Burnability of double spiders and path forests

•Discrete-time deterministic graph algorithm modelling the spread of social contagion.•Tight bounds on the burning numbers of double spiders and path forests.•Well-burnability of path forests with sufficiently long paths.•Progress towards a conjecture stronger than the burning number conjecture. The...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 438; p. 127574
Main Authors: Tan, Ta Sheng, Teh, Wen Chean
Format: Journal Article
Language:English
Published: Elsevier Inc 01.02.2023
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Discrete-time deterministic graph algorithm modelling the spread of social contagion.•Tight bounds on the burning numbers of double spiders and path forests.•Well-burnability of path forests with sufficiently long paths.•Progress towards a conjecture stronger than the burning number conjecture. The burning number of a graph can be used to measure the spreading speed of contagion in a network. The burning number conjecture is arguably the main unresolved conjecture related to this graph parameter, which can be settled by showing that every tree of order m2 has burning number at most m. This is known to hold for many classes of trees, including spiders - trees with exactly one vertex of degree greater than two. In fact, it has been verified that certain spiders of order slightly larger than m2 also have burning numbers at most m, a result that has then been conjectured to be true for all trees. The first focus of this paper is to verify this slightly stronger conjecture for double spiders - trees with two vertices of degrees at least three and they are adjacent. Our other focus concerns the burning numbers of path forests, a class of graphs in which their burning numbers are naturally related to that of spiders and double spiders. Here, our main result shows that a path forest of order m2 with a sufficiently long shortest path has burning number exactly m, the smallest possible for any path forest of the same order.
AbstractList •Discrete-time deterministic graph algorithm modelling the spread of social contagion.•Tight bounds on the burning numbers of double spiders and path forests.•Well-burnability of path forests with sufficiently long paths.•Progress towards a conjecture stronger than the burning number conjecture. The burning number of a graph can be used to measure the spreading speed of contagion in a network. The burning number conjecture is arguably the main unresolved conjecture related to this graph parameter, which can be settled by showing that every tree of order m2 has burning number at most m. This is known to hold for many classes of trees, including spiders - trees with exactly one vertex of degree greater than two. In fact, it has been verified that certain spiders of order slightly larger than m2 also have burning numbers at most m, a result that has then been conjectured to be true for all trees. The first focus of this paper is to verify this slightly stronger conjecture for double spiders - trees with two vertices of degrees at least three and they are adjacent. Our other focus concerns the burning numbers of path forests, a class of graphs in which their burning numbers are naturally related to that of spiders and double spiders. Here, our main result shows that a path forest of order m2 with a sufficiently long shortest path has burning number exactly m, the smallest possible for any path forest of the same order.
ArticleNumber 127574
Author Teh, Wen Chean
Tan, Ta Sheng
Author_xml – sequence: 1
  givenname: Ta Sheng
  orcidid: 0000-0002-5739-3242
  surname: Tan
  fullname: Tan, Ta Sheng
  email: tstan@um.edu.my
  organization: Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Wen Chean
  orcidid: 0000-0001-8424-9820
  surname: Teh
  fullname: Teh, Wen Chean
  email: dasmenteh@usm.my
  organization: School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Malaysia
BookMark eNp9j71OwzAURi1UJNLCA7DlBRJ8befHYoIKClIlFpita_tGuEqTyk6R-vakKjPTN51P5yzZYhgHYuweeAkc6oddiXtXCi5ECaKpGnXFMmgbWVS10guWca7rQnIub9gypR3nvKlBZax8PsYBbejDdMrHLvfj0faUp0PwFFOOg88POH3n3RgpTemWXXfYJ7r72xX7en35XL8V24_N-_ppWzih9FR0YKXsFFTovFaNchI9gSVPqL0SqJRurdVVpVtRz5YCW7QtApczBlbLFYPLr4tjSpE6c4hhj_FkgJtzsNmZOdicg80leGYeLwzNYj-Bokku0ODIh0huMn4M_9C_ae1fEA
Cites_doi 10.55016/ojs/cdm.v16i1.71194
10.1007/s00373-017-1768-5
10.1080/15427951.2015.1103339
10.1016/j.dam.2017.09.012
10.1016/j.dam.2020.03.062
10.1016/j.tcs.2018.05.035
10.1016/j.tcs.2018.06.036
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2022.127574
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2022_127574
S0096300322006488
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c249t-f1b33f415acd9474c3ade1bedea9d42a4498bb95598268732a8ab8a10333f1b93
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866507400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 07:22:54 EST 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 91D30
Burning number conjecture
05C85
Path forest
Double spider
Spread of social contagion
68R10
Graph algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-f1b33f415acd9474c3ade1bedea9d42a4498bb95598268732a8ab8a10333f1b93
ORCID 0000-0002-5739-3242
0000-0001-8424-9820
ParticipantIDs crossref_primary_10_1016_j_amc_2022_127574
elsevier_sciencedirect_doi_10_1016_j_amc_2022_127574
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bonato, Janssen, Roshanbin (bib0004) 2016; 12
Mitsche, at, Roshanbin (bib0011) 2018; 746
Land, Lu (bib0008) 2016; vol. 10088
Liu, Hu, Hu (bib0009) 2020; 284
Bonato, Janssen, Roshanbin (bib0003) 2014; vol. 8882
Das, Dev, Sadhukhan, Sahoo, Sen (bib0006) 2018; vol. 10743
Bessy, Bonato, Janssen, Rautenbach, Roshanbin (bib0001) 2018; 235
Roshanbin (bib0012) 2016
Tan, Teh (bib0013) 2020; 385
Mitsche, at, Roshanbin (bib0010) 2017; 33
Bonato (bib0002) 2021; 16
Hiller, Koster, Triesch (bib0007) 2021; vol. 5
Bonato, Lidbetter (bib0005) 2019; 794
Mitsche (10.1016/j.amc.2022.127574_bib0010) 2017; 33
Land (10.1016/j.amc.2022.127574_bib0008) 2016; vol. 10088
Mitsche (10.1016/j.amc.2022.127574_bib0011) 2018; 746
Roshanbin (10.1016/j.amc.2022.127574_bib0012) 2016
Bessy (10.1016/j.amc.2022.127574_bib0001) 2018; 235
Bonato (10.1016/j.amc.2022.127574_bib0003) 2014; vol. 8882
Tan (10.1016/j.amc.2022.127574_bib0013) 2020; 385
Bonato (10.1016/j.amc.2022.127574_bib0005) 2019; 794
Liu (10.1016/j.amc.2022.127574_bib0009) 2020; 284
Hiller (10.1016/j.amc.2022.127574_bib0007) 2021; vol. 5
Das (10.1016/j.amc.2022.127574_bib0006) 2018; vol. 10743
Bonato (10.1016/j.amc.2022.127574_bib0004) 2016; 12
Bonato (10.1016/j.amc.2022.127574_bib0002) 2021; 16
References_xml – volume: vol. 5
  start-page: 145
  year: 2021
  end-page: 156
  ident: bib0007
  article-title: On the burning number of
  publication-title: Graphs and Combinatorial Optimization: From Theory to Applications—CTW2020 Proceedings
– volume: vol. 8882
  start-page: 13
  year: 2014
  end-page: 22
  ident: bib0003
  article-title: Burning a graph as a model of social contagion
  publication-title: Algorithms and Models for the Web Graph
– volume: vol. 10743
  start-page: 155
  year: 2018
  end-page: 163
  ident: bib0006
  article-title: Burning spiders
  publication-title: Algorithms and Discrete Applied Mathematics
– volume: 746
  start-page: 124
  year: 2018
  end-page: 135
  ident: bib0011
  article-title: Burning number of graph products
  publication-title: Theor. Comput. Sci.
– volume: 284
  start-page: 332
  year: 2020
  end-page: 340
  ident: bib0009
  article-title: Burning number of caterpillars
  publication-title: Discrete Appl. Math.
– year: 2016
  ident: bib0012
  publication-title: Burning a Graph as a Model of Social Contagion
– volume: 385
  start-page: 125447
  year: 2020
  ident: bib0013
  article-title: Graph burning: tight bounds on the burning numbers of path forests and spiders
  publication-title: Appl. Math. Comput.
– volume: 235
  start-page: 16
  year: 2018
  end-page: 22
  ident: bib0001
  article-title: Bounds on the burning number
  publication-title: Discrete Appl. Math.
– volume: 794
  start-page: 12
  year: 2019
  end-page: 19
  ident: bib0005
  article-title: Bounds on the burning numbers of spiders and path-forests
  publication-title: Theor. Comput. Sci.
– volume: 16
  start-page: 185
  year: 2021
  end-page: 197
  ident: bib0002
  article-title: A survey of graph burning
  publication-title: Contrib. Discrete Math.
– volume: 33
  start-page: 449
  year: 2017
  end-page: 471
  ident: bib0010
  article-title: Burning graphs: a probabilistic perspective
  publication-title: Graphs Combin.
– volume: 12
  start-page: 85
  year: 2016
  end-page: 100
  ident: bib0004
  article-title: How to burn a graph
  publication-title: Internet Math.
– volume: vol. 10088
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0008
  article-title: An upper bound on the burning number of graphs
  publication-title: Algorithms and Models for the Web Graph
– volume: 16
  start-page: 185
  issue: 1
  year: 2021
  ident: 10.1016/j.amc.2022.127574_bib0002
  article-title: A survey of graph burning
  publication-title: Contrib. Discrete Math.
  doi: 10.55016/ojs/cdm.v16i1.71194
– volume: 33
  start-page: 449
  issue: 2
  year: 2017
  ident: 10.1016/j.amc.2022.127574_bib0010
  article-title: Burning graphs: a probabilistic perspective
  publication-title: Graphs Combin.
  doi: 10.1007/s00373-017-1768-5
– volume: 12
  start-page: 85
  issue: 1–2
  year: 2016
  ident: 10.1016/j.amc.2022.127574_bib0004
  article-title: How to burn a graph
  publication-title: Internet Math.
  doi: 10.1080/15427951.2015.1103339
– volume: 235
  start-page: 16
  year: 2018
  ident: 10.1016/j.amc.2022.127574_bib0001
  article-title: Bounds on the burning number
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2017.09.012
– volume: vol. 5
  start-page: 145
  year: 2021
  ident: 10.1016/j.amc.2022.127574_bib0007
  article-title: On the burning number of p-caterpillars
– volume: 284
  start-page: 332
  year: 2020
  ident: 10.1016/j.amc.2022.127574_bib0009
  article-title: Burning number of caterpillars
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2020.03.062
– year: 2016
  ident: 10.1016/j.amc.2022.127574_bib0012
– volume: 794
  start-page: 12
  year: 2019
  ident: 10.1016/j.amc.2022.127574_bib0005
  article-title: Bounds on the burning numbers of spiders and path-forests
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.05.035
– volume: vol. 10088
  start-page: 1
  year: 2016
  ident: 10.1016/j.amc.2022.127574_bib0008
  article-title: An upper bound on the burning number of graphs
– volume: vol. 10743
  start-page: 155
  year: 2018
  ident: 10.1016/j.amc.2022.127574_bib0006
  article-title: Burning spiders
– volume: 385
  start-page: 125447
  issue: 9
  year: 2020
  ident: 10.1016/j.amc.2022.127574_bib0013
  article-title: Graph burning: tight bounds on the burning numbers of path forests and spiders
  publication-title: Appl. Math. Comput.
– volume: vol. 8882
  start-page: 13
  year: 2014
  ident: 10.1016/j.amc.2022.127574_bib0003
  article-title: Burning a graph as a model of social contagion
– volume: 746
  start-page: 124
  year: 2018
  ident: 10.1016/j.amc.2022.127574_bib0011
  article-title: Burning number of graph products
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.06.036
SSID ssj0007614
Score 2.4356341
Snippet •Discrete-time deterministic graph algorithm modelling the spread of social contagion.•Tight bounds on the burning numbers of double spiders and path...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127574
SubjectTerms Burning number conjecture
Double spider
Graph algorithm
Path forest
Spread of social contagion
Title Burnability of double spiders and path forests
URI https://dx.doi.org/10.1016/j.amc.2022.127574
Volume 438
WOSCitedRecordID wos000866507400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA86fdAH8RO_6YNPSseapGvzqDJR0SE4dW8lbTJUsBvrJv753jXJNqeCCr6UUpqmvV-53F3ufkfIQaemqAqV9mUkQp-nAVLegs_DVQjmiIw0K8vH7q-iZjNut8WN7d5WlO0EojyP395E71-hhmsANpbO_gLu0UPhApwD6HAE2OH4I-BP8J4y5bXcPFfdIRZHFdgJtm8ImbELMaYXwoJQTBqnziJ9GVG5Fq7srTf8uGXfsl2N5dHto7aLX5mhXEZpHnR-dApaPp-MKVDm0pBdoMsVu3zIxURvx2e1mtFH2ujLOGJ-WDeso06hcsPX8kk5mzjBc1W-IHckpVUklzc9eqY4r29xLpyKYsQDdMwsmYN7RVwhc8cXjfblaLGN6oa-3b2b27guU_imJvra9JgwJ1rLZMn6Ad6xwW-FzOh8lSxejyW_RqoTSHrdjmeQ9CySHiDjIZKeRXKd3J01Wqfnvm1v4Wfg8w78TpAy1gEDSmZK8IhnTCodpFppKRSnknMRpykyBIILCHKmMpZpLIMag2FBKtgGqeTdXG8Sj-mYizqlOgRrvi5YSjOF2TcKlGomA7ZFDt2XJz3DYpK49L7nBMSUoJgSI6Ytwp1sEmuGGfMqASC_H7b9t2E7ZGH8B-6SyqA_1HtkPnsdPBX9fQv3O1E_UmU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Burnability+of+double+spiders+and+path+forests&rft.jtitle=Applied+mathematics+and+computation&rft.au=Tan%2C+Ta+Sheng&rft.au=Teh%2C+Wen+Chean&rft.date=2023-02-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=438&rft_id=info:doi/10.1016%2Fj.amc.2022.127574&rft.externalDocID=S0096300322006488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon