50 years of mixed-integer nonlinear and disjunctive programming

This paper gives an overview of the development of Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive Programming (GDP) over the past fifty years. We cover key methods, algorithms, and techniques for solving MINLPs and GDPs, focusing on both the modeling framework and solution t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research
Hlavní autori: Kronqvist, Jan, Bernal Neira, David E., Grossmann, Ignacio E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2025
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper gives an overview of the development of Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive Programming (GDP) over the past fifty years. We cover key methods, algorithms, and techniques for solving MINLPs and GDPs, focusing on both the modeling framework and solution techniques. We provide historical perspectives, highlight the key features and major challenges, and aim to give an in-depth introduction to the fields. We also discuss some future research directions. The paper is aimed at readers who are familiar with Mixed-Integer Linear Programming but are not experts on MINLP or GDP. •Overview of mixed-integer nonlinear programming.•Overview of generalized disjunctive programming.•Algorithms for MINLP.•Mixed-integer formulations of disjunctive constraints.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2025.07.016