EnsPKDE&IncLKDE: a hybrid time series prediction algorithm integrating dynamic ensemble pruning, incremental learning, and kernel density estimation

Ensemble pruning can effectively overcome several shortcomings of the classical ensemble learning paradigm, such as the relatively high time and space complexity. However, each predictor has its own unique ability. One predictor may not perform well on some samples, but it will perform very well on...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 2; pp. 617 - 645
Main Authors: Zhu, Gangliang, Dai, Qun
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2021
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ensemble pruning can effectively overcome several shortcomings of the classical ensemble learning paradigm, such as the relatively high time and space complexity. However, each predictor has its own unique ability. One predictor may not perform well on some samples, but it will perform very well on other samples. Blindly underestimating the power of specific predictors is unreasonable. Choosing the best predictor set for each query sample is exactly what dynamic ensemble pruning techniques address. This paper proposes a hybrid Time Series Prediction (TSP) algorithm to implement one-step-ahead prediction task, integrating Dynamic Ensemble Pruning (DEP), Incremental Learning (IL), and Kernel Density Estimation (KDE), abbreviated as the EnsP KDE &IncL KDE algorithm. It dynamically selects proper predictor sets based on the kernel density distribution of all base learners’ prediction values. Due to the characteristic of TSP problems that samples arrive in chronological order, the idea of IL is naturally introduced into EnsP KDE &IncL KDE , while DEP is a common technology to address the concept drift issue inherent in IL. The algorithm is divided into three subprocesses: 1) Overproduction, which generates the original ensemble learning system; 2) Dynamic Ensemble Pruning (DEP), achieved by one subalgorithm called EnsP KDE ; 3) Incremental Learning (IL), realized by one subalgorithm termed IncL KDE . Benefited from the advantages of integrating Dynamic Ensemble Pruning scheme, Incremental Learning paradigm and Kernel Density Estimation, in the experimental results, EnsP KDE &IncL KDE demonstrates superior prediction performance to several other state-of-the-art algorithms in fulfilling time series forecasting tasks.
AbstractList Ensemble pruning can effectively overcome several shortcomings of the classical ensemble learning paradigm, such as the relatively high time and space complexity. However, each predictor has its own unique ability. One predictor may not perform well on some samples, but it will perform very well on other samples. Blindly underestimating the power of specific predictors is unreasonable. Choosing the best predictor set for each query sample is exactly what dynamic ensemble pruning techniques address. This paper proposes a hybrid Time Series Prediction (TSP) algorithm to implement one-step-ahead prediction task, integrating Dynamic Ensemble Pruning (DEP), Incremental Learning (IL), and Kernel Density Estimation (KDE), abbreviated as the EnsPKDE&IncLKDE algorithm. It dynamically selects proper predictor sets based on the kernel density distribution of all base learners’ prediction values. Due to the characteristic of TSP problems that samples arrive in chronological order, the idea of IL is naturally introduced into EnsPKDE&IncLKDE, while DEP is a common technology to address the concept drift issue inherent in IL. The algorithm is divided into three subprocesses: 1) Overproduction, which generates the original ensemble learning system; 2) Dynamic Ensemble Pruning (DEP), achieved by one subalgorithm called EnsPKDE; 3) Incremental Learning (IL), realized by one subalgorithm termed IncLKDE. Benefited from the advantages of integrating Dynamic Ensemble Pruning scheme, Incremental Learning paradigm and Kernel Density Estimation, in the experimental results, EnsPKDE&IncLKDE demonstrates superior prediction performance to several other state-of-the-art algorithms in fulfilling time series forecasting tasks.
Ensemble pruning can effectively overcome several shortcomings of the classical ensemble learning paradigm, such as the relatively high time and space complexity. However, each predictor has its own unique ability. One predictor may not perform well on some samples, but it will perform very well on other samples. Blindly underestimating the power of specific predictors is unreasonable. Choosing the best predictor set for each query sample is exactly what dynamic ensemble pruning techniques address. This paper proposes a hybrid Time Series Prediction (TSP) algorithm to implement one-step-ahead prediction task, integrating Dynamic Ensemble Pruning (DEP), Incremental Learning (IL), and Kernel Density Estimation (KDE), abbreviated as the EnsP KDE &IncL KDE algorithm. It dynamically selects proper predictor sets based on the kernel density distribution of all base learners’ prediction values. Due to the characteristic of TSP problems that samples arrive in chronological order, the idea of IL is naturally introduced into EnsP KDE &IncL KDE , while DEP is a common technology to address the concept drift issue inherent in IL. The algorithm is divided into three subprocesses: 1) Overproduction, which generates the original ensemble learning system; 2) Dynamic Ensemble Pruning (DEP), achieved by one subalgorithm called EnsP KDE ; 3) Incremental Learning (IL), realized by one subalgorithm termed IncL KDE . Benefited from the advantages of integrating Dynamic Ensemble Pruning scheme, Incremental Learning paradigm and Kernel Density Estimation, in the experimental results, EnsP KDE &IncL KDE demonstrates superior prediction performance to several other state-of-the-art algorithms in fulfilling time series forecasting tasks.
Author Zhu, Gangliang
Dai, Qun
Author_xml – sequence: 1
  givenname: Gangliang
  surname: Zhu
  fullname: Zhu, Gangliang
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Qun
  surname: Dai
  fullname: Dai, Qun
  email: daiqun@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
BookMark eNp9kMFOGzEQhi1EJULgBXqyVIlTtx17zdrLDUFoEZHKAaTeLK89CYZdb2o7h7xHH7hOtlKlHjiNxvN__mf-U3IcxoCEfGTwhQHIr4mBUG0FHCpgCngljsiMXcq6kqKVx2QGLRdV07Q_T8hpSq8AUNfAZuT3IqTHh9vFxX2wy1KvqKEvuy56R7MfkCaMHhPdRHTeZj8Gavr1GH1-GagPGdfRZB_W1O2CGbylGBIOXY-F2IYy-FxUNuKAIZue9mji9GqCo28YA_bUFcbnHcVUHM3e44x8WJk-4fnfOifPd4unm-_V8se3-5vrZWW5aHO1Yg6l5bZT1lohhLuUFiTrVCe4U6WXVqFSrGaNsZ3jYIxowUknmsYqhvWcfJr-3cTx17b469dxG0Ox1FzIRgrGeFtUfFLZOKYUcaU3sSwad5qB3qevp_R1SV8f0teiQOo_yPp8OC5H4_v30XpCU_EJa4z_tnqH-gN0BJ5z
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102180
crossref_primary_10_1016_j_ins_2023_119103
crossref_primary_10_1007_s10489_021_02385_4
crossref_primary_10_1007_s11042_024_18329_2
crossref_primary_10_1007_s10489_022_03314_9
crossref_primary_10_1007_s10489_023_04572_x
crossref_primary_10_1016_j_eswa_2023_120148
crossref_primary_10_1109_ACCESS_2021_3101741
crossref_primary_10_1007_s44443_025_00030_5
crossref_primary_10_1109_ACCESS_2022_3169785
crossref_primary_10_1007_s10489_022_03855_z
crossref_primary_10_1002_sam_70046
Cites_doi 10.1016/j.energy.2016.07.092
10.1007/978-3-030-18058-4_13
10.1007/s00521-018-3434-0
10.1609/aaai.v32i1.11836
10.1016/j.eswa.2017.04.013
10.1109/IJCNN.2015.7280528
10.1016/j.eswa.2014.08.018
10.1016/S0166-4115(97)80111-2
10.1016/j.patcog.2011.03.020
10.1016/j.ijforecast.2011.04.001
10.1007/s00521-017-3096-3
10.1093/mnras/stv632
10.1145/1557019.1557060
10.1016/j.patcog.2014.12.003
10.1016/j.neucom.2014.05.068
10.1109/TNNLS.2015.2404823
10.1016/j.neucom.2005.12.126
10.1109/ICNN.1993.298533
10.1016/j.ins.2015.07.020
10.1016/S0004-3702(02)00190-X
10.1109/TNN.2006.880583
10.1016/j.knosys.2016.05.031
10.1016/j.asoc.2017.12.032
10.1162/neco.1997.9.8.1735
10.1609/aaai.v31i1.10806
10.1109/TNN.2008.2008326
10.1007/s00521-012-0873-x
10.1016/j.knosys.2018.05.021
10.1016/j.eswa.2016.06.035
10.1207/s15516709cog1402_1
10.1109/5326.983933
10.1109/TSMCB.2011.2168604
10.1007/s00500-012-0824-6
10.1109/78.782193
10.1109/CIEL.2014.7015739
10.1109/78.650093
10.1109/TNN.2011.2169087
10.1214/aoms/1177704472
10.1007/978-1-4757-2281-9_15
10.1016/j.neucom.2011.12.064
10.1007/s11063-018-9957-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01802-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 645
ExternalDocumentID 10_1007_s10489_020_01802_4
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFC2001600, 2018YFC2001602
– fundername: National Natural Science Foundation of China
  grantid: 61473150
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-f1de7c2cb8ccc444d57c071b8b42d844d7c8e881316acbd20aa490d7d466c81e3
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561725100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:51:19 EST 2025
Sat Nov 29 05:33:21 EST 2025
Tue Nov 18 21:50:00 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords One-step-ahead prediction
Kernel density estimation (KDE)
Incremental learning (IL)
Time series prediction (TSP)
Dynamic ensemble pruning (DEP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-f1de7c2cb8ccc444d57c071b8b42d844d7c8e881316acbd20aa490d7d466c81e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2476741129
PQPubID 326365
PageCount 29
ParticipantIDs proquest_journals_2476741129
crossref_primary_10_1007_s10489_020_01802_4
crossref_citationtrail_10_1007_s10489_020_01802_4
springer_journals_10_1007_s10489_020_01802_4
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GaxiolaFMelinPValdezFCastilloOGeneralized type-2 fuzzy weight adjustment for backpropagation neural networks in time series predictionInf Sci201532515917433922961328.6816410.1016/j.ins.2015.07.020
HintonGESrivastavaNKrizhevskyASutskeverISalakhutdinovRRImproving neural networks by preventing co-adaptation of feature detectorsComput Sci20124212223
ZhouTGaoSWangJChuCTodoYTangZFinancial time series prediction using a dendritic neuron modelKnowl-Based Syst201610521422410.1016/j.knosys.2016.05.031
LinLFangWXieXZhongSRandom forests-based extreme learning machine ensemble for multi-regime time series predictionExpert Syst Appl20178316417610.1016/j.eswa.2017.04.013
M. C. A. Neto, G. D. C. Cavalcanti, and I. R. Tsang, "Financial time series prediction using exogenous series and combined neural networks," in International Joint Conference on Neural Networks, pp. 2578–2585, 2009
LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Netw2006171411142310.1109/TNN.2006.880583
WoloszynskiTKurzynskiMA probabilistic model of classifier competence for dynamic ensemble selectionPattern Recogn201144265626681218.6815510.1016/j.patcog.2011.03.020
HuangGBZhuQYSiewCKExtreme learning machine: a new learning scheme of feedforward neural networksIEEE Int Joint Confer Neural Networks20052985990
LimJSLeeSPangHSLow complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimationsNeural Comput Applic20132256957610.1007/s00521-012-0873-x
Carlo E. Bonferroni, "Il calcolo delle assicurazioni su gruppi di teste," In Studi in Onore del Professore Salvatore Ortu Carboni, Rome: Italy, pp. 13–60, 1935
E. Ley and M. F. Steel (1993) Bayesian econometrics: Conjugate analysis and rejection sampling, in Economic and Financial Modeling with Mathematica®, ed: Springer, pp. 344–367
H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, et al.(2018) Deep multi-view spatial-temporal network for taxi demand prediction," in Thirty-Second AAAI Conference on Artificial Intelligence
CroneSFHibonMNikolopoulosKAdvances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series predictionInt J Forecast20112763566010.1016/j.ijforecast.2011.04.001
W. Hong, F. Wei, F. Sun, and X. Qian (2015) An adaptive ensemble model of extreme learning machine for time series prediction," in International Computer Conference on Wavelet Active Media Technology & Information Processing, pp. 80–85
ZhouZHWuJTangWEnsembling neural networks: many could be better than allArtif Intell200213723926319064770995.6807710.1016/S0004-3702(02)00190-X
HuangGBZhuQYSiewCKExtreme learning machine: theory and applicationsNeurocomputing20067048950110.1016/j.neucom.2005.12.126
BodyanskiyYVTyshchenkoOKA hybrid Cascade neural network with ensembles of extended neo-fuzzy neurons and its deep learningInf Technol Syst Res Comput Phys202094516417410.1007/978-3-030-18058-4_13
M. I. Jordan, "Serial order: A parallel distributed processing approach," in Advances in Psychology. vol. 121, ed: Elsevier, 1997, pp. 471–495
BezerraCGCostaBSJGuedesLAAngelovPPAn evolving approach to unsupervised and real-time fault detection in industrial processesExpert Syst Appl20166313414410.1016/j.eswa.2016.06.035
X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga (2014) Ensemble deep learning for regression and time series forecasting, in Computational Intelligence in Ensemble Learning, pp. 1–6
Z. Liu and M. Hauskrecht (2016) Learning adaptive forecasting models from irregularly sampled multivariate clinical data, in Thirtieth AAAI Conference on Artificial Intelligence, pp. 1273–1279
BifetAHolmesGKirkbyRPfahringerBMoa: massive online analysisJ Mach Learn Res20101116011604
YeePHaykinSA dynamic regularized radial basis function network for nonlinear, nonstationary time series predictionIEEE Trans Signal Process1999472503252117350700979.9402510.1109/78.782193
W. Hong, L. Lei, and F. Wei (2016) Time series prediction based on ensemble fuzzy extreme learning machine, in IEEE International Conference on Information & Automation, pp. 2001–2005
YeRDaiQA novel transfer learning framework for time series forecastingKnowl-Based Syst2018156749910.1016/j.knosys.2018.05.021
Zhou ZH, Wu J, Jiang Y (2001) Genetic algorithm based selective neural network ensemble. Int Joint Conf Artif Intell:797–802
J. O. Gama, R. Sebastião, and P. P. Rodrigues (2009) Issues in evaluation of stream learning algorithms, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 329–338
YeYSquartiniSPiazzaFOnline sequential extreme learning machine in nonstationary environmentsNeurocomputing20131169410110.1016/j.neucom.2011.12.064
CruzRMSabourinRCavalcantiGDRenTIMETA-DES: a dynamic ensemble selection framework using META-learningPattern Recogn2015481925193510.1016/j.patcog.2014.12.003
HeHChenSLiKXuXIncremental learning from stream dataIEEE Trans Neural Netw2011221901191410.1109/TNN.2011.2169087
J. Villarreal and P. Baffes, "Time series prediction using neural networks," 1993
SoaresECostaPCostaBLeiteDEnsemble of evolving data clouds and fuzzy models for weather time series predictionAppl Soft Comput20186444545310.1016/j.asoc.2017.12.032
D. Sotiropoulos, A. Kostopoulos, and T. Grapsa (2002) A spectral version of Perry’s conjugate gradient method for neural network training, in Proceedings of 4th GRACM Congress on Computational Mechanics, pp. 291–298
A. Venkatraman, M. Hebert, and J. A. Bagnell (2015) Improving multi-step prediction of learned time series models," in Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3024–3030
SvarerCHansenLKLarsenJOn Design And Evaluation Of Tapped-Delay Neural-Network ArchitecturesIEEE Int Conf Neural Netw19931–3465110.1109/ICNN.1993.298533
D. Kangin and P. Angelov (2015) Evolving clustering, classification and regression with TEDA, in 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
R. Senanayake, S. O'Callaghan, and F. Ramos (2016) Predicting spatio-temporal propagation of seasonal influenza using variational Gaussian process regression," in Thirtieth AAAI Conference on Artificial Intelligence, pp. 3901–3907
S. Dasgupta and T. Osogami (2017) Nonlinear dynamic Boltzmann machines for time-series prediction, in Thirty-First AAAI Conference on Artificial Intelligence
ElmanJLFinding structure in timeCogn Sci19901417921110.1207/s15516709cog1402_1
DielemanSWillettKWDambreJRotation-invariant convolutional neural networks for galaxy morphology predictionMon Not R Astron Soc20154501441145910.1093/mnras/stv632
WangXHanMOnline sequential extreme learning machine with kernels for nonstationary time series predictionNeurocomputing2014145909710.1016/j.neucom.2014.05.068
PolikarRUpdaLUpdaSSHonavarVLearn++: An incremental learning algorithm for supervised neural networksIEEE Trans Syst Man Cybernetics, Part C (Applications Rev)20013149750810.1109/5326.983933
HuangGBZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans Syst Man Cybernetics Part B20124251352910.1109/TSMCB.2011.2168604
SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093
MuhlbaierMDTopalisAPolikarRLearn++.NC: combining Ensemble of Classifiers with Dynamically Weighted Consult-and-Vote for efficient incremental learning of new classesIEEE Trans Neural Netw20082015216810.1109/TNN.2008.2008326
YangYCheJLiYZhaoYZhuSAn incremental electric load forecasting model based on support vector regressionEnergy201611379680810.1016/j.energy.2016.07.092
HochreiterSSchmidhuberJRLong short-term memoryNeural Computation199791735178010.1162/neco.1997.9.8.1735
ParzenEOn estimation of a probability density function and modeAnn Math Stat196233106510761432820116.1130210.1214/aoms/1177704472
CastilloOMelinPSimulation and forecasting complex economic time series using neural networks and fuzzy logicIEEE Int Conf Syst2001318051810
ZhangWXuAPingDGaoMAn improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series predictionNeural Comput & Applic20193163765210.1007/s00521-017-3096-3
LiJDaiQYeRA novel double incremental learning algorithm for time series predictionNeural Comput & Applic2019316055607710.1007/s00521-018-3434-0
WangLZengYChenTBack propagation neural network with adaptive differential evolution algorithm for time series forecastingExpert Syst Appl20154285586310.1016/j.eswa.2014.08.018
ChandraRCompetition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series predictionIEEE Trans Neural N Learning Syst20152631233136345326210.1109/TNNLS.2015.2404823
YaoCDaiQSongGSeveral novel dynamic ensemble selection algorithms for time series predictionNeural Process Lett2019501789182910.1007/s11063-018-9957-7
ZhaiJHXuHYWangXZDynamic ensemble extreme learning machine based on sample entropySoft Comput2012161493150210.1007/s00500-012-0824-6
C Svarer (1802_CR52) 1993; 1–3
1802_CR1
H He (1802_CR46) 2011; 22
R Chandra (1802_CR9) 2015; 26
T Zhou (1802_CR50) 2016; 105
O Castillo (1802_CR8) 2001; 3
S Dieleman (1802_CR10) 2015; 450
CG Bezerra (1802_CR53) 2016; 63
L Wang (1802_CR12) 2015; 42
ZH Zhou (1802_CR45) 2002; 137
E Soares (1802_CR51) 2018; 64
1802_CR7
1802_CR39
T Woloszynski (1802_CR36) 2011; 44
J Li (1802_CR24) 2019; 31
L Lin (1802_CR22) 2017; 83
JL Elman (1802_CR27) 1990; 14
Y Yang (1802_CR35) 2016; 113
A Bifet (1802_CR48) 2010; 11
1802_CR20
1802_CR23
1802_CR21
YV Bodyanskiy (1802_CR2) 2020; 945
JH Zhai (1802_CR37) 2012; 16
1802_CR28
JS Lim (1802_CR3) 2013; 22
1802_CR26
SF Crone (1802_CR6) 2011; 27
GB Huang (1802_CR15) 2005; 2
MD Muhlbaier (1802_CR33) 2008; 20
GE Hinton (1802_CR14) 2012; 4
GB Huang (1802_CR17) 2012; 42
E Parzen (1802_CR25) 1962; 33
R Ye (1802_CR19) 2018; 156
R Polikar (1802_CR32) 2001; 31
F Gaxiola (1802_CR11) 2015; 325
1802_CR13
1802_CR54
W Zhang (1802_CR34) 2019; 31
Y Ye (1802_CR4) 2013; 116
X Wang (1802_CR18) 2014; 145
GB Huang (1802_CR16) 2006; 70
M Schuster (1802_CR29) 1997; 45
S Hochreiter (1802_CR30) 1997; 9
1802_CR41
1802_CR42
1802_CR40
C Yao (1802_CR55) 2019; 50
1802_CR43
1802_CR44
P Yee (1802_CR5) 1999; 47
1802_CR49
1802_CR47
N-Y Liang (1802_CR31) 2006; 17
RM Cruz (1802_CR38) 2015; 48
References_xml – reference: YangYCheJLiYZhaoYZhuSAn incremental electric load forecasting model based on support vector regressionEnergy201611379680810.1016/j.energy.2016.07.092
– reference: SoaresECostaPCostaBLeiteDEnsemble of evolving data clouds and fuzzy models for weather time series predictionAppl Soft Comput20186444545310.1016/j.asoc.2017.12.032
– reference: ZhaiJHXuHYWangXZDynamic ensemble extreme learning machine based on sample entropySoft Comput2012161493150210.1007/s00500-012-0824-6
– reference: BodyanskiyYVTyshchenkoOKA hybrid Cascade neural network with ensembles of extended neo-fuzzy neurons and its deep learningInf Technol Syst Res Comput Phys202094516417410.1007/978-3-030-18058-4_13
– reference: CroneSFHibonMNikolopoulosKAdvances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series predictionInt J Forecast20112763566010.1016/j.ijforecast.2011.04.001
– reference: HintonGESrivastavaNKrizhevskyASutskeverISalakhutdinovRRImproving neural networks by preventing co-adaptation of feature detectorsComput Sci20124212223
– reference: BifetAHolmesGKirkbyRPfahringerBMoa: massive online analysisJ Mach Learn Res20101116011604
– reference: SvarerCHansenLKLarsenJOn Design And Evaluation Of Tapped-Delay Neural-Network ArchitecturesIEEE Int Conf Neural Netw19931–3465110.1109/ICNN.1993.298533
– reference: DielemanSWillettKWDambreJRotation-invariant convolutional neural networks for galaxy morphology predictionMon Not R Astron Soc20154501441145910.1093/mnras/stv632
– reference: ZhangWXuAPingDGaoMAn improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series predictionNeural Comput & Applic20193163765210.1007/s00521-017-3096-3
– reference: YeePHaykinSA dynamic regularized radial basis function network for nonlinear, nonstationary time series predictionIEEE Trans Signal Process1999472503252117350700979.9402510.1109/78.782193
– reference: H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, et al.(2018) Deep multi-view spatial-temporal network for taxi demand prediction," in Thirty-Second AAAI Conference on Artificial Intelligence
– reference: S. Dasgupta and T. Osogami (2017) Nonlinear dynamic Boltzmann machines for time-series prediction, in Thirty-First AAAI Conference on Artificial Intelligence
– reference: Z. Liu and M. Hauskrecht (2016) Learning adaptive forecasting models from irregularly sampled multivariate clinical data, in Thirtieth AAAI Conference on Artificial Intelligence, pp. 1273–1279
– reference: Zhou ZH, Wu J, Jiang Y (2001) Genetic algorithm based selective neural network ensemble. Int Joint Conf Artif Intell:797–802
– reference: D. Kangin and P. Angelov (2015) Evolving clustering, classification and regression with TEDA, in 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
– reference: HuangGBZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Trans Syst Man Cybernetics Part B20124251352910.1109/TSMCB.2011.2168604
– reference: ZhouTGaoSWangJChuCTodoYTangZFinancial time series prediction using a dendritic neuron modelKnowl-Based Syst201610521422410.1016/j.knosys.2016.05.031
– reference: A. Venkatraman, M. Hebert, and J. A. Bagnell (2015) Improving multi-step prediction of learned time series models," in Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3024–3030
– reference: M. C. A. Neto, G. D. C. Cavalcanti, and I. R. Tsang, "Financial time series prediction using exogenous series and combined neural networks," in International Joint Conference on Neural Networks, pp. 2578–2585, 2009
– reference: CastilloOMelinPSimulation and forecasting complex economic time series using neural networks and fuzzy logicIEEE Int Conf Syst2001318051810
– reference: HeHChenSLiKXuXIncremental learning from stream dataIEEE Trans Neural Netw2011221901191410.1109/TNN.2011.2169087
– reference: ZhouZHWuJTangWEnsembling neural networks: many could be better than allArtif Intell200213723926319064770995.6807710.1016/S0004-3702(02)00190-X
– reference: E. Ley and M. F. Steel (1993) Bayesian econometrics: Conjugate analysis and rejection sampling, in Economic and Financial Modeling with Mathematica®, ed: Springer, pp. 344–367
– reference: X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga (2014) Ensemble deep learning for regression and time series forecasting, in Computational Intelligence in Ensemble Learning, pp. 1–6
– reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093
– reference: Carlo E. Bonferroni, "Il calcolo delle assicurazioni su gruppi di teste," In Studi in Onore del Professore Salvatore Ortu Carboni, Rome: Italy, pp. 13–60, 1935
– reference: MuhlbaierMDTopalisAPolikarRLearn++.NC: combining Ensemble of Classifiers with Dynamically Weighted Consult-and-Vote for efficient incremental learning of new classesIEEE Trans Neural Netw20082015216810.1109/TNN.2008.2008326
– reference: CruzRMSabourinRCavalcantiGDRenTIMETA-DES: a dynamic ensemble selection framework using META-learningPattern Recogn2015481925193510.1016/j.patcog.2014.12.003
– reference: YeYSquartiniSPiazzaFOnline sequential extreme learning machine in nonstationary environmentsNeurocomputing20131169410110.1016/j.neucom.2011.12.064
– reference: J. O. Gama, R. Sebastião, and P. P. Rodrigues (2009) Issues in evaluation of stream learning algorithms, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 329–338
– reference: M. I. Jordan, "Serial order: A parallel distributed processing approach," in Advances in Psychology. vol. 121, ed: Elsevier, 1997, pp. 471–495
– reference: HochreiterSSchmidhuberJRLong short-term memoryNeural Computation199791735178010.1162/neco.1997.9.8.1735
– reference: J. Villarreal and P. Baffes, "Time series prediction using neural networks," 1993
– reference: HuangGBZhuQYSiewCKExtreme learning machine: theory and applicationsNeurocomputing20067048950110.1016/j.neucom.2005.12.126
– reference: YeRDaiQA novel transfer learning framework for time series forecastingKnowl-Based Syst2018156749910.1016/j.knosys.2018.05.021
– reference: D. Sotiropoulos, A. Kostopoulos, and T. Grapsa (2002) A spectral version of Perry’s conjugate gradient method for neural network training, in Proceedings of 4th GRACM Congress on Computational Mechanics, pp. 291–298
– reference: HuangGBZhuQYSiewCKExtreme learning machine: a new learning scheme of feedforward neural networksIEEE Int Joint Confer Neural Networks20052985990
– reference: ChandraRCompetition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series predictionIEEE Trans Neural N Learning Syst20152631233136345326210.1109/TNNLS.2015.2404823
– reference: W. Hong, L. Lei, and F. Wei (2016) Time series prediction based on ensemble fuzzy extreme learning machine, in IEEE International Conference on Information & Automation, pp. 2001–2005
– reference: R. Senanayake, S. O'Callaghan, and F. Ramos (2016) Predicting spatio-temporal propagation of seasonal influenza using variational Gaussian process regression," in Thirtieth AAAI Conference on Artificial Intelligence, pp. 3901–3907
– reference: LimJSLeeSPangHSLow complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimationsNeural Comput Applic20132256957610.1007/s00521-012-0873-x
– reference: LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Netw2006171411142310.1109/TNN.2006.880583
– reference: ElmanJLFinding structure in timeCogn Sci19901417921110.1207/s15516709cog1402_1
– reference: PolikarRUpdaLUpdaSSHonavarVLearn++: An incremental learning algorithm for supervised neural networksIEEE Trans Syst Man Cybernetics, Part C (Applications Rev)20013149750810.1109/5326.983933
– reference: GaxiolaFMelinPValdezFCastilloOGeneralized type-2 fuzzy weight adjustment for backpropagation neural networks in time series predictionInf Sci201532515917433922961328.6816410.1016/j.ins.2015.07.020
– reference: YaoCDaiQSongGSeveral novel dynamic ensemble selection algorithms for time series predictionNeural Process Lett2019501789182910.1007/s11063-018-9957-7
– reference: WangXHanMOnline sequential extreme learning machine with kernels for nonstationary time series predictionNeurocomputing2014145909710.1016/j.neucom.2014.05.068
– reference: WoloszynskiTKurzynskiMA probabilistic model of classifier competence for dynamic ensemble selectionPattern Recogn201144265626681218.6815510.1016/j.patcog.2011.03.020
– reference: ParzenEOn estimation of a probability density function and modeAnn Math Stat196233106510761432820116.1130210.1214/aoms/1177704472
– reference: LiJDaiQYeRA novel double incremental learning algorithm for time series predictionNeural Comput & Applic2019316055607710.1007/s00521-018-3434-0
– reference: WangLZengYChenTBack propagation neural network with adaptive differential evolution algorithm for time series forecastingExpert Syst Appl20154285586310.1016/j.eswa.2014.08.018
– reference: LinLFangWXieXZhongSRandom forests-based extreme learning machine ensemble for multi-regime time series predictionExpert Syst Appl20178316417610.1016/j.eswa.2017.04.013
– reference: BezerraCGCostaBSJGuedesLAAngelovPPAn evolving approach to unsupervised and real-time fault detection in industrial processesExpert Syst Appl20166313414410.1016/j.eswa.2016.06.035
– reference: W. Hong, F. Wei, F. Sun, and X. Qian (2015) An adaptive ensemble model of extreme learning machine for time series prediction," in International Computer Conference on Wavelet Active Media Technology & Information Processing, pp. 80–85
– volume: 113
  start-page: 796
  year: 2016
  ident: 1802_CR35
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.092
– volume: 945
  start-page: 164
  year: 2020
  ident: 1802_CR2
  publication-title: Inf Technol Syst Res Comput Phys
  doi: 10.1007/978-3-030-18058-4_13
– volume: 31
  start-page: 6055
  year: 2019
  ident: 1802_CR24
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-018-3434-0
– ident: 1802_CR39
  doi: 10.1609/aaai.v32i1.11836
– volume: 2
  start-page: 985
  year: 2005
  ident: 1802_CR15
  publication-title: IEEE Int Joint Confer Neural Networks
– volume: 83
  start-page: 164
  year: 2017
  ident: 1802_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.013
– ident: 1802_CR49
– ident: 1802_CR41
– ident: 1802_CR54
  doi: 10.1109/IJCNN.2015.7280528
– volume: 42
  start-page: 855
  year: 2015
  ident: 1802_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.018
– ident: 1802_CR28
  doi: 10.1016/S0166-4115(97)80111-2
– volume: 44
  start-page: 2656
  year: 2011
  ident: 1802_CR36
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.03.020
– ident: 1802_CR13
– volume: 27
  start-page: 635
  year: 2011
  ident: 1802_CR6
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2011.04.001
– volume: 31
  start-page: 637
  year: 2019
  ident: 1802_CR34
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-017-3096-3
– volume: 450
  start-page: 1441
  year: 2015
  ident: 1802_CR10
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/stv632
– ident: 1802_CR47
  doi: 10.1145/1557019.1557060
– volume: 48
  start-page: 1925
  year: 2015
  ident: 1802_CR38
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.12.003
– volume: 145
  start-page: 90
  year: 2014
  ident: 1802_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.068
– volume: 26
  start-page: 3123
  year: 2015
  ident: 1802_CR9
  publication-title: IEEE Trans Neural N Learning Syst
  doi: 10.1109/TNNLS.2015.2404823
– volume: 11
  start-page: 1601
  year: 2010
  ident: 1802_CR48
  publication-title: J Mach Learn Res
– volume: 70
  start-page: 489
  year: 2006
  ident: 1802_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 1–3
  start-page: 46
  year: 1993
  ident: 1802_CR52
  publication-title: IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1993.298533
– volume: 325
  start-page: 159
  year: 2015
  ident: 1802_CR11
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.07.020
– volume: 4
  start-page: 212
  year: 2012
  ident: 1802_CR14
  publication-title: Comput Sci
– ident: 1802_CR1
– volume: 137
  start-page: 239
  year: 2002
  ident: 1802_CR45
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 17
  start-page: 1411
  year: 2006
  ident: 1802_CR31
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– ident: 1802_CR21
– volume: 105
  start-page: 214
  year: 2016
  ident: 1802_CR50
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.05.031
– volume: 64
  start-page: 445
  year: 2018
  ident: 1802_CR51
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.12.032
– volume: 9
  start-page: 1735
  year: 1997
  ident: 1802_CR30
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 1802_CR42
  doi: 10.1609/aaai.v31i1.10806
– volume: 20
  start-page: 152
  year: 2008
  ident: 1802_CR33
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2008326
– volume: 22
  start-page: 569
  year: 2013
  ident: 1802_CR3
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-012-0873-x
– volume: 156
  start-page: 74
  year: 2018
  ident: 1802_CR19
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.021
– ident: 1802_CR7
– volume: 63
  start-page: 134
  year: 2016
  ident: 1802_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.06.035
– volume: 14
  start-page: 179
  year: 1990
  ident: 1802_CR27
  publication-title: Cogn Sci
  doi: 10.1207/s15516709cog1402_1
– ident: 1802_CR43
– volume: 31
  start-page: 497
  year: 2001
  ident: 1802_CR32
  publication-title: IEEE Trans Syst Man Cybernetics, Part C (Applications Rev)
  doi: 10.1109/5326.983933
– ident: 1802_CR20
– volume: 42
  start-page: 513
  year: 2012
  ident: 1802_CR17
  publication-title: IEEE Trans Syst Man Cybernetics Part B
  doi: 10.1109/TSMCB.2011.2168604
– volume: 16
  start-page: 1493
  year: 2012
  ident: 1802_CR37
  publication-title: Soft Comput
  doi: 10.1007/s00500-012-0824-6
– volume: 47
  start-page: 2503
  year: 1999
  ident: 1802_CR5
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.782193
– ident: 1802_CR23
  doi: 10.1109/CIEL.2014.7015739
– volume: 45
  start-page: 2673
  year: 1997
  ident: 1802_CR29
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.650093
– volume: 22
  start-page: 1901
  year: 2011
  ident: 1802_CR46
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169087
– volume: 3
  start-page: 1805
  year: 2001
  ident: 1802_CR8
  publication-title: IEEE Int Conf Syst
– volume: 33
  start-page: 1065
  year: 1962
  ident: 1802_CR25
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– ident: 1802_CR44
– ident: 1802_CR40
– ident: 1802_CR26
  doi: 10.1007/978-1-4757-2281-9_15
– volume: 116
  start-page: 94
  year: 2013
  ident: 1802_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.064
– volume: 50
  start-page: 1789
  year: 2019
  ident: 1802_CR55
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9957-7
SSID ssj0003301
Score 2.314569
Snippet Ensemble pruning can effectively overcome several shortcomings of the classical ensemble learning paradigm, such as the relatively high time and space...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 617
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Density distribution
Kernels
Machine learning
Machines
Manufacturing
Mechanical Engineering
Performance prediction
Processes
Time series
Traveling salesman problem
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46ffDFecXplDyIL67QdlmS-iY6EZQxvLG3kiapG27daDth_8Mf7Ekvm4oK-lTaJuGQk5Ock3P5EDpWggWhTT0QJOGCgcK05SnHJPiEpCVCBWwPMrAJ1unwXs_rFklhSRntXroks536Q7IbMeE9rgmk4iDHZBmtwHHHDWDD3f3TfP8FCz3DyQPLwqLU6xWpMt-P8fk4WuiYX9yi2WlzVf0fnRtovdAu8Xm-HDbRko62ULVEbsCFIG-jt3aUdG8u2yewPdzC8wwL3J-Z5C1swOaxWZc6wZPYuHEM67AYPo_jQdof4bLABNCEVY5nj8EW1qNgqKHH1Fy0NKCVzG8egZwCmQK-ikjhFx1HeoiViZxPZ9hU-cjTJ3fQ41X74eLaKvAZLAlGW2qFjtJMujLgUkpCiGoxCRpLwAPiKg7vTHLNudN0qJCBcm0hiGcrpgilkju6uYsq0TjSewjbyqYhJ67thi2iQUkSoPgQFiihuS29Zg05JZt8WRQvNxgaQ39RdtlMuw_T7mfT7pMaOp33meSlO35tXS-57xdinPhAAgWVC3SiGmqU3F78_nm0_b81P0BrromVyaLB66iSxlN9iFblazpI4qNseb8DXjX1UQ
  priority: 102
  providerName: Springer Nature
Title EnsPKDE&IncLKDE: a hybrid time series prediction algorithm integrating dynamic ensemble pruning, incremental learning, and kernel density estimation
URI https://link.springer.com/article/10.1007/s10489-020-01802-4
https://www.proquest.com/docview/2476741129
Volume 51
WOSCitedRecordID wos000561725100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xd-gFCm3FFrryoeJSoiZeb-xwQRQWIdGuVkDbbS-RYztQdQnbTUDiPXjgziQOq1Yql14cJbEdR2OPZ8Yz8wG8tVpmeRgnuJA0RwVFuiCxEQX45KKvc4tkz2qwCTkcqvE4GXmDW-ndKlueWDNqe2PIRv6eC0o7Q9LB_vRXQKhRdLrqITQWYZmyJES16975IydGXb1GzEMdI4jjZOyDZnzonCBnIU5uWQq5gvhzY5pLm38dkNb7zvHa_474Oax6iZMdNFNkHRZcsQFrLZoD84v7BTwMinJ0ejTYQZbxEa97TLOrewroYgRAz2iuupJNZ3S0Q-RkenKJ36uurlmbdAL_gNkG456hfuyus4nDFrdkfNnFWqaxRuJwPFoFPtWFZT_drHATZsmbvrpnlPmjCal8CZ-PBxeHJ4HHbAgMKnJVkEfWScNNpowxQgjblwalmExlgluF99Iop1TUi2JtMstDrUUSWmlFHBsVud4rWCpuCrcJLLRhnCvBQ573hUPBSaMwJGRmtVOhSXodiFqCpcYnNCdcjUk6T8VMRE6RyGlN5FR04N1jm2mTzuPJ2tstZVO_tMt0TtYO7LZzY_763729frq3LXjGyV-m9gjfhqVqduvewIq5q36Usy4syq_furD8YTAcneHdqQyw_BQeduspj-Wo_x3Ls_MvvwGxpgXr
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgkutDwqFkrxAbjQqInjjR0khKp2q1a7rHoo0t6CYzvtqrvpdpOC9n_wO_iNzOTRVZHorQdOUV5WYn8znrFn5gN4Z7VMMz-KUZA0RwdFOi-2ASX4ZKKrM4vDnlZkE3I4VKNRfLICv9tcGAqrbHVipajtpaE18l0uqOwMWQdfZlcesUbR7mpLoVHDou8WP9FlKz4fH-D4vuf8sHe6f-Q1rAKeQVej9LLAOmm4SZUxRghhu9LgPJuqVHCr8Fwa5ZQKwiDSJrXc11rEvpVWRJFRgQux3QewJkIlSa760rvR_GFY0S376NN4URSPmiSdJlVPUHASpzAwhVpI3J4Il9btXxuy1Tx3uP6_9dAGPGksarZXi8BTWHH5M1hv2SpYo7yew69eXpz0D3ofUCUO8PiJaXa-oIQ1Vo6njpEsuoLN5rR1RXBlenKG_1eeT1lbVAN7jNlFrqdjw9D_d9N04vCNa1pc2sGnTL3aip_TsHHgVZ1bduHmuZswS9kC5YJRZZM6ZfQFfLuXvtmE1fwydy-B-daPMiW4z7OucGgYajT2hEytdso3cdiBoAVIYpqC7cQbMkmWpaYJVAmCKqlAlYgOfLx5Z1aXK7nz6a0WSUmjuopkCaMO7LRYXN7-d2uv7m7tLTw6Ov06SAbHw_5reMwpNqiKft-C1XJ-7d7AQ_OjHBfz7UqoGHy_b4z-AZ8FXX4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAyEujE9RGOADcGHREseNHSSEEG3F1KnqAaSKS3Bsh1W0WWkyUP8P_hr-Ot5LnFUgsdsOnKIktpXYv_dlvw-AZ1bLvAiTFAlJczRQpAtSG1GATyH6urC47HlTbEJOJmo2S6c78KuLhSG3yo4nNozanhraIz_kgtLOkHZwWHi3iOlg9Gb1LaAKUnTS2pXTaCEydpsfaL5Vr48GuNbPOR8NP7x7H_gKA4FBs6MOisg6abjJlTFGCGH70qDMzVUuuFV4L41ySkVxlGiTWx5qLdLQSiuSxKjIxTjuFbgq0cYkd8Jp_9O5FIjjpvRyiPZNkCTpzAfs-LA9QY5KnFzCFHIk8adQ3Gq6fx3ONjJvtPc_z9YtuOk1bfa2JY3bsOPKO7DXVbFgnqndhZ_DspqOB8MXyCqP8fqKaXayoUA2Vs-XjhGNuoqt1nSkRTBmevEF_68-WbIu2QbOHrObUi_nhrmycst84bDHGW06HWAr0-7C4uf4Kh34VJeWfXXr0i2YpSiCesMo40kbSnoPPl7K3NyH3fK0dA-AhTZMCiV4yIu-cKgwalQChcytdio0adyDqANLZnwid6onssi2KagJYBkCLGsAlokevDzvs2rTmFzYer9DVeZZWpVtIdWDgw6X29f_Hu3hxaM9hesIzez4aDJ-BDc4uQw1TvH7sFuvz9xjuGa-1_Nq_aShLwafLxuivwGkVWai
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EnsPKDE%26IncLKDE%3A+a+hybrid+time+series+prediction+algorithm+integrating+dynamic+ensemble+pruning%2C+incremental+learning%2C+and+kernel+density+estimation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhu%2C+Gangliang&rft.au=Dai%2C+Qun&rft.date=2021-02-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=2&rft.spage=617&rft.epage=645&rft_id=info:doi/10.1007%2Fs10489-020-01802-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_020_01802_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon