A polynomial time algorithm for the triangle packing problem on interval graphs

The triangle packing problem (TPP) is to find the maximum number of pairwise vertex disjoint triangles in a given graph. The TPP is NP-complete in a general graph and even so when a given graph is restricted to a chordal graph. On the other hand, the TPP can be solved in polynomial time for unit int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 343; s. 180 - 183
Hlavní autor: Myung, Young-Soo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 30.01.2024
Témata:
ISSN:0166-218X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The triangle packing problem (TPP) is to find the maximum number of pairwise vertex disjoint triangles in a given graph. The TPP is NP-complete in a general graph and even so when a given graph is restricted to a chordal graph. On the other hand, the TPP can be solved in polynomial time for unit interval graphs. For this reason, it is a well-known open problem to prove whether there exists a polynomial time algorithm solving the TPP on interval graphs. In this paper, we give an answer to the problem.
ISSN:0166-218X
DOI:10.1016/j.dam.2023.10.022