On Long Step Path Following and SUMT for Linear and Quadratic Programming
We consider a long step barrier algorithm for the minimization of a convex quadratic objective subject to linear inequality constraints. The algorithm is a dual version of a method developed by Anstreicher et al. [Algorithmica, 10 (1993), pp. 365-382], and requires $O ( nL )$ or $O( \sqrt{n} L )$ it...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 6; číslo 1; s. 33 - 46 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.02.1996
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a long step barrier algorithm for the minimization of a convex quadratic objective subject to linear inequality constraints. The algorithm is a dual version of a method developed by Anstreicher et al. [Algorithmica, 10 (1993), pp. 365-382], and requires $O ( nL )$ or $O( \sqrt{n} L )$ iterations to solve a problem with n constraints, depending on how the barrier parameter is reduced. As a corollary of our analysis we demonstrate that the classical SUMT algorithm, exactly as implemented in 1968, solves linear and quadratic programs in $O( \sqrt{n} L\log L )$ iterations, with proper initialization and choice of parameters. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/0806003 |