Algebraic aspects of two-dimensional convolutional codes
Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structu...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 40; no. 4; pp. 1068 - 1082 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.1994
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Two-dimensional (2D) codes are introduced as linear shift-invariant spaces of admissible signals on the discrete plane. Convolutional and, in particular, basic codes are characterized both in terms of their internal properties and by means of their input-output representations. The algebraic structure of the class of all encoders that correspond to a given convolutional code is investigated and the possibility of obtaining 2D decoders, free from catastrophic errors, as,veil as efficient syndrome decoders is considered. Some aspects of the state space implementation of 2D encoders and decoders via (finite memory) 2D system are discussed.< > |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/18.335967 |