Fast algorithms for non-convex tensor completion problems Fast algorithms for non-convex tensor completion problems
Multi-dimensional image processing plays a pivotal role in diverse fields such as medicine, research, graphics, industry, remote sensing, virtual reality, and geospatial mapping, enabling advanced visualization and analysis. Traditional methods for processing multi-dimensional data, such as matrix-b...
Saved in:
| Published in: | Afrika mathematica Vol. 36; no. 2; p. 65 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1012-9405, 2190-7668 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi-dimensional image processing plays a pivotal role in diverse fields such as medicine, research, graphics, industry, remote sensing, virtual reality, and geospatial mapping, enabling advanced visualization and analysis. Traditional methods for processing multi-dimensional data, such as matrix-based singular value decomposition (SVD), often fail to capture the inherent multi-dimensional structure, leading to suboptimal performance in tasks like data recovery and feature extraction. To address these limitations, tensor singular value decomposition (t-SVD) has emerged as a powerful tool, specifically designed to handle the complex, multi-linear structures inherent in multi-dimensional data. Unlike matrix-based approaches, t-SVD operates directly on tensors, preserving the intrinsic relationships between dimensions and enabling more accurate representation and recovery of multi-dimensional data. Derived from t-SVD, surrogate functions such as the logDet function and Laplace function have been proposed to approximate the multi-rank of tensors, facilitating the recovery of the underlying structure of multi-dimensional images. However, real-world applications involving large-scale datasets (e.g., hyperspectral images, multispectral images, and grayscale videos) present significant computational challenges. Standard optimization algorithms, such as the alternating direction method of multipliers (ADMM), are often inefficient for solving the resulting large-scale non-convex optimization problems. To overcome these challenges, we propose efficient ADMM algorithms based on randomized singular value decomposition (r-SVD). These algorithms are specifically designed to handle the non-convexity and scalability issues associated with SVD-based optimization. We provide a detailed analysis of the computational complexity of the proposed algorithms, demonstrating their superiority over traditional methods in terms of efficiency and scalability. Extensive experiments on real-world datasets, including hyperspectral images, multispectral images, and grayscale videos, validate that our proposed algorithms achieve significant reductions in CPU time without compromising the quality of data recovery. By leveraging the strengths of r-SVD, our approach offers a robust and efficient solution for multi-dimensional image processing, addressing both theoretical and practical challenges in the field. |
|---|---|
| AbstractList | Multi-dimensional image processing plays a pivotal role in diverse fields such as medicine, research, graphics, industry, remote sensing, virtual reality, and geospatial mapping, enabling advanced visualization and analysis. Traditional methods for processing multi-dimensional data, such as matrix-based singular value decomposition (SVD), often fail to capture the inherent multi-dimensional structure, leading to suboptimal performance in tasks like data recovery and feature extraction. To address these limitations, tensor singular value decomposition (t-SVD) has emerged as a powerful tool, specifically designed to handle the complex, multi-linear structures inherent in multi-dimensional data. Unlike matrix-based approaches, t-SVD operates directly on tensors, preserving the intrinsic relationships between dimensions and enabling more accurate representation and recovery of multi-dimensional data. Derived from t-SVD, surrogate functions such as the logDet function and Laplace function have been proposed to approximate the multi-rank of tensors, facilitating the recovery of the underlying structure of multi-dimensional images. However, real-world applications involving large-scale datasets (e.g., hyperspectral images, multispectral images, and grayscale videos) present significant computational challenges. Standard optimization algorithms, such as the alternating direction method of multipliers (ADMM), are often inefficient for solving the resulting large-scale non-convex optimization problems. To overcome these challenges, we propose efficient ADMM algorithms based on randomized singular value decomposition (r-SVD). These algorithms are specifically designed to handle the non-convexity and scalability issues associated with SVD-based optimization. We provide a detailed analysis of the computational complexity of the proposed algorithms, demonstrating their superiority over traditional methods in terms of efficiency and scalability. Extensive experiments on real-world datasets, including hyperspectral images, multispectral images, and grayscale videos, validate that our proposed algorithms achieve significant reductions in CPU time without compromising the quality of data recovery. By leveraging the strengths of r-SVD, our approach offers a robust and efficient solution for multi-dimensional image processing, addressing both theoretical and practical challenges in the field. |
| ArticleNumber | 65 |
| Author | ur Rahman, Mati Boulaaras, Salah Kanwal, Asia |
| Author_xml | – sequence: 1 givenname: Asia surname: Kanwal fullname: Kanwal, Asia organization: School of Mathematical Sciences, University of Electronic Science and Technology of China – sequence: 2 givenname: Mati surname: ur Rahman fullname: ur Rahman, Mati organization: School of Mathematical Sciences, Jiangsu University – sequence: 3 givenname: Salah orcidid: 0000-0003-1308-2159 surname: Boulaaras fullname: Boulaaras, Salah email: s.boularas@qu.edu.sa organization: Department of Mathematics, College of Science, Qassim University |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnqP52uzmKMWqIHjRc8juTuqW3aQmqei_N3UFwUPnMsPM-8wM7zmaOe8AoUtKrikh1U2knFcEE1ZiQpnK1QmaM5qLSsp6huY0t7ESpDxDyxi3JIeQVJZ8jtTaxFSYYeNDn97GWFgfirwft959wGeRwMXcaf24GyD13hW74JsBxniBTq0ZIix_8wK9ru9eVg_46fn-cXX7hFsmVMJgBLOiaiyXRFBpbacoiLZSjeiA1g1hhnXQNUaWNa-YsCpPDSgmalNDw_kCXU178-H3PcSkt34fXD6pOStLWmWozKp6UrXBxxjA6rZP5vBwCqYfNCX64JWevNLZK_3jlSYZZf_QXehHE76OQ3yCYha7DYS_r45Q3yZwfcU |
| CitedBy_id | crossref_primary_10_1007_s40435_025_01804_5 |
| Cites_doi | 10.1002/nla.750 10.1109/PIC.2017.8359523 10.1007/s11432-010-0090-0 10.1145/3278607 10.1109/TNNLS.2021.3051650 10.1137/13092472X 10.1016/j.apm.2017.04.002 10.1137/110822347 10.1016/j.laa.2010.09.020 10.1561/2200000016 10.1109/ACC.2003.1243393 10.1137/110841229 10.1088/0266-5611/27/2/025010 10.1109/JPROC.2021.3074329 10.1016/j.acha.2007.12.002 10.1109/TPAMI.2019.2891760 10.1109/ICDE53745.2022.00020 10.1109/TIP.2014.2305840 10.1137/090771806 10.3934/ipi.2015.9.601 10.1016/j.ins.2018.01.035 10.1109/CVPR.2016.567 10.1016/j.acha.2012.07.010 10.1109/TGRS.2017.2706326 10.1109/ICDM.2018.00142 10.1007/BF02289464 10.1016/j.image.2018.11.007 10.1109/TCI.2021.3130977 10.1137/110837711 10.1137/080738970 10.1190/geo2011-0399.1 10.1007/s11760-020-01845-7 10.1137/090752286 10.1137/07070111X 10.1109/TIP.2017.2672439 10.1007/s00041-008-9045-x 10.1109/ICICCS48265.2020.9120874 10.1073/pnas.0709640104 10.1016/j.laa.2010.05.025 10.1137/1.9781611973440.99 |
| ContentType | Journal Article |
| Copyright | African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2025. |
| Copyright_xml | – notice: African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13370-025-01290-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2190-7668 |
| ExternalDocumentID | 10_1007_s13370_025_01290_0 |
| GroupedDBID | 06D 0R~ 0VY 203 2KG 30V 4.4 406 408 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BAPOH BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 H13 HF~ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P9R PT4 R9I RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ~A9 AAYXX ABJCF ABRTQ AFFHD AFKRA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c249t-ea42f47bf360416ffd91e4c79b4de18b02a2dedba6583724f9e4cae9248a8eb33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001451656000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1012-9405 |
| IngestDate | Mon Sep 29 04:22:48 EDT 2025 Sat Nov 29 07:51:41 EST 2025 Tue Nov 18 21:00:23 EST 2025 Sun Jun 15 01:11:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 68U10 68W40 Randomized singular value decomposition (r-SVD) Multi-dimensional image processing Tensor singular value decomposition (t-SVD) 42B10 Surrogate functions Alternating direction method of multipliers (ADMM) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-ea42f47bf360416ffd91e4c79b4de18b02a2dedba6583724f9e4cae9248a8eb33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1308-2159 |
| PQID | 3255177245 |
| PQPubID | 2043797 |
| ParticipantIDs | proquest_journals_3255177245 crossref_citationtrail_10_1007_s13370_025_01290_0 crossref_primary_10_1007_s13370_025_01290_0 springer_journals_10_1007_s13370_025_01290_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Afrika mathematica |
| PublicationTitleAbbrev | Afr. Mat |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | S Ahmadi-Asl (1290_CR14) 2022; 31 LR Tucker (1290_CR17) 1966; 31 1290_CR9 C Lu (1290_CR42) 2019; 42 J-F Cai (1290_CR41) 2010; 20 1290_CR22 1290_CR44 1290_CR23 Q Song (1290_CR8) 2019; 13 1290_CR21 E Liberty (1290_CR36) 2007; 104 Y Chen (1290_CR45) 2017; 55 B He (1290_CR47) 2012; 22 S Gandy (1290_CR25) 2011; 27 Z Xu (1290_CR39) 2010; 53 C Liu (1290_CR12) 2022; 27 ME Kilmer (1290_CR19) 2011; 435 F Wu (1290_CR11) 2021; 7 ME Kilmer (1290_CR30) 2013; 34 EJ Candes (1290_CR43) 2008; 14 1290_CR15 EE Papalexakis (1290_CR2) 2016; 8 O Semerci (1290_CR31) 2014; 23 1290_CR13 1290_CR35 TG Kolda (1290_CR16) 2009; 51 TT Cai (1290_CR40) 2013; 35 F Li (1290_CR5) 2012; 19 S Boyd (1290_CR46) 2011; 3 1290_CR33 N Halko (1290_CR38) 2011; 53 K Braman (1290_CR20) 2010; 433 N Kreimer (1290_CR6) 2012; 77 1290_CR10 1290_CR32 Y Panagakis (1290_CR3) 2021; 109 IV Oseledets (1290_CR18) 2011; 33 Y Xu (1290_CR26) 2015; 9 T-X Jiang (1290_CR7) 2018; 436 X-L Zhao (1290_CR4) 2014; 7 JA Bengua (1290_CR28) 2017; 26 H Wang (1290_CR1) 2021; 33 T-Y Ji (1290_CR27) 2017; 48 CD Martin (1290_CR29) 2013; 35 C Shi (1290_CR24) 2021; 15 W-H Xu (1290_CR34) 2019; 73 F Woolfe (1290_CR37) 2008; 25 |
| References_xml | – volume: 19 start-page: 153 issue: 1 year: 2012 ident: 1290_CR5 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.750 – ident: 1290_CR33 doi: 10.1109/PIC.2017.8359523 – volume: 53 start-page: 1159 year: 2010 ident: 1290_CR39 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-010-0090-0 – volume: 13 start-page: 1 issue: 1 year: 2019 ident: 1290_CR8 publication-title: ACM Trans. Knowl. Discov. Data TKDD doi: 10.1145/3278607 – volume: 33 start-page: 3305 issue: 8 year: 2021 ident: 1290_CR1 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3051650 – volume: 7 start-page: 456 issue: 1 year: 2014 ident: 1290_CR4 publication-title: SIAM J. Imaging Sci. doi: 10.1137/13092472X – volume: 48 start-page: 410 issue: 2 year: 2017 ident: 1290_CR27 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.04.002 – volume: 22 start-page: 313 issue: 2 year: 2012 ident: 1290_CR47 publication-title: SIAM J. Optim. doi: 10.1137/110822347 – volume: 435 start-page: 641 issue: 3 year: 2011 ident: 1290_CR19 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.09.020 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 1290_CR46 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – ident: 1290_CR44 doi: 10.1109/ACC.2003.1243393 – volume: 35 start-page: 474 issue: 1 year: 2013 ident: 1290_CR29 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110841229 – ident: 1290_CR15 – volume: 27 start-page: 10 issue: 2 year: 2011 ident: 1290_CR25 publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/2/025010 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 1290_CR2 publication-title: ACM Trans. Intell. Syst. Technol. TIST – volume: 109 start-page: 863 issue: 5 year: 2021 ident: 1290_CR3 publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3074329 – volume: 25 start-page: 335 issue: 3 year: 2008 ident: 1290_CR37 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2007.12.002 – volume: 42 start-page: 925 issue: 4 year: 2019 ident: 1290_CR42 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2891760 – ident: 1290_CR13 doi: 10.1109/ICDE53745.2022.00020 – volume: 31 start-page: 1 issue: 4 year: 2022 ident: 1290_CR14 publication-title: Commun. Appl. Math. Comput. – volume: 23 start-page: 1678 issue: 4 year: 2014 ident: 1290_CR31 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2305840 – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 1290_CR38 publication-title: SIAM Rev. doi: 10.1137/090771806 – volume: 9 start-page: 601 issue: 2 year: 2015 ident: 1290_CR26 publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2015.9.601 – volume: 436 start-page: 403 year: 2018 ident: 1290_CR7 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.035 – ident: 1290_CR32 doi: 10.1109/CVPR.2016.567 – volume: 35 start-page: 74 issue: 1 year: 2013 ident: 1290_CR40 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2012.07.010 – volume: 55 start-page: 5366 issue: 9 year: 2017 ident: 1290_CR45 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2706326 – ident: 1290_CR23 doi: 10.1109/ICDM.2018.00142 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 1290_CR17 publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 73 start-page: 62 issue: 4 year: 2019 ident: 1290_CR34 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2018.11.007 – volume: 7 start-page: 1267 issue: 1 year: 2021 ident: 1290_CR11 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2021.3130977 – volume: 34 start-page: 148 issue: 1 year: 2013 ident: 1290_CR30 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110837711 – ident: 1290_CR9 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 1290_CR41 publication-title: SIAM J. Optim. doi: 10.1137/080738970 – volume: 77 start-page: 113 issue: 3 year: 2012 ident: 1290_CR6 publication-title: Geophysics doi: 10.1190/geo2011-0399.1 – volume: 27 start-page: 1 issue: 3 year: 2022 ident: 1290_CR12 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 15 start-page: 1169 issue: 2 year: 2021 ident: 1290_CR24 publication-title: SIViP doi: 10.1007/s11760-020-01845-7 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 1290_CR18 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 1290_CR16 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 26 start-page: 2466 issue: 5 year: 2017 ident: 1290_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2672439 – ident: 1290_CR21 – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 1290_CR43 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – ident: 1290_CR10 doi: 10.1109/ICICCS48265.2020.9120874 – volume: 104 start-page: 20167 issue: 51 year: 2007 ident: 1290_CR36 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0709640104 – volume: 433 start-page: 1241 issue: 7 year: 2010 ident: 1290_CR20 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.05.025 – ident: 1290_CR35 – ident: 1290_CR22 doi: 10.1137/1.9781611973440.99 |
| SSID | ssj0000461653 |
| Score | 2.3180084 |
| Snippet | Multi-dimensional image processing plays a pivotal role in diverse fields such as medicine, research, graphics, industry, remote sensing, virtual reality, and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65 |
| SubjectTerms | Accuracy Algorithms Applications of Mathematics Approximation Complexity Convex analysis Convexity Data recovery Datasets Decomposition Fourier transforms Gray scale History of Mathematical Sciences Hyperspectral imaging Image processing Machine learning Mathematics Mathematics and Statistics Mathematics Education Multidimensional data Multidimensional methods Optimization Optimization techniques Remote sensing Singular value decomposition Tensors Video Virtual reality |
| Subtitle | Fast algorithms for non-convex tensor completion problems |
| Title | Fast algorithms for non-convex tensor completion problems |
| URI | https://link.springer.com/article/10.1007/s13370-025-01290-0 https://www.proquest.com/docview/3255177245 |
| Volume | 36 |
| WOSCitedRecordID | wos001451656000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2190-7668 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000461653 issn: 1012-9405 databaseCode: RSV dateStart: 20110401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6ogdvWmiTtEmOIi4edBFf7K2kaaIL665sq_jznfSxRVFBb6VJ0zCTdr4vmQfAkbY6SlkmfSl5gASFUz8VXPmWslQZwm1QZde_5P2-GAzkdR0Uljfe7s2RZPmnboPdKHVFUohzNiMSr-ZhAc2dcAUbbm4fZjsrLoV4HFWe9SHxJUKSOlrm-2E-W6QWZn45GS0NTm_1f1Ndg5UaYHqn1YpYhzkz3oDlq1l21nwTZE_lhadGj5PpsHh6zj0Ert54MvZLF_R3zzm1453S29w4xXl12Zl8C-5753dnF35dQsHXyKsK3yhGLOOppXGA0MvaTIaGaS5RPyYUaUAUyUyWKgQilBNmJbYqg6RMKIE8m25DB99vdsBDqECVijnNIs1CkYlA01Qh2-AkllLbLoSNGBNd5xd3ZS5GSZsZ2YklQbEkpViSoAvHs2dequwav_beb7ST1F9anlDkRCFSBBZ14aTRRtv882i7f-u-B0ukVKjbgNmHTjF9NQewqN-KYT49LFfgB1Ml0vk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8Xp1D74poU2yZbmUcShuA3RKXsraZroYG6yVvHne9OPFUUFfStNmoZ70-ac5OZcgGNlVDNisXCF4B4SFE7dKODSNZRFUhNuvFxdv8N7vWAwEDfFobCkjHYvtySzP3V12I1SmySF2GAzIvBqHhYYzlhWMf_27mG2smIlxFvNPLLeJ65ASFKclvm-mc8zUgUzv-yMZhNOe-1_XV2H1QJgOmf5iNiAOT3ehJXuTJ012QLRlknqyNHjZDpMn54TB4GrM56M3SwE_d2xQe14J4s219ZxTpF2JtmG-_ZF__zSLVIouAp5VepqyYhhPDK05SH0MiYWvmaKC_SP9oPII5LEOo4kAhHKCTMCS6VGUhbIAHk23YEavl_vgoNQgUrZ4jRuKuYHceApGklkG5y0hFCmDn5pxlAV-uI2zcUorJSRrVlCNEuYmSX06nAye-YlV9f4tXaj9E5YfGlJSJET-UgRWLMOp6U3quKfW9v7W_UjWLrsdzth56p3vQ_LJHOuXYxpQC2dvuoDWFRv6TCZHmaj8QNAENXd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1D74psU2SZfmUdShOMfAH-ytpGmig7mNtYp_vpe221RUEN9Kk6blLiXfl9x9B3CojApilghXCO4hQeHUjUMuXUNZLDXhxivU9Zu81Qo7HdH-kMWfR7uPjySLnAar0tTPToaJOZkmvlFqC6YQG3hGBF7NwhyzgfSWr98-THZZrJx4PSii7H3iCoQnZebM98N8Xp2mkPPLKWm--DRW_v_Zq7BcAk_ntJgpazCj--uwdDNRbU03QDRkmjmy9zgYdbOn59RBQOv0B303D01_c2ywO97Jo9C1dahTlqNJN-G-cXF3dumWpRVchXwrc7VkxDAeG1r3EJIZkwhfM8UF-k37YewRSRKdxBIBCuWEGYGtUiNZC2WI_JtuQQXfr7fBQQhBpaxzmgSK-WESeorGElkIJ3UhlKmCPzZppErdcVv-ohdNFZOtWSI0S5SbJfKqcDR5Zliobvzauzb2VFT-gWlEkSv5SB1YUIXjsWemzT-PtvO37gew0D5vRM2r1vUuLJLct3aPpgaVbPSi92BevWbddLSfT8x3xjLewQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+algorithms+for+non-convex+tensor+completion+problems&rft.jtitle=Afrika+mathematica&rft.au=Kanwal%2C+Asia&rft.au=ur+Rahman%2C+Mati&rft.au=Boulaaras%2C+Salah&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-9405&rft.eissn=2190-7668&rft.volume=36&rft.issue=2&rft.spage=65&rft_id=info:doi/10.1007%2Fs13370-025-01290-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-9405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-9405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-9405&client=summon |