Asymptotic Behavior of Normal Mappings of Several Complex Variables
Let M and N be connected Hermitian manifolds of dimensions m and n with Hermitian metrics hM and hN, respectively. Then the space ℓ(M, N) of continuous mappings between M and N endowed with the compact-open topology is second countable so that a metric can be furnished in ℓ(M, N) which induces the c...
Gespeichert in:
| Veröffentlicht in: | Canadian journal of mathematics Jg. 36; H. 4; S. 718 - 746 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.08.1984
|
| ISSN: | 0008-414X, 1496-4279 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Let M and N be connected Hermitian manifolds of dimensions m and n with Hermitian metrics hM
and hN, respectively. Then the space ℓ(M, N) of continuous mappings between M and N endowed with the compact-open topology is second countable so that a metric can be furnished in ℓ(M, N) which induces the compact-open topology. A sequence {fn} in ℓ(M, N) converges to a n f in ℓ(M, N) in this topology if and only if fn
converges to f uniformly on compact subsets of M. It is then an easy consequence of the Cauchy integral formula to show that the space ℋ(M, N) of holomorphic mappings f:M → N is a closed subspace of ℓ(M, N). In this paper, generalizing the classical notions of normal functions, Bloch functions, regular sequences and P-point sequences of one complex variable to the mappings in ℋ(M, N), see also [25], we obtain various relations which exist between these notions. |
|---|---|
| AbstractList | Let
M
and
N
be connected Hermitian manifolds of dimensions
m
and
n
with Hermitian metrics
h
M
and
h
N
,
respectively. Then the space
ℓ
(
M, N
) of continuous mappings between
M
and
N
endowed with the compact-open topology is second countable so that a metric can be furnished in
ℓ
(
M, N
) which induces the compact-open topology. A sequence
{f
n
}
in ℓ(
M, N
) converges to a n
f
in ℓ(
M, N
) in this topology if and only if
f
n
converges to
f
uniformly on compact subsets of
M.
It is then an easy consequence of the Cauchy integral formula to show that the space ℋ(
M, N
) of holomorphic mappings
f
:
M
→
N
is a closed subspace of
ℓ
(
M, N
).
In this paper, generalizing the classical notions of normal functions, Bloch functions, regular sequences and P-point sequences of one complex variable to the mappings in
ℋ
(
M, N
), see also [
25
], we obtain various relations which exist between these notions. Let M and N be connected Hermitian manifolds of dimensions m and n with Hermitian metrics hM and hN, respectively. Then the space ℓ(M, N) of continuous mappings between M and N endowed with the compact-open topology is second countable so that a metric can be furnished in ℓ(M, N) which induces the compact-open topology. A sequence {fn} in ℓ(M, N) converges to a n f in ℓ(M, N) in this topology if and only if fn converges to f uniformly on compact subsets of M. It is then an easy consequence of the Cauchy integral formula to show that the space ℋ(M, N) of holomorphic mappings f:M → N is a closed subspace of ℓ(M, N). In this paper, generalizing the classical notions of normal functions, Bloch functions, regular sequences and P-point sequences of one complex variable to the mappings in ℋ(M, N), see also [25], we obtain various relations which exist between these notions. |
| Author | Hahn, Kyong T. |
| Author_xml | – sequence: 1 givenname: Kyong T. surname: Hahn fullname: Hahn, Kyong T. organization: The Pennsylvania State University, University Park, Pennsylvania |
| BookMark | eNp1kMtOwzAQRS1UJNrClnV-wMVOHCdZloinCix4iJ018aO4SuLIDhX9e1zRFVJXo7m6Z6Q5MzTpXa8RuqRkwWieXdWPT5hWJcOEUVydoCllFccsLaoJmhJCSswo-zxDsxA2cc14TqeoXoZdN4xutDK51l-wtc4nziTPznfQJk8wDLZfh330qrfax6x23dDqn-QDvIWm1eEcnRpog744zDl6v715q-_x6uXuoV6usExzMmIOpJRQFkSWvOGFIiU3SiqujFK8SA1lkGdA80qVpEk5NUBMpRsJRexFNpujxd9d6V0IXhsxeNuB3wlKxF6BiArEXoGICkQVAfYPkHaE0bp-9GDb4xg5YNA13qq1Fhv37fv42zHkF-bUcgw |
| CitedBy_id | crossref_primary_10_1016_0022_247X_91_90356_5 crossref_primary_10_1515_advgeom_2010_016 crossref_primary_10_1007_s11401_009_0009_5 crossref_primary_10_1080_17476938608814163 crossref_primary_10_4153_CMB_1986_055_7 crossref_primary_10_1016_j_jmaa_2005_12_041 crossref_primary_10_1007_BF01444708 crossref_primary_10_2478_s11533_013_0274_0 crossref_primary_10_1080_17476930903394879 |
| ContentType | Journal Article |
| Copyright | Copyright © Canadian Mathematical Society 1984 |
| Copyright_xml | – notice: Copyright © Canadian Mathematical Society 1984 |
| DBID | AAYXX CITATION |
| DOI | 10.4153/CJM-1984-041-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1496-4279 |
| EndPage | 746 |
| ExternalDocumentID | 10_4153_CJM_1984_041_9 |
| GroupedDBID | --Z -~X 09C 3O- 69Q 6TJ AAIKC AAMNW AAYEQ ABBZL ABCQX ABEFU ABGDZ ABJNI ABMYL ABXAU ABZEH ACGFO ACIPV ACNCT ADKIL ADVJH AEBPU AENCP AGABE AGJUD AHRGI AI. ALMA_UNASSIGNED_HOLDINGS ARZZG ATUCA AYIQA BCGOX BESQT CCUQV CFBFF CGQII CJCSC EBS EGQIC EJD FRP IH6 IOO JHPGK L7B MVM NHB NZEOI OHT OK1 P2P RCA RCD S10 VH1 WFFJZ XJT XOL XSW ZMEZD 0R~ AAXMD AAYXX ABUFD ABVKB ACDLN ADXHL AFZFC CITATION DOHLZ |
| ID | FETCH-LOGICAL-c250t-6a08ca870c86b67d086fdcd6dfdd672f14a53a159d80b261fa0f9ebca76fda083 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.4153/cjm-1984-041-9&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-414X |
| IngestDate | Sat Nov 29 04:36:10 EST 2025 Tue Nov 18 19:42:06 EST 2025 Wed Mar 13 05:54:22 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c250t-6a08ca870c86b67d086fdcd6dfdd672f14a53a159d80b261fa0f9ebca76fda083 |
| OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/EFC470B062C491DD9C1191FE92EA571A/S0008414X00021775a.pdf/div-class-title-asymptotic-behavior-of-normal-mappings-of-several-complex-variables-div.pdf |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_4153_CJM_1984_041_9 crossref_citationtrail_10_4153_CJM_1984_041_9 cambridge_journals_10_4153_CJM_1984_041_9 |
| PublicationCentury | 1900 |
| PublicationDate | 1984-08-01 |
| PublicationDateYYYYMMDD | 1984-08-01 |
| PublicationDate_xml | – month: 08 year: 1984 text: 1984-08-01 day: 01 |
| PublicationDecade | 1980 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK |
| PublicationTitle | Canadian journal of mathematics |
| PublicationTitleAlternate | Can. j. math |
| PublicationYear | 1984 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | Hahn (S0008414X00021775_R0526) 1978; 30 Gauthier (S0008414X00021775_R0520) 1968; 32 Wu (S0008414X00021775_R0538) 1967; 119 Cima (S0008414X00021775_R0516) 1983; 50 Lohwater (S0008414X00021775_R0531) 1973; 550 Barth (S0008414X00021775_R0514) 1970; 24 Cirka (S0008414X00021775_R0517) 1973; 92 Seidel (S0008414X00021775_R0533) 1942; 52 Gavrilov (S0008414X00021775_R0522) 1982; 26 Brody (S0008414X00021775_R0515) 1978; 235 Dovbus (S0008414X00021775_R0519) 1982; 25 Hahn (S0008414X00021775_R0525) 1977; 68 Hahn (S0008414X00021775_R0524) 1975; 27 Kiernan (S0008414X00021775_R0528) 1970; 76 Gavrilov (S0008414X00021775_R0521) 1965; 109 Lehto (S0008414X00021775_R0530) 1957; 97 Diederieh (S0008414X00021775_R0518) 1970; 187 Timoney (S0008414X00021775_R0535) 1978 Stein (S0008414X00021775_R0534) 1972 Anderson (S0008414X00021775_R0513) 1974; 270 S0008414X00021775_R0537 Wicker (S0008414X00021775_R0536) 1977; 29 Graham (S0008414X00021775_R0523) 1975; 207 Kerzman (S0008414X00021775_R0527) 1981; 257 Kobayashi (S0008414X00021775_R0529) 1970 Royden (S0008414X00021775_R0532) 1971; 185 |
| References_xml | – volume: 26 start-page: 186 year: 1982 ident: S0008414X00021775_R0522 article-title: Soviet Math. Dokl. publication-title: Boundary singularities generated by cluster sets of functions of several complex variables, – volume: 270 start-page: 12 year: 1974 ident: S0008414X00021775_R0513 article-title: J. Reine Angew. Math. publication-title: On Block functions and normal Junctions, – volume-title: Boundary behavior of holomorphic functions of several complex variables year: 1972 ident: S0008414X00021775_R0534 – volume: 52 start-page: 128 year: 1942 ident: S0008414X00021775_R0533 article-title: Trans. Amer. Math. Soc. publication-title: On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence. – volume: 27 start-page: 446 year: 1975 ident: S0008414X00021775_R0524 article-title: Can. J. Math. publication-title: Holomorphic mappings of the hyperbolic space into the complex euclidean space and Bloch theorem, – volume: 550 year: 1973 ident: S0008414X00021775_R0531 article-title: Ann. Acad. Sci. Fenn., Ser. A I publication-title: On normal meromorphic functions, – volume: 257 start-page: 171 year: 1981 ident: S0008414X00021775_R0527 article-title: Math. Ann. publication-title: Fonctions pluri-sousharmoniques d'exhaustion bornées et domaines taut, – volume-title: Hyperbolic manifolds and holomorphic mappings year: 1970 ident: S0008414X00021775_R0529 – volume: 92 start-page: 622 year: 1973 ident: S0008414X00021775_R0517 article-title: Mat. Sb. publication-title: The theorems of Lindelöf and Fatou in Cn – volume: 29 start-page: 299 year: 1977 ident: S0008414X00021775_R0536 article-title: Can. J. Math. publication-title: Generalized Block mappings in complex Hilbert space. – volume: 207 start-page: 219 year: 1975 ident: S0008414X00021775_R0523 article-title: Trans. Amer. Math. Soc. publication-title: Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in Cn with smooth boundary, – volume: 25 start-page: 267 year: 1982 ident: S0008414X00021775_R0519 article-title: Soviet Math. Dokl. publication-title: Boundary behavior of normal holomorphic junctions of several complex variables, – volume: 97 start-page: 47 year: 1957 ident: S0008414X00021775_R0530 article-title: Acta. Math. publication-title: Boundary behavior and normal meromorphic functions. – volume: 235 start-page: 213 year: 1978 ident: S0008414X00021775_R0515 article-title: Trans. Amer. Math. Soc. publication-title: Compact manifolds and hyperbolicity, – volume: 119 start-page: 193 year: 1967 ident: S0008414X00021775_R0538 article-title: Acta Math. publication-title: Normal families of holomorphic mappings. – volume: 24 start-page: 429 year: 1970 ident: S0008414X00021775_R0514 article-title: Proc. Amer. Math. Soc. publication-title: Taut and tight complex manifolds, – volume: 109 start-page: 408 year: 1965 ident: S0008414X00021775_R0521 article-title: Mat. Sb. publication-title: On the distribution of values of non-normal meromorphic junctions in the unit disc (Russian), – volume-title: Bloch functions in several complex variables. year: 1978 ident: S0008414X00021775_R0535 – volume: 187 start-page: 9 year: 1970 ident: S0008414X00021775_R0518 article-title: Math. Ann. publication-title: Das Randverhalton der Bergmansehen Kernjunktion und Metrik in Streng pseudo-komvexen Gebieten, – volume: 50 start-page: 303 year: 1983 ident: S0008414X00021775_R0516 article-title: Duke Math. J. publication-title: Lindelöf principle and normal junctions of several complex variables, – volume: 30 start-page: 22 year: 1978 ident: S0008414X00021775_R0526 article-title: Can. J. Math. publication-title: Geometry of the unit ball of a complex Hilbert space, – volume: 68 start-page: 437 year: 1977 ident: S0008414X00021775_R0525 article-title: Pacific J. Math. publication-title: On completeness of the Bergman metric and its subordinate metrics, II, – ident: S0008414X00021775_R0537 – volume: 32 start-page: 277 year: 1968 ident: S0008414X00021775_R0520 article-title: Nagoya Math. J. publication-title: A criterion for normal, – volume: 185 start-page: 125 year: 1971 ident: S0008414X00021775_R0532 article-title: Lecture Notes in Math. publication-title: Remarks on the Kobayashi metric, several complex variables II, – volume: 76 start-page: 49 year: 1970 ident: S0008414X00021775_R0528 article-title: Bull. Amer. Math. Soc. publication-title: On the relations between taut, tight and hyperbolic mamjolds. |
| SSID | ssj0003651 |
| Score | 1.2823284 |
| Snippet | Let M and N be connected Hermitian manifolds of dimensions m and n with Hermitian metrics hM
and hN, respectively. Then the space ℓ(M, N) of continuous... Let M and N be connected Hermitian manifolds of dimensions m and n with Hermitian metrics h M and h N , respectively. Then the space ℓ ( M, N ) of continuous... |
| SourceID | crossref cambridge |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 718 |
| Title | Asymptotic Behavior of Normal Mappings of Several Complex Variables |
| URI | https://www.cambridge.org/core/product/identifier/S0008414X00021775/type/journal_article |
| Volume | 36 |
| WOSCitedRecordID | wos10.4153/cjm-1984-041-9&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAJQ databaseName: Google Magazines customDbUrl: eissn: 1496-4279 dateEnd: 19961231 omitProxy: false ssIdentifier: ssj0003651 issn: 0008-414X databaseCode: 69Q dateStart: 19490101 isFulltext: true titleUrlDefault: http://www.google.com/books/magazines providerName: Google.com |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFLU2xgN7mNgAjX2gPExCEzLkw_HHI6qGEFsrJgriLXJiB5BKWpEMlX-_69h1wkQleNhLVFk3berjHh-71-ci9I0qI9p1iKUuNCYi4limUmLQEjIkRZwm7fHoi19sNOKXl-LU1Wyt23ICrKr4fC5m_xVqaAOwzdHZF8Dt3xQa4DWADleAHa7PAv6wfridNVNjxOrMD9s_AkZGnE72htIYMly1CRxn-t7sSLWcMNHzvQtYN5uTVHVfsXr7gp7HxK33eq07Brtu-evngyleNN7vdhMiwYnPZWuWHxTrJ4NYEuWYRDaxcl9b3iSCYhLbujALYrXOJm4AkR5LMke5dsJldg_yXy4HZWE8JQYnQ2wflERYdLOWzyWEVYwJzSAwM4EZBGbiNXoTs1SYJD8qfvu5OaGpq6Fov4K18TT3Hzz-oL7VRk-y9LTHeB29c4uG4NCC_R690tUH9HbYobCBBh3swQL2YFoGFvZgAbtpcrAHDvbAw76Jzo9-jAfH2BXIwPAjChtMZcgLCYxbcJpTpmB5WqpCUVUqRVlcRkSmiQTBqniYw1K5lGEpTPYbgzi4N9lCK9W00h9RoGRMilxRmcQKFLTieSyjUhHFJMiXON9G331_ZG7A1dnTfb-N8KK_ssI5zZuCJ5Ol8bs-fmY9VpZEfnrBU3xGa90A_4JWmrs_-itaLe6bm_pupx0WfwEsSHGS |
| linkProvider | Google.com |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Behavior+of+Normal+Mappings+of+Several+Complex+Variables&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Hahn%2C+Kyong+T.&rft.date=1984-08-01&rft.pub=Cambridge+University+Press&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=36&rft.issue=4&rft.spage=718&rft.epage=746&rft_id=info:doi/10.4153%2FCJM-1984-041-9&rft.externalDocID=10_4153_CJM_1984_041_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon |