Inequalities and Inverse Theorems in Restricted Rational Approximation Theory

The following lemma, part a) due to S. N. Bernstein and part b) due to A. A. Markov, is fundamental to the proofs of many inverse theorems in polynomial approximation theory. LEMMA 1. [2, p. 62 and p. 67] Let ∏n denote the real polynomials of degree at most n. Let p ∈ ∏n, then a) b) From the lemma o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian journal of mathematics Ročník 32; číslo 2; s. 354 - 361
Hlavní autor: Borwein, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.04.1980
ISSN:0008-414X, 1496-4279
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The following lemma, part a) due to S. N. Bernstein and part b) due to A. A. Markov, is fundamental to the proofs of many inverse theorems in polynomial approximation theory. LEMMA 1. [2, p. 62 and p. 67] Let ∏n denote the real polynomials of degree at most n. Let p ∈ ∏n, then a) b) From the lemma one can deduce, for example: THEOREM 1. Iƒ there is a sequence of polynomials pn ∈ ∏n and a δ > 0 so that ‖f – pn ‖[a, b] ≧ A/n k + δ then f is k times continuously differentiate on (a, b). We shall refer to inequalities, such as those of Lemma 1 that bound the derivative r′ of a rational function of degree n in terms of its supremum norm ‖r‖[a, b] and n, as Bernstein-type inequalities.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-1980-028-5