copyright Copyright © Canadian Mathematical Society 1971
Copyright_xml – notice: Copyright © Canadian Mathematical Society 1971
DBID AAYXX
CITATION
DOI 10.4153/CJM-1971-025-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4279
EndPage 269
ExternalDocumentID 10_4153_CJM_1971_025_4
GroupedDBID --Z
-~X
09C
09E
0R~
186
3O-
69Q
6TJ
8FQ
AABWE
AAGFV
AAIKC
AAMNW
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABEFU
ABGDZ
ABJNI
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACDLN
ACGFO
ACIPV
ACKIV
ACNCT
ACYZP
ACZWT
ADDNB
ADIYS
ADKIL
ADOVH
ADVJH
AEBAK
AECCQ
AENCP
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGBYD
AGJUD
AHRGI
AI.
AIOIP
AJCYY
AJPFC
ALEEW
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
K7-
KCGVB
KFECR
L7B
LW7
MVM
NHB
NZEOI
OHT
OK1
P2P
RCA
RCD
ROL
S10
UHB
VH1
WFFJZ
XJT
XOL
XSW
YYP
ZKB
ZMEZD
AAXMD
AAYXX
ABUFD
ABXHF
ADXHL
AFFHD
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c250t-b41cd74ea10e415e7f1e7112b4fc4cb22db8986304140ccc897a5a8ae13dbacf3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.4153/cjm-1971-025-4&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-414X
IngestDate Tue Nov 18 22:30:17 EST 2025
Sat Nov 29 05:00:06 EST 2025
Tue Jan 21 06:17:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c250t-b41cd74ea10e415e7f1e7112b4fc4cb22db8986304140ccc897a5a8ae13dbacf3
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/BF3B77C30E09219C30739F1FED87564F/S0008414X00053165a.pdf/div-class-title-approximation-by-unimodular-functions-div.pdf
PageCount 13
ParticipantIDs crossref_primary_10_4153_CJM_1971_025_4
crossref_citationtrail_10_4153_CJM_1971_025_4
cambridge_journals_10_4153_CJM_1971_025_4
PublicationCentury 1900
PublicationDate 1971-04-00
PublicationDateYYYYMMDD 1971-04-01
PublicationDate_xml – month: 04
  year: 1971
  text: 1971-04-00
PublicationDecade 1970
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Canadian journal of mathematics
PublicationTitleAlternate Can. j. math
PublicationYear 1971
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Rudin (S0008414X00053165_ref010) 1969; 76
Fisher (S0008414X00053165_ref005) 1969; 75
Fisher (S0008414X00053165_ref004) 1968; 74
Phelps (S0008414X00053165_ref009) 1965; 32
Rudin (S0008414X00053165_ref011) 1969
Carleson (S0008414X00053165_ref003) 1960; 73
Frostman (S0008414X00053165_ref006) 1935; 3
Hoffman (S0008414X00053165_ref008) 1962
Carathéodory (S0008414X00053165_ref002) 1954; 2
Helson (S0008414X00053165_ref007) 1967; 21
Ahern (S0008414X00053165_ref001) 1970; 92
References_xml – volume: 2
  volume-title: Theory of functions of a complex variable
  year: 1954
  ident: S0008414X00053165_ref002
– volume: 73
  start-page: 190
  year: 1960
  ident: S0008414X00053165_ref003
  article-title: Math. Z.
  publication-title: A representation formula for the Dirichlet integral
– volume: 75
  start-page: 1037
  year: 1969
  ident: S0008414X00053165_ref005
  article-title: Bull. Amer. Math. Soc.
  publication-title: Another theorem on convex combinations of unimodular functions
– volume: 3
  start-page: 1
  year: 1935
  ident: S0008414X00053165_ref006
  article-title: Medd. Lunds Univ. Mat. Sem.
  publication-title: Potentiel d'équilibre et capacité des ensembles avec quelque applications à la théorie des fonctions
– volume-title: Function theory in poly discs
  year: 1969
  ident: S0008414X00053165_ref011
– volume-title: Banach spaces of analytic functions
  year: 1962
  ident: S0008414X00053165_ref008
– volume: 92
  start-page: 332
  year: 1970
  ident: S0008414X00053165_ref001
  article-title: Amer. J. Math.
  publication-title: Radial limits and invariant subspaces
– volume: 74
  start-page: 1128
  year: 1968
  ident: S0008414X00053165_ref004
  article-title: Bull Amer. Math. Soc.
  publication-title: The convex hull of the finite Blaschke products
– volume: 21
  start-page: 5
  year: 1967
  ident: S0008414X00053165_ref007
  article-title: Math. Scand.
  publication-title: Past and future
– volume: 32
  start-page: 267
  year: 1965
  ident: S0008414X00053165_ref009
  article-title: Duke Math. J.
  publication-title: Extreme points in function algebras
– volume: 76
  start-page: 795
  year: 1969
  ident: S0008414X00053165_ref010
  article-title: Bull. Amer. Math. Soc.
  publication-title: Convex combinations of unimodular functions
SSID ssj0003651
Score 1.1954093
Snippet The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of...
SourceID crossref
cambridge
SourceType Enrichment Source
Index Database
Publisher
StartPage 257
Title Approximation by Unimodular Functions
URI https://www.cambridge.org/core/product/identifier/S0008414X00053165/type/journal_article
Volume 23
WOSCitedRecordID wos10.4153/cjm-1971-025-4&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAJQ
  databaseName: Google Magazines
  customDbUrl:
  eissn: 1496-4279
  dateEnd: 19961231
  omitProxy: false
  ssIdentifier: ssj0003651
  issn: 0008-414X
  databaseCode: 69Q
  dateStart: 19490101
  isFulltext: true
  titleUrlDefault: http://www.google.com/books/magazines
  providerName: Google.com
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA46PehB_InzFz0o4iHapmmbHMdQRNhQmLBbadIUBq4b25T53_uyZG03HMyDl1JKkib50pcv5b3vIXQNS8RV3PMxkNUQUxEmmHGSYkFFBmwjpNIVs2QTUbvNul3-ajNkj2fpBKI8Z9MpH_4r1PAMwNahs3-Au2gUHsA9gA5XgB2uawHf0Crh054JSdTsEmhlf5DO3E2fYBcr_9AtCxRUVCT6hZprGR9SJEm3nmHlDwOPR17Fz2RuBBmmnnGMvFfG7lEOSBGT12VuGE0gsF0ApGrljKa03TCJybWybIuBGWhNiOZLC5tekMDG8yyIXi9tRoWLIBxOdAsx1I91_Rjqx3QTbZEo4NoCh_yt2HL9MLCpEc3IjDqnrv-w-P6qgkaFiVQoRWcf7dmzgNMwGB6gDZUfot1WOfVH6GYBTUd8OyWaToHmMXp_euw0n7HNbIElfBsT-BI8mUZUJZ6roJcqyjwVAfMVNJNUCkJSwTgLfRcG40opGY-SIGGJ8vxUJDLzT1AtH-TqFDk-HJlJ6ofAazPdoBCuT1KX8QC4GZDPOrorRhzbdTSOf5_dOsLzGYmllYjXmUo-Vpa_LcoPjTjKipJna5c8Rzvlor1AtcnoU12ibfk16Y1HVzPYfwAL91S2
linkProvider Google.com
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+by+Unimodular+Functions&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Fisher%2C+Stephen&rft.date=1971-04-01&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=23&rft.issue=2&rft.spage=257&rft.epage=269&rft_id=info:doi/10.4153%2FCJM-1971-025-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_4153_CJM_1971_025_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon