From reactive to proactive load balancing for task‐based parallel applications in distributed memory machines

Load balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execu...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 35; no. 24
Main Authors: Thanh Chung, Minh, Weidendorfer, Josef, Fürlinger, Karl, Kranzlmüller, Dieter
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.11.2023
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Load balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execution status to balance the load at runtime. Conventionally, work stealing is a practical approach used in almost all shared memory systems. In distributed memory systems, the communication overhead can make stealing tasks too late. To improve, people have proposed a reactive approach to relax communication in balancing load. The approach leaves one dedicated thread per process to monitor the queue status and offload tasks reactively from a slow to a fast process. However, reactive decisions might be mistaken in high imbalance cases. First, this article proposes a performance model to analyze reactive balancing behaviors and understand the bound leading to incorrect decisions. Second, we introduce a proactive approach to improve further balancing tasks at runtime. The approach exploits task‐based programming models with a dedicated thread as well, namely . Nevertheless, the main idea is to force not only to monitor load; it will characterize tasks and train load prediction models by online learning. “Proactive” indicates offloading tasks before each execution phase proactively with an appropriate number of tasks at once to a potential victim (denoted by an underloaded/fast process). The experimental results confirm speedup improvements from to in important use cases compared to the previous solutions. Furthermore, this approach can support co‐scheduling tasks across multiple applications.
AbstractList Load balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execution status to balance the load at runtime. Conventionally, work stealing is a practical approach used in almost all shared memory systems. In distributed memory systems, the communication overhead can make stealing tasks too late. To improve, people have proposed a reactive approach to relax communication in balancing load. The approach leaves one dedicated thread per process to monitor the queue status and offload tasks reactively from a slow to a fast process. However, reactive decisions might be mistaken in high imbalance cases. First, this article proposes a performance model to analyze reactive balancing behaviors and understand the bound leading to incorrect decisions. Second, we introduce a proactive approach to improve further balancing tasks at runtime. The approach exploits task‐based programming models with a dedicated thread as well, namely Tcomm$$ Tcomm $$. Nevertheless, the main idea is to force Tcomm$$ Tcomm $$ not only to monitor load; it will characterize tasks and train load prediction models by online learning. “Proactive” indicates offloading tasks before each execution phase proactively with an appropriate number of tasks at once to a potential victim (denoted by an underloaded/fast process). The experimental results confirm speedup improvements from 1.5×$$ 1.5\times $$ to 3.4×$$ 3.4\times $$ in important use cases compared to the previous solutions. Furthermore, this approach can support co‐scheduling tasks across multiple applications.
Load balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execution status to balance the load at runtime. Conventionally, work stealing is a practical approach used in almost all shared memory systems. In distributed memory systems, the communication overhead can make stealing tasks too late. To improve, people have proposed a reactive approach to relax communication in balancing load. The approach leaves one dedicated thread per process to monitor the queue status and offload tasks reactively from a slow to a fast process. However, reactive decisions might be mistaken in high imbalance cases. First, this article proposes a performance model to analyze reactive balancing behaviors and understand the bound leading to incorrect decisions. Second, we introduce a proactive approach to improve further balancing tasks at runtime. The approach exploits task‐based programming models with a dedicated thread as well, namely . Nevertheless, the main idea is to force not only to monitor load; it will characterize tasks and train load prediction models by online learning. “Proactive” indicates offloading tasks before each execution phase proactively with an appropriate number of tasks at once to a potential victim (denoted by an underloaded/fast process). The experimental results confirm speedup improvements from to in important use cases compared to the previous solutions. Furthermore, this approach can support co‐scheduling tasks across multiple applications.
Author Kranzlmüller, Dieter
Fürlinger, Karl
Weidendorfer, Josef
Thanh Chung, Minh
Author_xml – sequence: 1
  givenname: Minh
  orcidid: 0000-0001-6119-3852
  surname: Thanh Chung
  fullname: Thanh Chung, Minh
  organization: MNM‐Team Ludwig‐Maximilians‐Universität München Munich Germany
– sequence: 2
  givenname: Josef
  orcidid: 0000-0001-7159-1432
  surname: Weidendorfer
  fullname: Weidendorfer, Josef
  organization: Leibniz Supercomputing Centre (LRZ) Garching Germany
– sequence: 3
  givenname: Karl
  orcidid: 0000-0003-0398-4087
  surname: Fürlinger
  fullname: Fürlinger, Karl
  organization: MNM‐Team Ludwig‐Maximilians‐Universität München Munich Germany
– sequence: 4
  givenname: Dieter
  orcidid: 0000-0002-8319-0123
  surname: Kranzlmüller
  fullname: Kranzlmüller, Dieter
  organization: MNM‐Team Ludwig‐Maximilians‐Universität München Munich Germany, Leibniz Supercomputing Centre (LRZ) Garching Germany
BookMark eNo9kMtKAzEUhoNUsK2CjxBw42ZqbpOZLqV4g4IbXQ8nmURTZ5IxSYXufASf0SdxSourcw58nJ__m6GJD94gdEnJghLCbvRgFlXN6hM0pSVnBZFcTP53Js_QLKUNIZQSTqco3MfQ42hAZ_dlcA54iOF4dAFarKADr51_wzZEnCF9_H7_KEimxQNE6DrTYRiGzmnILviEncetSzk6tc0j1Js-xB3uQb87b9I5OrXQJXNxnHP0en_3snos1s8PT6vbdaFZSXLBqbBStG0tayEkBapALRUlphQ1h1JApSvGLOdaQclbqQShApacUWutVpLP0dXh71jnc2tSbjZhG_0Y2bC6qiStSrqnrg-UjiGlaGwzRNdD3DWUNHudzaiz2evkf6oybDY
Cites_doi 10.5555/263953
10.1006/jpdc.1996.0107
10.1016/j.sysarc.2015.07.004
10.1109/ICPADS51040.2020.00018
10.1007/BFb0097937
10.1145/3404397.3404440
10.1145/2503210.2503284
10.1177/1094342011434065
10.1016/j.jpdc.2004.05.003
10.1016/j.jnca.2017.01.016
10.1109/HOTCHIPS.2007.7482491
10.1007/s10766‐016‐0484‐8
10.1109/SPDP.1991.218196
10.2172/1875218
10.1145/3502181.3531457
10.1007/s44150‐021‐00015‐8
10.5555/3571885.3571987
10.1145/2287076.2287103
10.1109/IPDPS.2009.5161057
10.1109/CLUSTER.2018.00051
10.1145/3337821.3337878
10.1109/ISPASS.2009.4919641
10.1016/j.jpdc.2020.12.005
10.1145/3337821.3337912
10.1145/281035.281049
10.1109/ACOMP53746.2021.00020
10.1145/2947668
10.1109/TCST.2005.854339
10.1007/978‐3‐642‐40698‐0_13
10.1109/CLUSTER.2010.20
10.1109/MM.2004.1268994
10.1016/j.jpdc.2019.12.005
10.1145/1103845.1094852
10.1145/3468267.3470574
10.1109/32.4634
10.1145/1654059.1654113
10.1109/ExaMPI.2014.6
10.1109/TPDS.2022.3215947
10.1109/IISWC.2005.1526010
10.1007/b102252
10.1145/782814.782855
10.1109/TPDS.2018.2870403
10.1145/2644865.2541941
10.1007/s11227‐018‐2238‐4
10.1145/324133.324234
10.1109/SC.2005.33
10.1109/IPDPS.2007.370258
10.1145/3149.3156
10.1177/1094342007078442
10.1007/978-3-031-30442-2_20
10.1007/978‐3‐642‐32820‐6_85
10.1145/2597652.2597658
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7828
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
ExternalDocumentID 10_1002_cpe_7828
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O8X
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c250t-314f64dd8684461a1bab9b10e5483a54a7c722f33cba53d6b4014a9321fffcb63
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016058600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 09 08:24:58 EST 2025
Sat Nov 29 03:49:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c250t-314f64dd8684461a1bab9b10e5483a54a7c722f33cba53d6b4014a9321fffcb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0398-4087
0000-0001-6119-3852
0000-0002-8319-0123
0000-0001-7159-1432
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.7828
PQID 2877617516
PQPubID 2045170
ParticipantIDs proquest_journals_2877617516
crossref_primary_10_1002_cpe_7828
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
Shanley T (e_1_2_13_9_1) 2003
e_1_2_13_41_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
Bonaccorso G (e_1_2_13_56_1) 2017
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
Kurose J (e_1_2_13_50_1) 2021
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_40_1
e_1_2_13_7_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – ident: e_1_2_13_46_1
  doi: 10.5555/263953
– ident: e_1_2_13_26_1
  doi: 10.1006/jpdc.1996.0107
– volume-title: InfiniBand Network Architecture
  year: 2003
  ident: e_1_2_13_9_1
– ident: e_1_2_13_28_1
  doi: 10.1016/j.sysarc.2015.07.004
– volume-title: Computer Networking: A Top‐Down Approach
  year: 2021
  ident: e_1_2_13_50_1
– ident: e_1_2_13_29_1
  doi: 10.1109/ICPADS51040.2020.00018
– ident: e_1_2_13_33_1
  doi: 10.1007/BFb0097937
– ident: e_1_2_13_44_1
  doi: 10.1145/3404397.3404440
– ident: e_1_2_13_5_1
  doi: 10.1145/2503210.2503284
– ident: e_1_2_13_27_1
  doi: 10.1177/1094342011434065
– ident: e_1_2_13_4_1
  doi: 10.1016/j.jpdc.2004.05.003
– ident: e_1_2_13_39_1
  doi: 10.1016/j.jnca.2017.01.016
– ident: e_1_2_13_47_1
  doi: 10.1109/HOTCHIPS.2007.7482491
– volume-title: Machine Learning Algorithms
  year: 2017
  ident: e_1_2_13_56_1
– ident: e_1_2_13_8_1
  doi: 10.1007/s10766‐016‐0484‐8
– ident: e_1_2_13_20_1
  doi: 10.1109/SPDP.1991.218196
– ident: e_1_2_13_35_1
  doi: 10.2172/1875218
– ident: e_1_2_13_54_1
  doi: 10.1145/3502181.3531457
– ident: e_1_2_13_55_1
  doi: 10.1007/s44150‐021‐00015‐8
– ident: e_1_2_13_22_1
– ident: e_1_2_13_15_1
  doi: 10.5555/3571885.3571987
– ident: e_1_2_13_37_1
  doi: 10.1145/2287076.2287103
– ident: e_1_2_13_42_1
  doi: 10.1109/IPDPS.2009.5161057
– ident: e_1_2_13_16_1
  doi: 10.1109/CLUSTER.2018.00051
– ident: e_1_2_13_36_1
  doi: 10.1145/3337821.3337878
– ident: e_1_2_13_45_1
  doi: 10.1109/ISPASS.2009.4919641
– ident: e_1_2_13_38_1
  doi: 10.1016/j.jpdc.2020.12.005
– ident: e_1_2_13_32_1
  doi: 10.1145/3337821.3337912
– ident: e_1_2_13_43_1
  doi: 10.1145/281035.281049
– ident: e_1_2_13_53_1
  doi: 10.1109/ACOMP53746.2021.00020
– ident: e_1_2_13_18_1
  doi: 10.1145/2947668
– ident: e_1_2_13_51_1
  doi: 10.1109/TCST.2005.854339
– ident: e_1_2_13_57_1
  doi: 10.1007/978‐3‐642‐40698‐0_13
– ident: e_1_2_13_10_1
  doi: 10.1109/CLUSTER.2010.20
– ident: e_1_2_13_52_1
  doi: 10.1109/MM.2004.1268994
– ident: e_1_2_13_12_1
  doi: 10.1016/j.jpdc.2019.12.005
– ident: e_1_2_13_30_1
  doi: 10.1145/1103845.1094852
– ident: e_1_2_13_17_1
  doi: 10.1145/3468267.3470574
– ident: e_1_2_13_3_1
  doi: 10.1109/32.4634
– ident: e_1_2_13_34_1
  doi: 10.1145/1654059.1654113
– ident: e_1_2_13_13_1
  doi: 10.1109/ExaMPI.2014.6
– ident: e_1_2_13_25_1
  doi: 10.1109/TPDS.2022.3215947
– ident: e_1_2_13_6_1
  doi: 10.1109/IISWC.2005.1526010
– ident: e_1_2_13_2_1
  doi: 10.1007/b102252
– ident: e_1_2_13_11_1
  doi: 10.1145/782814.782855
– ident: e_1_2_13_24_1
  doi: 10.1109/TPDS.2018.2870403
– ident: e_1_2_13_40_1
  doi: 10.1145/2644865.2541941
– ident: e_1_2_13_49_1
  doi: 10.1007/s11227‐018‐2238‐4
– ident: e_1_2_13_7_1
  doi: 10.1145/324133.324234
– ident: e_1_2_13_41_1
  doi: 10.1109/SC.2005.33
– ident: e_1_2_13_23_1
  doi: 10.1109/IPDPS.2007.370258
– ident: e_1_2_13_21_1
  doi: 10.1145/3149.3156
– ident: e_1_2_13_31_1
  doi: 10.1177/1094342007078442
– ident: e_1_2_13_19_1
  doi: 10.1007/978-3-031-30442-2_20
– ident: e_1_2_13_48_1
  doi: 10.1007/978‐3‐642‐32820‐6_85
– ident: e_1_2_13_14_1
  doi: 10.1145/2597652.2597658
SSID ssj0011031
Score 2.3705132
Snippet Load balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Decisions
Distributed memory
Load balancing
Prediction models
Run time (computers)
Task scheduling
Title From reactive to proactive load balancing for task‐based parallel applications in distributed memory machines
URI https://www.proquest.com/docview/2877617516
Volume 35
WOSCitedRecordID wos001016058600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwU3jF8xNpCRuKsCjfNj5xI6KiRgQqgTu4tsJ1krUqdqs2njikfgQXgqnoTj-GfpuBkX3ESJFadVzhefY5_vfEboJWVjzkUoApFlPIjhWwwE0TQxmQE-GITMMe82m6BHR-zkJPs8GPxytTDnNVWKXVxkq_9qamgDY-vS2X8wt38oNMA5GB2OYHY43sjwU10wAqFgN5Dp0LIrmuou6oZDvKnJjNIRKFu--eYJD9qlFSOtBl7XZT3qJ7c71qwW2dX7Y8FNS83QvRwtOy6m5SE6wYNGyU71SV66qrnV2XbGfzbnaj6azO1I82mh_Kr0Vy28pYpmXRkw6RRF5VGm8_pvJ1qh69SxQdaeI_IB_O73emnucSWOhwvPQLaLGySyVX798ZgE45RYtex-m10DtYO40TyxYDVV2X85ByM2K1flKwiL2JUDdEn_a37RsxWNsjPJoWeue95CO4QmGRuincMv0-OPPmult8ww-rzmTzux4zF57X51O_zZ9v5dSDO7h-7auQh-YzB0Hw1K9QDtun0-sB32H6JGQwo7SOG2wR5SWEMKe0hhgBTWkPr942cHJuzAhPtgwguFe2DCBkzYgekROp6-m03eB3ajjkBCBN2CH4-rNC4KlrI4TkMeCi4yEY5LmA5HPIk5lZSQKoqk4ElUpAIm9TGHmUNYVZUUafQYDVWjyicIJ0Ukk3LMihLiRio5g240LgtRhRCMFtkeeuHeX74yeiz5dfvsoQP3YnP7YW5ywiiFaD0J06c3eMQ-unMFxwM0bNdn5TN0W563i836ubX7H9gjj6k
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+reactive+to+proactive+load+balancing+for+task%E2%80%90based+parallel+applications+in+distributed+memory+machines&rft.jtitle=Concurrency+and+computation&rft.au=Thanh+Chung%2C+Minh&rft.au=Weidendorfer%2C+Josef&rft.au=F%C3%BCrlinger%2C+Karl&rft.au=Kranzlm%C3%BCller%2C+Dieter&rft.date=2023-11-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=24&rft_id=info:doi/10.1002%2Fcpe.7828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon