A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining
Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a d...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 35; číslo 8; s. 6125 - 6151 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.03.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at
https://github.com/gaithmanita/MOOSMA
. |
|---|---|
| AbstractList | Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at https://github.com/gaithmanita/MOOSMA. Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at https://github.com/gaithmanita/MOOSMA . |
| Author | Manita, Ghaith Korbaa, Ouajdi Yacoubi, Salma Amdouni, Hamida Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Salma surname: Yacoubi fullname: Yacoubi, Salma organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse – sequence: 2 givenname: Ghaith surname: Manita fullname: Manita, Ghaith email: gaith.manita@esen.tn organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse, ESEN, University of Manouba – sequence: 3 givenname: Hamida surname: Amdouni fullname: Amdouni, Hamida organization: ESEN, University of Manouba, Laboratory RIADI, ENSI, University of Manouba – sequence: 4 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, YFL (Yonsei Frontier Lab), Yonsei University – sequence: 5 givenname: Ouajdi surname: Korbaa fullname: Korbaa, Ouajdi organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse, ISITCom, University of Sousse |
| BookMark | eNp9kE9LxDAQxYMouK5-AU8Bz9WkSbbpURb_wYIX7yFNJzVL2qxJ6uK3N7qC4MHLDMx7v-HxztDxFCZA6JKSa0pIc5MIETWtSF1XpGmlqPZHaEE5YxUjQh6jBWl5kVecnaKzlLaEEL6SYoF2t3gMvbMOejzOPrsqdFsw2b0DTt6NUOTZ91j7IUSXX0e8LxOHmF_DECbtsQcdJzcN2IaIp3mE6Ew565SCcTq7MOE4e0h4dF-2c3RitU9w8bOX6OX-7mX9WG2eH57Wt5vK1LzNVd_JXgBtGs1op7k1grWiBtF3neDW9jW3ABrISmvBiKRWgzatBN7TjouOLdHV4e0uhrcZUlbbMMeSN6m6kUQ0lEtWXPLgMjGkFMEq4_J35hy184oS9VWvOtSrSr3qu161L2j9B91FN-r48T_EDlAq5mmA-JvqH-oTLD6T1Q |
| CitedBy_id | crossref_primary_10_1007_s11831_024_10109_3 crossref_primary_10_1080_09544828_2025_2543684 crossref_primary_10_1007_s10586_025_05427_5 crossref_primary_10_1007_s10462_023_10648_4 crossref_primary_10_3390_biomimetics9010031 crossref_primary_10_1007_s12559_025_10486_2 crossref_primary_10_3390_biomimetics9030138 crossref_primary_10_1177_14727978251363384 |
| Cites_doi | 10.1007/BF02345483 10.1016/j.asoc.2007.02.009 10.1145/253262.253325 10.1007/s00521-013-1354-6 10.1016/j.ins.2013.01.028 10.1142/S0219649204000869 10.1109/ACCESS.2020.3047936 10.1016/B978-012722442-8/50055-0 10.1109/TEVC.2008.925798 10.3233/IDA-150796 10.1016/j.ins.2015.05.006 10.1016/j.asoc.2017.09.033 10.1137/10079731X 10.1016/0025-5564(75)90047-4 10.5540/tema.2018.019.03.437 10.1016/j.ejor.2020.11.016 10.1016/j.engappai.2013.06.003 10.1007/s10462-011-9212-3 10.1093/mnras/80.8.758 10.1007/978-3-540-77600-0_5 10.1007/978-3-319-33858-3_5 10.1016/j.procs.2021.08.072 10.1007/3-540-36175-8_32 10.1007/s12652-019-01540-7 10.1016/j.asoc.2020.106642 10.1162/evco.1999.7.3.205 10.1016/j.future.2020.03.055 10.1016/j.ins.2013.09.009 10.1007/978-3-030-04921-8_10 10.1145/2898359 10.1007/s00500-005-0476-x 10.1016/j.conengprac.2017.02.010 10.1007/s00500-014-1393-7 10.1145/170036.170072 10.3390/su13137448 10.1016/j.eswa.2009.01.067 10.1109/TEVC.2013.2290086 10.1002/widm.1307 10.1016/j.eswa.2011.07.049 10.1007/978-1-4612-1478-6 10.1007/s12065-020-00451-3 10.1016/j.eswa.2011.04.166 10.1109/4235.996017 10.1016/j.ins.2003.03.021 10.1007/s10115-007-0104-4 10.1109/TEVC.2011.2161872 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-022-07985-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 6151 |
| ExternalDocumentID | 10_1007_s00521_022_07985_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c249t-db8d5e177a31ba4fc53952e5dbb54ffd24feeae06aa53081faeac98e4d1b45b3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884201700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 01:11:18 EST 2025 Sat Nov 29 02:59:31 EST 2025 Tue Nov 18 22:26:13 EST 2025 Fri Feb 21 02:44:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Multi-objective optimization Swarm intelligence Orthogonal learning Association rules mining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-db8d5e177a31ba4fc53952e5dbb54ffd24feeae06aa53081faeac98e4d1b45b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2780571483 |
| PQPubID | 2043988 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2780571483 crossref_citationtrail_10_1007_s00521_022_07985_w crossref_primary_10_1007_s00521_022_07985_w springer_journals_10_1007_s00521_022_07985_w |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | BerryMJLinoffGSData mining techniques: for marketing, sales, and customer relationship management2004New YorkWiley AltayEVAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Human Comput20191134493469 FisherRA mathematical examination of the methods of determining the accuracy of an observation etc monthly notices royMonthly Not Roy Astron Soc192080758770 BaiWEkeILeeKYAn improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problemControl Eng Pract201761163172 LiHZhangQMultiobjective optimization problems with complicated pareto sets, moea/d and nsga-iiIEEE Trans Evol Comput2008132284302 GhafariSMTjortjisCA survey on association rules mining using heuristicsWiley Interdiscip Rev Data Min Knowl Discov2019941307 Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216 Luebbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data quality tools. In: Proceedings 2003 VLDB conference, pp 548–559. Elsevier Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2003) Evolutionary approach for mining association rules on dynamic databases. In: Pacific-Asia conference on knowledge discovery and data mining, pp 325–336. Springer ÁlvarezVPVazquezJMAn evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretizationExpert Syst Appl2012391585593 HousseinEHMahdyMASheblDManzoorASarkarRMohamedWMAn efficient slime mould algorithm for solving multi-objective optimization problemsExpert Syst Appl2022187 SchutzeOEsquivelXLaraACoelloCACUsing the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimizationIEEE Trans Evol Comput2012164504522 SunJGuoBHuYZhangYMulti-objective optimization of spectrum sensing and power allocation based on improved slime mould algorithmJ Phys Conf Ser20211966 MartínDRoseteAAlcalá-FdezJHerreraFQar-cip-nsga-ii: a new multi-objective evolutionary algorithm to mine quantitative association rulesInf Sci20142581283133391 SrinivasanSRamakrishnanSEvolutionary multi objective optimization for rule mining: a reviewArtif Intell Rev2011363205248 SongADingXChenJLiMCaoWPuKMulti-objective association rule mining with binary bat algorithmIntell Data Anal2016201105128 Hilali H (2009) Application de la classification textuelle pour l’extraction des règles d’association maximales. PhD thesis, Université du Québec à Trois-Rivières Alcala-FdezJFlugy-PapeNBonariniAHerreraFAnalysis of the effectiveness of the genetic algorithms based on extraction of association rulesFund Inform20109811142654371 MukhopadhyayAMaulikUBandyopadhyaySCoelloCACA survey of multiobjective evolutionary algorithms for data mining: part iIEEE Trans Evol Comput2013181419 DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput199973205230 HarifiSMohammadzadehJKhalilianMEbrahimnejadSGiza pyramids construction: an ancient-inspired metaheuristic algorithm for optimizationEvol Intell20201417431761 ChenC-HHongT-PTsengVSAn improved approach to find membership functions and multiple minimum supports in fuzzy data miningExpert Syst Appl20093661001610024 ZhangLFuGChengFQiuJSuYA multi-objective evolutionary approach for mining frequent and high utility itemsetsAppl Soft Comput201862974986 NguyenDNguyenLTVoBHongT-PA novel method for constrained class association rule miningInf Sci201532010712533679781390.68549 Djenouri Y, Fournier-Viger P, Belhadi A, Lin JC-W (2019) Metaheuristics for frequent and high-utility itemset mining. In: High-utility pattern mining, pp 261–278. Springer, Cham CustódioALMadeiraJAVazAIFVicenteLNDirect multisearch for multiobjective optimizationSIAM J Optim20112131109114028375651230.90167 AlataşBAkinEAn efficient genetic algorithm for automated mining of both positive and negative quantitative association rulesSoft Comput2006103230237 GuvenirHAUysalIRepositorFAFunction approximation repository2000AnkaraBilkent University Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 255–264 FrawleyWJPiatetsky-ShapiroGMatheusCJKnowledge discovery in databases: an overviewAI Mag19921335757 LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur Gener Comput Syst2020111300323 DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput200262182197 KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data (TKDD)2016104129 Varol AltayEAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Humaniz Comput202011834493469 ManitaGZermaniAA modified jellyfish search optimizer with orthogonal learning strategyProcedia Comput Sci2021192697708 SantosTXavierSA convergence indicator for multi-objective optimisation algorithmsTEMA (São Carlos)20181934374483897658 ShortliffeEHBuchananBGA model of inexact reasoning in medicineMath Biosci1975233–4351379381762 Minaei-BidgoliBBarmakiRNasiriMMining numerical association rules via multi-objective genetic algorithmsInf Sci20132331524 Ngatchou P, Zarei A, El-Sharkawi A (2005) Pareto multi objective optimization. In: Proceedings of the 13th international conference on, intelligent systems application to power systems, pp 84–91 . IEEE DehuriSPatnaikSGhoshAMallRApplication of elitist multi-objective genetic algorithm for classification rule generationAppl Soft Comput200881477487 SarathKRaviVAssociation rule mining using binary particle swarm optimizationEng Appl Artif Intell201326818321840 KhunkittiSSiritaratiwatAPremrudeepreechacharnSMulti-objective optimal power flow problems based on slime mould algorithmSustainability202113137448 HedayatASSloaneNJAStufkenJOrthogonal arrays: theory and applications1999New YorkSpringer0935.05001 PremkumarMJangirPSowmyaRAlhelouHHHeidariAAChenHMosma: multi-objective slime mould algorithm based on elitist non-dominated sortingIEEE Access2020932293248 Nouasria A (2016) Extraction d’associations lexicales fortes dans les commentaires. PhD thesis, Université du Québec à Trois-Rivières Salleb-Aouissi A, Vrain C, Nortet C (2007) Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, vol 7, pp 1035–1040 Ramaswamy S, Mahajan S, Silberschatz A (1998) On the discovery of interesting patterns in association rules. In: VLDB, vol 98, pp 368–379. Citeseer Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray imagesAppl Soft Comput202095 AudetCBigeonJCartierDLe DigabelSSalomonLPerformance indicators in multiobjective optimizationEur J Oper Res202029239742242263261487.90580 LiXWangJYinMEnhancing the performance of cuckoo search algorithm using orthogonal learning methodNeural Comput Appl201424612331247 AhnK-IKimJ-YEfficient mining of frequent itemsets and a measure of interest for association rule miningJ Inf Knowl Manag2004303245257 HájekPHavelIChytilMThe guha method of automatic hypotheses determinationComputing1966142933080168.26105 KeYChengJNgWAn information-theoretic approach to quantitative association rule miningKnowl Inf Syst2008162213244 MengFChenXInterval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measuresSoft Comput2015197207120821360.91072 YangGMabuSShimadaKHirasawaKA novel evolutionary method to search interesting association rules by keywordsExpert Syst Appl201138101337813385 Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, 264, pp 1–30. GhoshANathBMulti-objective rule mining using genetic algorithmsInf Sci20041631–31231332062866 Kuo C-L, Shieh C-S, Lin C-H, Shih S-P (2007) Design of fuzzy sliding-mode controller for chaos synchronization. In: Asian simulation conference, pp 36–45. Springer Ventura S, Luna JM (2016) Genetic programming in pattern mining. In: Pattern mining with evolutionary algorithms, pp 87–117. Springer, Cham G Yang (7985_CR17) 2011; 38 7985_CR1 J Sun (7985_CR41) 2021; 1966 W Bai (7985_CR48) 2017; 61 VP Álvarez (7985_CR18) 2012; 39 7985_CR36 7985_CR3 7985_CR35 S Harifi (7985_CR51) 2020; 14 7985_CR34 7985_CR33 K-I Ahn (7985_CR38) 2004; 3 H Li (7985_CR53) 2008; 13 J Alcala-Fdez (7985_CR21) 2010; 98 L Zhang (7985_CR9) 2018; 62 7985_CR28 D Martín (7985_CR59) 2014; 258 G Manita (7985_CR47) 2021; 192 7985_CR24 7985_CR22 K Deb (7985_CR52) 1999; 7 B Alataş (7985_CR14) 2006; 10 A Song (7985_CR55) 2016; 20 Y Ke (7985_CR7) 2008; 16 S Srinivasan (7985_CR25) 2011; 36 EH Shortliffe (7985_CR37) 1975; 23 C-H Chen (7985_CR8) 2009; 36 MJ Berry (7985_CR4) 2004 S Khunkitti (7985_CR39) 2021; 13 AS Hedayat (7985_CR49) 1999 7985_CR19 S Dehuri (7985_CR20) 2008; 8 X Li (7985_CR46) 2014; 24 7985_CR16 7985_CR15 SM Ghafari (7985_CR26) 2019; 9 EH Houssein (7985_CR40) 2022; 187 O Schutze (7985_CR32) 2012; 16 P Hájek (7985_CR5) 1966; 1 YS Koh (7985_CR11) 2016; 10 7985_CR50 WJ Frawley (7985_CR2) 1992; 13 EV Altay (7985_CR12) 2019; 11 C Audet (7985_CR29) 2020; 292 D Nguyen (7985_CR10) 2015; 320 AL Custódio (7985_CR31) 2011; 21 R Fisher (7985_CR45) 1920; 80 K Sarath (7985_CR6) 2013; 26 A Mukhopadhyay (7985_CR23) 2013; 18 M Abdel-Basset (7985_CR43) 2020; 95 F Meng (7985_CR13) 2015; 19 E Varol Altay (7985_CR54) 2020; 11 HA Guvenir (7985_CR57) 2000 B Minaei-Bidgoli (7985_CR56) 2013; 233 S Li (7985_CR42) 2020; 111 M Premkumar (7985_CR27) 2020; 9 K Deb (7985_CR44) 2002; 6 A Ghosh (7985_CR58) 2004; 163 T Santos (7985_CR30) 2018; 19 |
| References_xml | – reference: GuvenirHAUysalIRepositorFAFunction approximation repository2000AnkaraBilkent University – reference: MukhopadhyayAMaulikUBandyopadhyaySCoelloCACA survey of multiobjective evolutionary algorithms for data mining: part iIEEE Trans Evol Comput2013181419 – reference: Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray imagesAppl Soft Comput202095 – reference: YangGMabuSShimadaKHirasawaKA novel evolutionary method to search interesting association rules by keywordsExpert Syst Appl201138101337813385 – reference: PremkumarMJangirPSowmyaRAlhelouHHHeidariAAChenHMosma: multi-objective slime mould algorithm based on elitist non-dominated sortingIEEE Access2020932293248 – reference: SantosTXavierSA convergence indicator for multi-objective optimisation algorithmsTEMA (São Carlos)20181934374483897658 – reference: Salleb-Aouissi A, Vrain C, Nortet C (2007) Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, vol 7, pp 1035–1040 – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput200262182197 – reference: MengFChenXInterval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measuresSoft Comput2015197207120821360.91072 – reference: Djenouri Y, Fournier-Viger P, Belhadi A, Lin JC-W (2019) Metaheuristics for frequent and high-utility itemset mining. In: High-utility pattern mining, pp 261–278. Springer, Cham – reference: AudetCBigeonJCartierDLe DigabelSSalomonLPerformance indicators in multiobjective optimizationEur J Oper Res202029239742242263261487.90580 – reference: KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data (TKDD)2016104129 – reference: SchutzeOEsquivelXLaraACoelloCACUsing the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimizationIEEE Trans Evol Comput2012164504522 – reference: Hilali H (2009) Application de la classification textuelle pour l’extraction des règles d’association maximales. PhD thesis, Université du Québec à Trois-Rivières – reference: DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput199973205230 – reference: Minaei-BidgoliBBarmakiRNasiriMMining numerical association rules via multi-objective genetic algorithmsInf Sci20132331524 – reference: SrinivasanSRamakrishnanSEvolutionary multi objective optimization for rule mining: a reviewArtif Intell Rev2011363205248 – reference: HájekPHavelIChytilMThe guha method of automatic hypotheses determinationComputing1966142933080168.26105 – reference: SunJGuoBHuYZhangYMulti-objective optimization of spectrum sensing and power allocation based on improved slime mould algorithmJ Phys Conf Ser20211966 – reference: Kuo C-L, Shieh C-S, Lin C-H, Shih S-P (2007) Design of fuzzy sliding-mode controller for chaos synchronization. In: Asian simulation conference, pp 36–45. Springer – reference: Ventura S, Luna JM (2016) Genetic programming in pattern mining. In: Pattern mining with evolutionary algorithms, pp 87–117. Springer, Cham – reference: BaiWEkeILeeKYAn improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problemControl Eng Pract201761163172 – reference: Varol AltayEAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Humaniz Comput202011834493469 – reference: Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 255–264 – reference: Ngatchou P, Zarei A, El-Sharkawi A (2005) Pareto multi objective optimization. In: Proceedings of the 13th international conference on, intelligent systems application to power systems, pp 84–91 . IEEE – reference: HarifiSMohammadzadehJKhalilianMEbrahimnejadSGiza pyramids construction: an ancient-inspired metaheuristic algorithm for optimizationEvol Intell20201417431761 – reference: HedayatASSloaneNJAStufkenJOrthogonal arrays: theory and applications1999New YorkSpringer0935.05001 – reference: AlataşBAkinEAn efficient genetic algorithm for automated mining of both positive and negative quantitative association rulesSoft Comput2006103230237 – reference: Ramaswamy S, Mahajan S, Silberschatz A (1998) On the discovery of interesting patterns in association rules. In: VLDB, vol 98, pp 368–379. Citeseer – reference: KhunkittiSSiritaratiwatAPremrudeepreechacharnSMulti-objective optimal power flow problems based on slime mould algorithmSustainability202113137448 – reference: FisherRA mathematical examination of the methods of determining the accuracy of an observation etc monthly notices royMonthly Not Roy Astron Soc192080758770 – reference: SongADingXChenJLiMCaoWPuKMulti-objective association rule mining with binary bat algorithmIntell Data Anal2016201105128 – reference: Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216 – reference: ManitaGZermaniAA modified jellyfish search optimizer with orthogonal learning strategyProcedia Comput Sci2021192697708 – reference: LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur Gener Comput Syst2020111300323 – reference: LiHZhangQMultiobjective optimization problems with complicated pareto sets, moea/d and nsga-iiIEEE Trans Evol Comput2008132284302 – reference: ShortliffeEHBuchananBGA model of inexact reasoning in medicineMath Biosci1975233–4351379381762 – reference: BerryMJLinoffGSData mining techniques: for marketing, sales, and customer relationship management2004New YorkWiley – reference: LiXWangJYinMEnhancing the performance of cuckoo search algorithm using orthogonal learning methodNeural Comput Appl201424612331247 – reference: GhoshANathBMulti-objective rule mining using genetic algorithmsInf Sci20041631–31231332062866 – reference: FrawleyWJPiatetsky-ShapiroGMatheusCJKnowledge discovery in databases: an overviewAI Mag19921335757 – reference: NguyenDNguyenLTVoBHongT-PA novel method for constrained class association rule miningInf Sci201532010712533679781390.68549 – reference: Alcala-FdezJFlugy-PapeNBonariniAHerreraFAnalysis of the effectiveness of the genetic algorithms based on extraction of association rulesFund Inform20109811142654371 – reference: HousseinEHMahdyMASheblDManzoorASarkarRMohamedWMAn efficient slime mould algorithm for solving multi-objective optimization problemsExpert Syst Appl2022187 – reference: ChenC-HHongT-PTsengVSAn improved approach to find membership functions and multiple minimum supports in fuzzy data miningExpert Syst Appl20093661001610024 – reference: ZhangLFuGChengFQiuJSuYA multi-objective evolutionary approach for mining frequent and high utility itemsetsAppl Soft Comput201862974986 – reference: AltayEVAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Human Comput20191134493469 – reference: Luebbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data quality tools. In: Proceedings 2003 VLDB conference, pp 548–559. Elsevier – reference: MartínDRoseteAAlcalá-FdezJHerreraFQar-cip-nsga-ii: a new multi-objective evolutionary algorithm to mine quantitative association rulesInf Sci20142581283133391 – reference: GhafariSMTjortjisCA survey on association rules mining using heuristicsWiley Interdiscip Rev Data Min Knowl Discov2019941307 – reference: CustódioALMadeiraJAVazAIFVicenteLNDirect multisearch for multiobjective optimizationSIAM J Optim20112131109114028375651230.90167 – reference: KeYChengJNgWAn information-theoretic approach to quantitative association rule miningKnowl Inf Syst2008162213244 – reference: AhnK-IKimJ-YEfficient mining of frequent itemsets and a measure of interest for association rule miningJ Inf Knowl Manag2004303245257 – reference: Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, 264, pp 1–30. – reference: ÁlvarezVPVazquezJMAn evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretizationExpert Syst Appl2012391585593 – reference: SarathKRaviVAssociation rule mining using binary particle swarm optimizationEng Appl Artif Intell201326818321840 – reference: DehuriSPatnaikSGhoshAMallRApplication of elitist multi-objective genetic algorithm for classification rule generationAppl Soft Comput200881477487 – reference: Nouasria A (2016) Extraction d’associations lexicales fortes dans les commentaires. PhD thesis, Université du Québec à Trois-Rivières – reference: Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2003) Evolutionary approach for mining association rules on dynamic databases. In: Pacific-Asia conference on knowledge discovery and data mining, pp 325–336. Springer – volume: 1 start-page: 293 issue: 4 year: 1966 ident: 7985_CR5 publication-title: Computing doi: 10.1007/BF02345483 – ident: 7985_CR15 – volume: 8 start-page: 477 issue: 1 year: 2008 ident: 7985_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.02.009 – ident: 7985_CR36 doi: 10.1145/253262.253325 – volume: 24 start-page: 1233 issue: 6 year: 2014 ident: 7985_CR46 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1354-6 – volume: 233 start-page: 15 year: 2013 ident: 7985_CR56 publication-title: Inf Sci doi: 10.1016/j.ins.2013.01.028 – volume: 3 start-page: 245 issue: 03 year: 2004 ident: 7985_CR38 publication-title: J Inf Knowl Manag doi: 10.1142/S0219649204000869 – volume: 9 start-page: 3229 year: 2020 ident: 7985_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047936 – ident: 7985_CR1 doi: 10.1016/B978-012722442-8/50055-0 – volume: 13 start-page: 284 issue: 2 year: 2008 ident: 7985_CR53 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.925798 – volume: 20 start-page: 105 issue: 1 year: 2016 ident: 7985_CR55 publication-title: Intell Data Anal doi: 10.3233/IDA-150796 – volume: 320 start-page: 107 year: 2015 ident: 7985_CR10 publication-title: Inf Sci doi: 10.1016/j.ins.2015.05.006 – ident: 7985_CR35 – volume: 62 start-page: 974 year: 2018 ident: 7985_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.033 – ident: 7985_CR50 – volume: 21 start-page: 1109 issue: 3 year: 2011 ident: 7985_CR31 publication-title: SIAM J Optim doi: 10.1137/10079731X – volume: 23 start-page: 351 issue: 3–4 year: 1975 ident: 7985_CR37 publication-title: Math Biosci doi: 10.1016/0025-5564(75)90047-4 – volume: 19 start-page: 437 issue: 3 year: 2018 ident: 7985_CR30 publication-title: TEMA (São Carlos) doi: 10.5540/tema.2018.019.03.437 – volume: 292 start-page: 397 year: 2020 ident: 7985_CR29 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.11.016 – volume: 26 start-page: 1832 issue: 8 year: 2013 ident: 7985_CR6 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.06.003 – volume: 36 start-page: 205 issue: 3 year: 2011 ident: 7985_CR25 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9212-3 – volume: 80 start-page: 758 year: 1920 ident: 7985_CR45 publication-title: Monthly Not Roy Astron Soc doi: 10.1093/mnras/80.8.758 – ident: 7985_CR19 doi: 10.1007/978-3-540-77600-0_5 – ident: 7985_CR24 doi: 10.1007/978-3-319-33858-3_5 – volume: 192 start-page: 697 year: 2021 ident: 7985_CR47 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2021.08.072 – ident: 7985_CR16 doi: 10.1007/3-540-36175-8_32 – volume: 11 start-page: 3449 year: 2019 ident: 7985_CR12 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-019-01540-7 – volume: 95 year: 2020 ident: 7985_CR43 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106642 – volume: 7 start-page: 205 issue: 3 year: 1999 ident: 7985_CR52 publication-title: Evol Comput doi: 10.1162/evco.1999.7.3.205 – volume: 111 start-page: 300 year: 2020 ident: 7985_CR42 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.03.055 – volume: 258 start-page: 1 year: 2014 ident: 7985_CR59 publication-title: Inf Sci doi: 10.1016/j.ins.2013.09.009 – volume: 187 year: 2022 ident: 7985_CR40 publication-title: Expert Syst Appl – volume-title: Function approximation repository year: 2000 ident: 7985_CR57 – ident: 7985_CR22 doi: 10.1007/978-3-030-04921-8_10 – volume: 10 start-page: 1 issue: 4 year: 2016 ident: 7985_CR11 publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/2898359 – volume: 10 start-page: 230 issue: 3 year: 2006 ident: 7985_CR14 publication-title: Soft Comput doi: 10.1007/s00500-005-0476-x – ident: 7985_CR33 – volume: 61 start-page: 163 year: 2017 ident: 7985_CR48 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2017.02.010 – volume: 13 start-page: 57 issue: 3 year: 1992 ident: 7985_CR2 publication-title: AI Mag – volume: 98 start-page: 1 issue: 1 year: 2010 ident: 7985_CR21 publication-title: Fund Inform – volume: 19 start-page: 2071 issue: 7 year: 2015 ident: 7985_CR13 publication-title: Soft Comput doi: 10.1007/s00500-014-1393-7 – ident: 7985_CR3 doi: 10.1145/170036.170072 – volume: 13 start-page: 7448 issue: 13 year: 2021 ident: 7985_CR39 publication-title: Sustainability doi: 10.3390/su13137448 – volume: 1966 year: 2021 ident: 7985_CR41 publication-title: J Phys Conf Ser – volume: 11 start-page: 3449 issue: 8 year: 2020 ident: 7985_CR54 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01540-7 – volume: 36 start-page: 10016 issue: 6 year: 2009 ident: 7985_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.067 – volume: 18 start-page: 4 issue: 1 year: 2013 ident: 7985_CR23 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2290086 – volume: 9 start-page: 1307 issue: 4 year: 2019 ident: 7985_CR26 publication-title: Wiley Interdiscip Rev Data Min Knowl Discov doi: 10.1002/widm.1307 – ident: 7985_CR28 – volume: 39 start-page: 585 issue: 1 year: 2012 ident: 7985_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.049 – volume-title: Orthogonal arrays: theory and applications year: 1999 ident: 7985_CR49 doi: 10.1007/978-1-4612-1478-6 – volume-title: Data mining techniques: for marketing, sales, and customer relationship management year: 2004 ident: 7985_CR4 – volume: 14 start-page: 1743 year: 2020 ident: 7985_CR51 publication-title: Evol Intell doi: 10.1007/s12065-020-00451-3 – volume: 38 start-page: 13378 issue: 10 year: 2011 ident: 7985_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.166 – ident: 7985_CR34 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 7985_CR44 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 163 start-page: 123 issue: 1–3 year: 2004 ident: 7985_CR58 publication-title: Inf Sci doi: 10.1016/j.ins.2003.03.021 – volume: 16 start-page: 213 issue: 2 year: 2008 ident: 7985_CR7 publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0104-4 – volume: 16 start-page: 504 issue: 4 year: 2012 ident: 7985_CR32 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2011.2161872 |
| SSID | ssj0004685 |
| Score | 2.3838558 |
| Snippet | Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6125 |
| SubjectTerms | Algorithms Artificial Intelligence Benchmarks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data mining Data Mining and Knowledge Discovery Image Processing and Computer Vision Machine learning Multiple objective analysis Optimization Original Article Probability and Statistics in Computer Science Source code |
| SummonAdditionalLinks | – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcOBCWUWhIB-4QaTGS5McK0TFCSGoUG-RHTulKEuVhf4-4ywtIECCsxdZHnvmjWfGD6FLIm3BNPUsHQhuMTWEK6Uks8gwIDqwuSPcmmzCub93p1PvoSkKy9ts9zYkWWnqVbGbecEE15eYbEnP5dZyE22BueOGsOHx6flDNWRFxAl-i8npYbQplfl-js_maI0xv4RFK2sz7v5vnXtot0GXeFQfh320oZMD1G2ZG3BzkQ_RYoTjVM1DwJ-4Sim0Uvlaqz4MwDPW0FxGCotolmbz4iXG5r0WmxhPOjPYHTdsEzMMoBcnZR33ibBYSxtnZaRzHFcMFEdoMr6d3NxZDfeCFYBDVlhKuopr23EEtaVgYcCpx4nmSkrOwlARFmot9GAoBKcAK0IBGtxzNVO2ZFzSY9RJ0kSfIOzBKDaQggwEnApwyEyg0hWeowOHUkF7yG4l4AfNv-SGHiPyVz8qVzvqw4761Y76yx66Wo1Z1L9y_Nq73wrWb25o7hND5uCAMwgLuG4FuW7-ebbTv3U_QzuGob5OW-ujTpGV-hxtB2_FPM8uqpP7Dkmg68o priority: 102 providerName: Springer Nature |
| Title | A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining |
| URI | https://link.springer.com/article/10.1007/s00521-022-07985-w https://www.proquest.com/docview/2780571483 |
| Volume | 35 |
| WOSCitedRecordID | wos000884201700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241217 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241217 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61wKEXnq26FJAP3MDqxo9NcqooAnFarShCiEvkV7ZU2c2yD_bvd-w4LCCVSy85JLET6Rvbn2fG8wEcM50o4XhOnVGSCtvDIWW1oKxnmDOJTFXWiE2k_X52d5cPosNtFtMq2zkxTNS2Nt5H_p354vspknf-Y_JIvWqUj65GCY2PsJ4w5PpozwN5_-JcZJDkxB2Mz-4RPB6aCUfnvD8U7zKfe5lnki5fL0wrtvkmQBrWncut__3jbdiMjJOcNSayAx_ceBe2WjUHEgf3HkzOyKi2DyVyUhLSDGmt_zTTIUEyOnL4eFFZoqohfmX-e0S8D5f4uE899HyeRAWKIUEiTMaLJhZUEbWyADJdVG5GRkGV4jPcXF7cnF_RqMdADW7S5tTqzEqXpKniiVaiNJLnkjlptZaiLC0TpXPKdXtKSY5Uo1Q4q-eZEzbRQmr-BdbG9dh9BZJjK9HVinUVWgoC54OXmcpTZ1LOFe9A0mJRmFir3EtmVMVzleWAX4H4FQG_YtmBk-c2k6ZSx7tvH7SgFXHUzooVYh04bWFfPf53b_vv9_YNPnmV-iZ17QDW5tOFO4QN8zR_mE2PYP3nRX9wfRRsF6_Xv27_AhUF9-E |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvtLzEQik-tCew2PixSQ4IVdCqVcuqhz1UXCy_shRlN9t9sOJH8R8ZO0m3rURvPXCNY0uJvxnPeB4fwC4ziRae59RbLalwPRQpZwRlPcu8TWSqs5psIu33s_Pz_GwN_rS1MCGtstWJUVG7yoY78o8sNN9P0XjnnyeXNLBGhehqS6FRw-LE_16iyzb7dPwV93ePscODwZcj2rAKUIuuxpw6kznpkzTVPDFaFFbyXDIvnTFSFIVjovBe-25Pa8nxwCw06qY888IlRkjDcdkH8DAyd6H4nMnv18owIwMoOkwhmUjwpkYnVuqF61d8ykKqZ55Jurx5Dq6M21vx2HjMHW7-Zz9oC5409jTZrwXgKaz58TPYbLkqSKO6nsNkn4wqd1GgxU1iEiWtzM9a2RM0tUcehxelI7oc4kfNf4xIuKEmIapVDYO3Qhp-jSFBM5-MF3WkqyR6hW8yXZR-RkaRc-MFDO7js1_C-rga-1dAcpwlukazrkY5QBc0hGYznafeppxr3oGk3Xplm07sgRCkVFc9pCNcFMJFRbioZQfeX82Z1H1I7nx7u8WIanTSTK0A0oEPLcpWw_9e7fXdq72Dx0eDb6fq9Lh_8gY2GFqBdZLeNqzPpwv_Fh7ZX_OL2XQnigsBdc_o-wsu1VWe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbxYn1itmoM3Xezm0d09FrUoSilapLcl2WRrZR9lu2v_vsk-2ioqiOc8CMlMMpP5Zj4AzhE3GZHYMaTHqEFEW6mU4MRAbQ9Jz6QWswuyCavXs4dDp7-UxZ-j3auQZJHToKs0RenVRPhX88Q3_Zup3GCkkZOOTY3ZKljTgEUN6nt6flnKjMxJOZUPo_E9BJdpM9_P8flpWtibX0Kk-cvTrf9_zdtgq7Q6YacQkx2wIqNdUK8YHWCp4Htg0oFhLMa-skthDjU0Yv5WXIlQGaShVM1ZICALRnEyTl9DqP9xoY79xCNt08OShWIElTEMo6yIBwWQLaQAJlkgpzDMmSn2waB7O7i-M0pOBsNTjlpqCG4LKk3LYtjkjPgexQ5FkgrOKfF9gYgvJZOtNmMUK3PDZ-pmd2xJhMkJ5fgA1KI4kocAOmoUaXGGWkxJi3LUdADTZo4lPQtjhhvArE7D9cp65Zo2I3DnlZbzHXXVjrr5jrqzBriYj5kU1Tp-7d2sDtktNXfqIk3yYCknUS3gsjrURfPPsx39rfsZ2OjfdN3H-97DMdjUJPYFsq0JammSyROw7r2n42lymgv0B-QF95I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+multi-objective+slime+mould+algorithm+with+orthogonal+learning+for+numerical+association+rules+mining&rft.jtitle=Neural+computing+%26+applications&rft.au=Yacoubi%2C+Salma&rft.au=Manita%2C+Ghaith&rft.au=Amdouni%2C+Hamida&rft.au=Mirjalili%2C+Seyedali&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=8&rft.spage=6125&rft.epage=6151&rft_id=info:doi/10.1007%2Fs00521-022-07985-w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |