A quadratic simplex algorithm for primal optimization over zero-one polytopes

A primal quadratic simplex algorithm tailored to the optimization over the vertices of a polytope is presented. Starting from a feasible vertex, it performs either strictly improving or admissible non-deteriorating steps in order to determine a locally optimum basic feasible solution in terms of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 347; s. 285 - 296
Hlavní autor: Mallach, Sven
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.04.2024
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A primal quadratic simplex algorithm tailored to the optimization over the vertices of a polytope is presented. Starting from a feasible vertex, it performs either strictly improving or admissible non-deteriorating steps in order to determine a locally optimum basic feasible solution in terms of the quadratic objective function. The algorithm so generalizes over local improvement methods for according applications, including in particular quadratic optimization problems whose feasible solutions correspond to vertices of a 0-1 polytope. Computational experiments for unconstrained binary quadratic programs, maximum cut, and the quadratic assignment problem serve as a proof of concept and underline the importance of a pivoting rule that is able to accept at least a restricted class of degenerate steps.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2023.12.030