Gaussian mixture-learned approximate message passing (GM-LAMP) based hybrid precoders for mmWave massive MIMO systems

Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design...

Full description

Saved in:
Bibliographic Details
Published in:China communications Vol. 21; no. 12; pp. 66 - 79
Main Authors: Ali, K. Shoukath, Philip, Sajan P., Perarasi, T.
Format: Journal Article
Language:English
Published: China Institute of Communications 01.12.2024
Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India
Subjects:
ISSN:1673-5447
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems. Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit (OMP) and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high. This drawback can be addressed using classical iterative algorithms such as approximate message passing (AMP), which has comparatively low computational complexity. The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders. In this paper, the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP (LAMP) network, and is further enhanced as GM-LAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders. The simulation results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates, better accuracy and low computational complexity compared to the existing algorithms.
AbstractList Hybrid precoder design is a key tech-nique providing better antenna gain and reduced hard-ware complexity in millimeter-wave(mmWave)mas-sive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iter-ative algorithms such as approximate message pass-ing(AMP),which has comparatively low computa-tional complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GM-LAMP network using the concept of Gaussian Mix-ture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP net-work achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing al-gorithms.
Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems. Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit (OMP) and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high. This drawback can be addressed using classical iterative algorithms such as approximate message passing (AMP), which has comparatively low computational complexity. The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders. In this paper, the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP (LAMP) network, and is further enhanced as GM-LAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders. The simulation results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates, better accuracy and low computational complexity compared to the existing algorithms.
Author Ali, K. Shoukath
Philip, Sajan P.
Perarasi, T.
AuthorAffiliation Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India
AuthorAffiliation_xml – name: Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India
Author_xml – sequence: 1
  givenname: K. Shoukath
  surname: Ali
  fullname: Ali, K. Shoukath
  organization: Department of Electronics and Communication Engineering, Presidency University, Itgalpura, Rajanukunte, Yelahanka, Bengaluru, Karnataka 560064, India
– sequence: 2
  givenname: Sajan P.
  surname: Philip
  fullname: Philip, Sajan P.
  organization: Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638 401, India
– sequence: 3
  givenname: T.
  surname: Perarasi
  fullname: Perarasi, T.
  organization: Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638 401, India
BookMark eNpNkD1PwzAURT0UiVL6A5AYvCDBkOKv2MlYRVCKGpUBxGg5jhMSNR-yE2j59biUgbfc5dz39M4FmLRdawC4wmhBaIzj--ckWdRqQRAhAWJCTMAUc0GDkDFxDubO1chPxDnlZArGlRqdq1QLm2o_jNYEO6Nsa3Ko-t52-6pRg4GNcU6VBvbKs20Jb1dpsFmmL3cwU86zH4fMVjnsrdFdbqyDRWdh07yrT989dnym63QL3cENpnGX4KxQO2fmfzkDb48Pr8lTsNmu1slyE2gSoiHAmmPNWKajLBKM8VxwEmkd0zgvSIzyUCCDUBFnRFBR6JCHUZhxSnihqI5iSmfg5rT3S7WFaktZd6Nt_UX5XQ57r4hhghD3HD5x2nbOWVPI3vrP7UFiJH-1Sq9V1koetcqjVt-5PnUqY8w_PkICxRH9ARzOeDg
CODEN CCHOBE
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.ja.2022-0477
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 79
ExternalDocumentID zgtx202412006
10_23919_JCC_ja_2022_0477
10807098
Genre orig-research
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c250t-1c61c44bc8b87446d7628cc939df290d570e00f9b2737fc56585b6326fa3c8933
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378264000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1673-5447
IngestDate Thu May 29 03:54:26 EDT 2025
Sat Nov 29 06:38:59 EST 2025
Wed Aug 27 02:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep neu-ral network
massive MIMO
millimeter wave
approximate message passing
Gaussian Mixture model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250t-1c61c44bc8b87446d7628cc939df290d570e00f9b2737fc56585b6326fa3c8933
PageCount 14
ParticipantIDs crossref_primary_10_23919_JCC_ja_2022_0477
wanfang_journals_zgtx202412006
ieee_primary_10807098
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2024
Publisher China Institute of Communications
Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India
Publisher_xml – name: China Institute of Communications
– name: Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India
SSID ssj0000866362
Score 2.3101642
Snippet Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input...
Hybrid precoder design is a key tech-nique providing better antenna gain and reduced hard-ware complexity in millimeter-wave(mmWave)mas-sive multiple-input...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 66
SubjectTerms approximate message passing
Baseband
Computational complexity
deep neural network
Gaussian Mixture model
Massive MIMO
Matching pursuit algorithms
Mathematical models
Message passing
millimeter wave
Millimeter wave communication
Radio frequency
Sparse matrices
Spectral efficiency
Title Gaussian mixture-learned approximate message passing (GM-LAMP) based hybrid precoders for mmWave massive MIMO systems
URI https://ieeexplore.ieee.org/document/10807098
https://d.wanfangdata.com.cn/periodical/zgtx202412006
Volume 21
WOSCitedRecordID wos001378264000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAIcHCG1Fe8sAASIa8HMcjqniKQgcQbFHiR2mlplXTosKv584JqAwMTMmQiyJ_Se473313hBy5puQ8tkxyHjBkBAwiW8FsKHWgOBAUnbhhE-LhIXl9le1arO60MMYYV3xmzvDU5fL1QE1wq-wc6-GEJ5N5Mi-EqMRaPxsqwM3j0A0Q9WOBCf9IVFnMIJS-PL9rNs962GgIgi8vEuKXH3KDVZxsp7BZ0ZnxMFer_3y2NbJSU0l6UWG_TuZMsUGWvpXG5SaZXGeTEkWStN-dYqaAuRkRRlPXSXzaBbZqaB-HoHQMHQKNBj9Gj69b7P6i1T6h6OE0fftAURcdYuiMVc8UaC7t91-yd7BFGzi2bluPtGoKXW6R56vLp-YNq8csMAX8Z8x8FfsqinKV5NgLP9bwf0yUkoCWDaSnufCM51mZA9MRVgEDTHgeA-2zWaiA7oTbZKEYFGaHUMnhLiLRgRdmEHfzXBsV2jzSueLWC02DnH4vejqsummkEIU4hFJAKO1lKSKUIkINsoXLPHNhtcINcljjlNbfW5l-dsZTMIx83CHZ_cNwjyzjNVUxyj5ZGI8m5oAsqvdxtxwdurfpCwOoxyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VFqlcoEAR4dHugQMgbevXer3HKqIv4tBDEb2t7H2EVIob1UkV-PXMrF3UHnroyT54LGs_2_PNznwzAJ9CU3KRe66ESDgxAo6RreQ-VTYxAgmKLcKwCTkeFxcX6qwXqwctjHMuFJ-5PToNuXx7ZZa0VbZP9XAyUsUT2BBZlsSdXOv_lgqy8zwNI0TjXFLKP5NdHjNJVaz2T4fDvUtqNYThV5RJec8ThdEqQbjT-KqZ3PExhy8e-XRb8Lwnk-ygQ_8lrLnmFWzeao3b17A8qpYtySTZbLqiXAEPUyKcZaGX-GqKfNWxGY1BmTg2RyKNnox9Pir56KA8-8LIx1n2-w_Juticgmeqe2ZIdNls9qu6QVuywWN5Uv5gXVvodht-Hn47Hx7zftACN8iAFjw2eWyyrDZFTd3wc4t_yMIYhXj5REVWyMhFkVc1ch3pDXLAQtQ5Ej9fpQYJT_oG1purxr0FpgTeRRY2idIKI29RW2dSX2e2NsJHqRvA19tF1_Oun4bGOCQgpBEhfVlpQkgTQgPYpmW-c2G3wgPY6XHS_RfX6r-TxQoNs5j2SN49YLgLm8fn5UiPTsbf38Mzur4rTfkA64vrpfsIT83NYtpe74Q36x-IRspn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+mixture-learned+approximate+message+passing+%28GM-LAMP%29+based+hybrid+precoders+for+mmWave+massive+MIMO+systems&rft.jtitle=China+communications&rft.au=Ali%2C+K.+Shoukath&rft.au=Philip%2C+Sajan+P.&rft.au=Perarasi%2C+T.&rft.date=2024-12-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=21&rft.issue=12&rft.spage=66&rft.epage=79&rft_id=info:doi/10.23919%2FJCC.ja.2022-0477&rft.externalDocID=10807098
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg