Gaussian mixture-learned approximate message passing (GM-LAMP) based hybrid precoders for mmWave massive MIMO systems
Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design...
Gespeichert in:
| Veröffentlicht in: | China communications Jg. 21; H. 12; S. 66 - 79 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
China Institute of Communications
01.12.2024
Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India |
| Schlagworte: | |
| ISSN: | 1673-5447 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems. Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit (OMP) and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high. This drawback can be addressed using classical iterative algorithms such as approximate message passing (AMP), which has comparatively low computational complexity. The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders. In this paper, the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP (LAMP) network, and is further enhanced as GM-LAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders. The simulation results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates, better accuracy and low computational complexity compared to the existing algorithms. |
|---|---|
| AbstractList | Hybrid precoder design is a key tech-nique providing better antenna gain and reduced hard-ware complexity in millimeter-wave(mmWave)mas-sive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iter-ative algorithms such as approximate message pass-ing(AMP),which has comparatively low computa-tional complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GM-LAMP network using the concept of Gaussian Mix-ture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP net-work achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing al-gorithms. Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. In this paper, Gaussian Mixture learned approximate message passing (GM-LAMP) network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems. Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit (OMP) and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high. This drawback can be addressed using classical iterative algorithms such as approximate message passing (AMP), which has comparatively low computational complexity. The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders. In this paper, the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP (LAMP) network, and is further enhanced as GM-LAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders. The simulation results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates, better accuracy and low computational complexity compared to the existing algorithms. |
| Author | Ali, K. Shoukath Philip, Sajan P. Perarasi, T. |
| AuthorAffiliation | Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India |
| AuthorAffiliation_xml | – name: Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India |
| Author_xml | – sequence: 1 givenname: K. Shoukath surname: Ali fullname: Ali, K. Shoukath organization: Department of Electronics and Communication Engineering, Presidency University, Itgalpura, Rajanukunte, Yelahanka, Bengaluru, Karnataka 560064, India – sequence: 2 givenname: Sajan P. surname: Philip fullname: Philip, Sajan P. organization: Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638 401, India – sequence: 3 givenname: T. surname: Perarasi fullname: Perarasi, T. organization: Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638 401, India |
| BookMark | eNpNkD1PwzAURT0UiVL6A5AYvCDBkOKv2MlYRVCKGpUBxGg5jhMSNR-yE2j59biUgbfc5dz39M4FmLRdawC4wmhBaIzj--ckWdRqQRAhAWJCTMAUc0GDkDFxDubO1chPxDnlZArGlRqdq1QLm2o_jNYEO6Nsa3Ko-t52-6pRg4GNcU6VBvbKs20Jb1dpsFmmL3cwU86zH4fMVjnsrdFdbqyDRWdh07yrT989dnym63QL3cENpnGX4KxQO2fmfzkDb48Pr8lTsNmu1slyE2gSoiHAmmPNWKajLBKM8VxwEmkd0zgvSIzyUCCDUBFnRFBR6JCHUZhxSnihqI5iSmfg5rT3S7WFaktZd6Nt_UX5XQ57r4hhghD3HD5x2nbOWVPI3vrP7UFiJH-1Sq9V1koetcqjVt-5PnUqY8w_PkICxRH9ARzOeDg |
| CODEN | CCHOBE |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.23919/JCC.ja.2022-0477 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EndPage | 79 |
| ExternalDocumentID | zgtx202412006 10_23919_JCC_ja_2022_0477 10807098 |
| Genre | orig-research |
| GroupedDBID | -SI -SJ -S~ 0R~ 29B 4.4 5GY 6IK 92H 92I 97E AAHTB AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABPEJ ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI CAJEJ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL Q-- Q-9 RIA RIE RNS TCJ TGT U1G U5S U5T AAYXX CITATION 2B. 4A8 93N PSX RIG |
| ID | FETCH-LOGICAL-c250t-1c61c44bc8b87446d7628cc939df290d570e00f9b2737fc56585b6326fa3c8933 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378264000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1673-5447 |
| IngestDate | Thu May 29 03:54:26 EDT 2025 Sat Nov 29 06:38:59 EST 2025 Wed Aug 27 02:30:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | deep neu-ral network massive MIMO millimeter wave approximate message passing Gaussian Mixture model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c250t-1c61c44bc8b87446d7628cc939df290d570e00f9b2737fc56585b6326fa3c8933 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_23919_JCC_ja_2022_0477 wanfang_journals_zgtx202412006 ieee_primary_10807098 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | China communications |
| PublicationTitleAbbrev | ChinaComm |
| PublicationTitle_FL | China Communications |
| PublicationYear | 2024 |
| Publisher | China Institute of Communications Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India |
| Publisher_xml | – name: China Institute of Communications – name: Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India%Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638 401,India |
| SSID | ssj0000866362 |
| Score | 2.3101642 |
| Snippet | Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave (mmWave) massive multiple-input... Hybrid precoder design is a key tech-nique providing better antenna gain and reduced hard-ware complexity in millimeter-wave(mmWave)mas-sive multiple-input... |
| SourceID | wanfang crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 66 |
| SubjectTerms | approximate message passing Baseband Computational complexity deep neural network Gaussian Mixture model Massive MIMO Matching pursuit algorithms Mathematical models Message passing millimeter wave Millimeter wave communication Radio frequency Sparse matrices Spectral efficiency |
| Title | Gaussian mixture-learned approximate message passing (GM-LAMP) based hybrid precoders for mmWave massive MIMO systems |
| URI | https://ieeexplore.ieee.org/document/10807098 https://d.wanfangdata.com.cn/periodical/zgtx202412006 |
| Volume | 21 |
| WOSCitedRecordID | wos001378264000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1673-5447 databaseCode: RIE dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0000866362 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gQoILb8R4KQcOgFRIm65pjmjiKQYcQHCr0jzGJq1MdJsGvx47LQgOHDi1h1iq7KT-HPuzCdnnIjUsVjKwQjkcYSaCnCU24LalNOORdta3zL8Rt7fp87O8r8nqngtjrfXFZ_YYX30u37zqMV6VnWA9nGAynSWzQoiKrPV9oQLYPOF-gGiYCEz4x6LKYkZchvLkut0-7mOjIQi-WCzELz_kB6t42k7hVNH94WHOl_75bctksYaS9LSy_QqZscUqmf9iGpdrZHyhxiWSJOmgN8VMQeBnRFhDfSfxaQ_QqqUDHILStXQIMBr8GD246AQ3p537Q4oeztCXdyR10SGGzlj1TAHm0sHgSU1AFmXg2bnq3NGqKXS5Th7Pzx7al0E9ZiHQgH9GQaiTUMdxrtMce-EnBv6PqdaSS-MiyUxLMMuYkzkgHeE0IMC0lScA-5ziGuAO3yCN4rWwm4Q6E-ZxarXjOoQNoHITYs1NxE0EblCpJjn6Uno2rLppZBCFeAtlYKGsrzK0UIYWapJ1VPOPhZWGm2SvtlNWn7cy--iOpiAYh3hDsvWH4DZZwDVVMcoOaYzexnaXzOnJqFe-7fnd9Am-Y8hM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIJULzyKW0uIDB0BKa8feOD5Wq75gs_RQRG-W48eylTZdNbvVwq_vjJOicuDAKTl4pGjGznzjmW-GkA9ClZ5Jq7OgbMQRZiqrWREyEYbWMZG7GFLL_LGaTMqLC33Wk9UTFyaEkIrPwh6-ply-v3IrvCrbx3o4xXT5kDwaSpnzjq7150oF0Hkh0ghRXihM-UvV5TFzobne_zIa7V1iqyEIv5hU6i9PlEarJOJOE20zvedjjp7959c9J097MEkPOuu_IA9C85Js3nGN21dkdWxXLdIk6Xy2xlxBlqZEBE9TL_H1DPBqoHMcgzINdAFAGjwZ_XhcZeOD6uwTRR_n6c9fSOuiCwyese6ZAtCl8_kPewOyKAPP6rT6Rru20O0W-X50eD46yfpBC5kDBLTMuCu4k7J2ZY3d8AsPf8jSOS20j7lmfqhYYCzqGrCOig4wYDmsCwB-0QoHgEe8JhvNVRPeEBo9r2UZXBSOwxawtedYdZMLn4MjtHZAPt8p3Sy6fhoG4pBkIQMWMpfWoIUMWmhAtlDN9xZ2Gh6Q3d5Opj9xrfk9Xa5BUHK8I3n7D8H3ZPPkvBqb8enk6zZ5guu70pR3ZGN5vQo75LG7Wc7a6920s24BVAjLkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Mixture-Learned+Approximate+Message+Passing%28GM-LAMP%29Based+Hybrid+Precoders+for+mmWave+Massive+MIMO+Systems&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%80%9A%E4%BF%A1%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Shoukath+Ali+K&rft.au=Sajan+P+Philip&rft.au=Perarasi+T&rft.date=2024-12-01&rft.pub=Department+of+Electronics+and+Communication+Engineering%2CPresidency+University%2CItgalpura%2CRajanukunte%2CYelahanka%2CBengaluru%2CKarnataka+560064%2CIndia%25Department+of+Electronics+and+Communication+Engineering%2CBannari+Amman+Institute+of+Technology%2CErode%2CTamil+Nadu%2C638+401%2CIndia&rft.issn=1673-5447&rft.volume=21&rft.issue=12&rft.spage=66&rft.epage=79&rft_id=info:doi/10.23919%2FJCC.ja.2022-0477&rft.externalDocID=zgtx202412006 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg |