A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining

Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 8; s. 6125 - 6151
Hlavní autoři: Yacoubi, Salma, Manita, Ghaith, Amdouni, Hamida, Mirjalili, Seyedali, Korbaa, Ouajdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.03.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at https://github.com/gaithmanita/MOOSMA .
AbstractList Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at https://github.com/gaithmanita/MOOSMA.
Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical. In this paper, we introduce a multi-objective orthogonal mould algorithm (MOOSMA) with numerical association rule mining (NARM) which is a different type of ARM. Existing algorithms that deal with the NARM problem can be classified into three categories: distribution, discretization and optimization. The proposed approach belongs to the optimization category which is considered as a better way to deal with the problem. Our main objective is based on four efficiency measures related to each association: Support, Confidence, Comprehensibility, Interestingness. To test the performance of our approach, we started by testing our method on widely known generalized dynamic benchmark tests called CEC’09. This benchmark is composed of 20 test functions: 10 functions without constraints and 10 functions with constraints. Secondly, we applied our algorithm to solve NARM problem using 10 frequently used real-world datasets. Experimental analysis shows that our algorithm MOOSMA has better results in terms of Average Support, Average Confidence, Average Lift, Average Certain factor and Average Netconf. Note that source code of the MOOSMA algorithm is publicly available at https://github.com/gaithmanita/MOOSMA .
Author Manita, Ghaith
Korbaa, Ouajdi
Yacoubi, Salma
Amdouni, Hamida
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Salma
  surname: Yacoubi
  fullname: Yacoubi, Salma
  organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse
– sequence: 2
  givenname: Ghaith
  surname: Manita
  fullname: Manita, Ghaith
  email: gaith.manita@esen.tn
  organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse, ESEN, University of Manouba
– sequence: 3
  givenname: Hamida
  surname: Amdouni
  fullname: Amdouni, Hamida
  organization: ESEN, University of Manouba, Laboratory RIADI, ENSI, University of Manouba
– sequence: 4
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, YFL (Yonsei Frontier Lab), Yonsei University
– sequence: 5
  givenname: Ouajdi
  surname: Korbaa
  fullname: Korbaa, Ouajdi
  organization: Laboratory MARS, LR17ES05, ISITCom, University of Sousse, ISITCom, University of Sousse
BookMark eNp9kE9LxDAQxYMouK5-AU8Bz9WkSbbpURb_wYIX7yFNJzVL2qxJ6uK3N7qC4MHLDMx7v-HxztDxFCZA6JKSa0pIc5MIETWtSF1XpGmlqPZHaEE5YxUjQh6jBWl5kVecnaKzlLaEEL6SYoF2t3gMvbMOejzOPrsqdFsw2b0DTt6NUOTZ91j7IUSXX0e8LxOHmF_DECbtsQcdJzcN2IaIp3mE6Ew565SCcTq7MOE4e0h4dF-2c3RitU9w8bOX6OX-7mX9WG2eH57Wt5vK1LzNVd_JXgBtGs1op7k1grWiBtF3neDW9jW3ABrISmvBiKRWgzatBN7TjouOLdHV4e0uhrcZUlbbMMeSN6m6kUQ0lEtWXPLgMjGkFMEq4_J35hy184oS9VWvOtSrSr3qu161L2j9B91FN-r48T_EDlAq5mmA-JvqH-oTLD6T1Q
CitedBy_id crossref_primary_10_1007_s11831_024_10109_3
crossref_primary_10_1080_09544828_2025_2543684
crossref_primary_10_1007_s10586_025_05427_5
crossref_primary_10_1007_s10462_023_10648_4
crossref_primary_10_3390_biomimetics9010031
crossref_primary_10_1007_s12559_025_10486_2
crossref_primary_10_3390_biomimetics9030138
crossref_primary_10_1177_14727978251363384
Cites_doi 10.1007/BF02345483
10.1016/j.asoc.2007.02.009
10.1145/253262.253325
10.1007/s00521-013-1354-6
10.1016/j.ins.2013.01.028
10.1142/S0219649204000869
10.1109/ACCESS.2020.3047936
10.1016/B978-012722442-8/50055-0
10.1109/TEVC.2008.925798
10.3233/IDA-150796
10.1016/j.ins.2015.05.006
10.1016/j.asoc.2017.09.033
10.1137/10079731X
10.1016/0025-5564(75)90047-4
10.5540/tema.2018.019.03.437
10.1016/j.ejor.2020.11.016
10.1016/j.engappai.2013.06.003
10.1007/s10462-011-9212-3
10.1093/mnras/80.8.758
10.1007/978-3-540-77600-0_5
10.1007/978-3-319-33858-3_5
10.1016/j.procs.2021.08.072
10.1007/3-540-36175-8_32
10.1007/s12652-019-01540-7
10.1016/j.asoc.2020.106642
10.1162/evco.1999.7.3.205
10.1016/j.future.2020.03.055
10.1016/j.ins.2013.09.009
10.1007/978-3-030-04921-8_10
10.1145/2898359
10.1007/s00500-005-0476-x
10.1016/j.conengprac.2017.02.010
10.1007/s00500-014-1393-7
10.1145/170036.170072
10.3390/su13137448
10.1016/j.eswa.2009.01.067
10.1109/TEVC.2013.2290086
10.1002/widm.1307
10.1016/j.eswa.2011.07.049
10.1007/978-1-4612-1478-6
10.1007/s12065-020-00451-3
10.1016/j.eswa.2011.04.166
10.1109/4235.996017
10.1016/j.ins.2003.03.021
10.1007/s10115-007-0104-4
10.1109/TEVC.2011.2161872
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07985-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 6151
ExternalDocumentID 10_1007_s00521_022_07985_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c249t-db8d5e177a31ba4fc53952e5dbb54ffd24feeae06aa53081faeac98e4d1b45b3
IEDL.DBID P5Z
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884201700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:11:18 EST 2025
Sat Nov 29 02:59:31 EST 2025
Tue Nov 18 22:26:13 EST 2025
Fri Feb 21 02:44:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multi-objective optimization
Swarm intelligence
Orthogonal learning
Association rules mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-db8d5e177a31ba4fc53952e5dbb54ffd24feeae06aa53081faeac98e4d1b45b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2780571483
PQPubID 2043988
PageCount 27
ParticipantIDs proquest_journals_2780571483
crossref_citationtrail_10_1007_s00521_022_07985_w
crossref_primary_10_1007_s00521_022_07985_w
springer_journals_10_1007_s00521_022_07985_w
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BerryMJLinoffGSData mining techniques: for marketing, sales, and customer relationship management2004New YorkWiley
AltayEVAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Human Comput20191134493469
FisherRA mathematical examination of the methods of determining the accuracy of an observation etc monthly notices royMonthly Not Roy Astron Soc192080758770
BaiWEkeILeeKYAn improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problemControl Eng Pract201761163172
LiHZhangQMultiobjective optimization problems with complicated pareto sets, moea/d and nsga-iiIEEE Trans Evol Comput2008132284302
GhafariSMTjortjisCA survey on association rules mining using heuristicsWiley Interdiscip Rev Data Min Knowl Discov2019941307
Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216
Luebbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data quality tools. In: Proceedings 2003 VLDB conference, pp 548–559. Elsevier
Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2003) Evolutionary approach for mining association rules on dynamic databases. In: Pacific-Asia conference on knowledge discovery and data mining, pp 325–336. Springer
ÁlvarezVPVazquezJMAn evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretizationExpert Syst Appl2012391585593
HousseinEHMahdyMASheblDManzoorASarkarRMohamedWMAn efficient slime mould algorithm for solving multi-objective optimization problemsExpert Syst Appl2022187
SchutzeOEsquivelXLaraACoelloCACUsing the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimizationIEEE Trans Evol Comput2012164504522
SunJGuoBHuYZhangYMulti-objective optimization of spectrum sensing and power allocation based on improved slime mould algorithmJ Phys Conf Ser20211966
MartínDRoseteAAlcalá-FdezJHerreraFQar-cip-nsga-ii: a new multi-objective evolutionary algorithm to mine quantitative association rulesInf Sci20142581283133391
SrinivasanSRamakrishnanSEvolutionary multi objective optimization for rule mining: a reviewArtif Intell Rev2011363205248
SongADingXChenJLiMCaoWPuKMulti-objective association rule mining with binary bat algorithmIntell Data Anal2016201105128
Hilali H (2009) Application de la classification textuelle pour l’extraction des règles d’association maximales. PhD thesis, Université du Québec à Trois-Rivières
Alcala-FdezJFlugy-PapeNBonariniAHerreraFAnalysis of the effectiveness of the genetic algorithms based on extraction of association rulesFund Inform20109811142654371
MukhopadhyayAMaulikUBandyopadhyaySCoelloCACA survey of multiobjective evolutionary algorithms for data mining: part iIEEE Trans Evol Comput2013181419
DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput199973205230
HarifiSMohammadzadehJKhalilianMEbrahimnejadSGiza pyramids construction: an ancient-inspired metaheuristic algorithm for optimizationEvol Intell20201417431761
ChenC-HHongT-PTsengVSAn improved approach to find membership functions and multiple minimum supports in fuzzy data miningExpert Syst Appl20093661001610024
ZhangLFuGChengFQiuJSuYA multi-objective evolutionary approach for mining frequent and high utility itemsetsAppl Soft Comput201862974986
NguyenDNguyenLTVoBHongT-PA novel method for constrained class association rule miningInf Sci201532010712533679781390.68549
Djenouri Y, Fournier-Viger P, Belhadi A, Lin JC-W (2019) Metaheuristics for frequent and high-utility itemset mining. In: High-utility pattern mining, pp 261–278. Springer, Cham
CustódioALMadeiraJAVazAIFVicenteLNDirect multisearch for multiobjective optimizationSIAM J Optim20112131109114028375651230.90167
AlataşBAkinEAn efficient genetic algorithm for automated mining of both positive and negative quantitative association rulesSoft Comput2006103230237
GuvenirHAUysalIRepositorFAFunction approximation repository2000AnkaraBilkent University
Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 255–264
FrawleyWJPiatetsky-ShapiroGMatheusCJKnowledge discovery in databases: an overviewAI Mag19921335757
LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur Gener Comput Syst2020111300323
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput200262182197
KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data (TKDD)2016104129
Varol AltayEAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Humaniz Comput202011834493469
ManitaGZermaniAA modified jellyfish search optimizer with orthogonal learning strategyProcedia Comput Sci2021192697708
SantosTXavierSA convergence indicator for multi-objective optimisation algorithmsTEMA (São Carlos)20181934374483897658
ShortliffeEHBuchananBGA model of inexact reasoning in medicineMath Biosci1975233–4351379381762
Minaei-BidgoliBBarmakiRNasiriMMining numerical association rules via multi-objective genetic algorithmsInf Sci20132331524
Ngatchou P, Zarei A, El-Sharkawi A (2005) Pareto multi objective optimization. In: Proceedings of the 13th international conference on, intelligent systems application to power systems, pp 84–91 . IEEE
DehuriSPatnaikSGhoshAMallRApplication of elitist multi-objective genetic algorithm for classification rule generationAppl Soft Comput200881477487
SarathKRaviVAssociation rule mining using binary particle swarm optimizationEng Appl Artif Intell201326818321840
KhunkittiSSiritaratiwatAPremrudeepreechacharnSMulti-objective optimal power flow problems based on slime mould algorithmSustainability202113137448
HedayatASSloaneNJAStufkenJOrthogonal arrays: theory and applications1999New YorkSpringer0935.05001
PremkumarMJangirPSowmyaRAlhelouHHHeidariAAChenHMosma: multi-objective slime mould algorithm based on elitist non-dominated sortingIEEE Access2020932293248
Nouasria A (2016) Extraction d’associations lexicales fortes dans les commentaires. PhD thesis, Université du Québec à Trois-Rivières
Salleb-Aouissi A, Vrain C, Nortet C (2007) Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, vol 7, pp 1035–1040
Ramaswamy S, Mahajan S, Silberschatz A (1998) On the discovery of interesting patterns in association rules. In: VLDB, vol 98, pp 368–379. Citeseer
Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray imagesAppl Soft Comput202095
AudetCBigeonJCartierDLe DigabelSSalomonLPerformance indicators in multiobjective optimizationEur J Oper Res202029239742242263261487.90580
LiXWangJYinMEnhancing the performance of cuckoo search algorithm using orthogonal learning methodNeural Comput Appl201424612331247
AhnK-IKimJ-YEfficient mining of frequent itemsets and a measure of interest for association rule miningJ Inf Knowl Manag2004303245257
HájekPHavelIChytilMThe guha method of automatic hypotheses determinationComputing1966142933080168.26105
KeYChengJNgWAn information-theoretic approach to quantitative association rule miningKnowl Inf Syst2008162213244
MengFChenXInterval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measuresSoft Comput2015197207120821360.91072
YangGMabuSShimadaKHirasawaKA novel evolutionary method to search interesting association rules by keywordsExpert Syst Appl201138101337813385
Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, 264, pp 1–30.
GhoshANathBMulti-objective rule mining using genetic algorithmsInf Sci20041631–31231332062866
Kuo C-L, Shieh C-S, Lin C-H, Shih S-P (2007) Design of fuzzy sliding-mode controller for chaos synchronization. In: Asian simulation conference, pp 36–45. Springer
Ventura S, Luna JM (2016) Genetic programming in pattern mining. In: Pattern mining with evolutionary algorithms, pp 87–117. Springer, Cham
G Yang (7985_CR17) 2011; 38
7985_CR1
J Sun (7985_CR41) 2021; 1966
W Bai (7985_CR48) 2017; 61
VP Álvarez (7985_CR18) 2012; 39
7985_CR36
7985_CR3
7985_CR35
S Harifi (7985_CR51) 2020; 14
7985_CR34
7985_CR33
K-I Ahn (7985_CR38) 2004; 3
H Li (7985_CR53) 2008; 13
J Alcala-Fdez (7985_CR21) 2010; 98
L Zhang (7985_CR9) 2018; 62
7985_CR28
D Martín (7985_CR59) 2014; 258
G Manita (7985_CR47) 2021; 192
7985_CR24
7985_CR22
K Deb (7985_CR52) 1999; 7
B Alataş (7985_CR14) 2006; 10
A Song (7985_CR55) 2016; 20
Y Ke (7985_CR7) 2008; 16
S Srinivasan (7985_CR25) 2011; 36
EH Shortliffe (7985_CR37) 1975; 23
C-H Chen (7985_CR8) 2009; 36
MJ Berry (7985_CR4) 2004
S Khunkitti (7985_CR39) 2021; 13
AS Hedayat (7985_CR49) 1999
7985_CR19
S Dehuri (7985_CR20) 2008; 8
X Li (7985_CR46) 2014; 24
7985_CR16
7985_CR15
SM Ghafari (7985_CR26) 2019; 9
EH Houssein (7985_CR40) 2022; 187
O Schutze (7985_CR32) 2012; 16
P Hájek (7985_CR5) 1966; 1
YS Koh (7985_CR11) 2016; 10
7985_CR50
WJ Frawley (7985_CR2) 1992; 13
EV Altay (7985_CR12) 2019; 11
C Audet (7985_CR29) 2020; 292
D Nguyen (7985_CR10) 2015; 320
AL Custódio (7985_CR31) 2011; 21
R Fisher (7985_CR45) 1920; 80
K Sarath (7985_CR6) 2013; 26
A Mukhopadhyay (7985_CR23) 2013; 18
M Abdel-Basset (7985_CR43) 2020; 95
F Meng (7985_CR13) 2015; 19
E Varol Altay (7985_CR54) 2020; 11
HA Guvenir (7985_CR57) 2000
B Minaei-Bidgoli (7985_CR56) 2013; 233
S Li (7985_CR42) 2020; 111
M Premkumar (7985_CR27) 2020; 9
K Deb (7985_CR44) 2002; 6
A Ghosh (7985_CR58) 2004; 163
T Santos (7985_CR30) 2018; 19
References_xml – reference: GuvenirHAUysalIRepositorFAFunction approximation repository2000AnkaraBilkent University
– reference: MukhopadhyayAMaulikUBandyopadhyaySCoelloCACA survey of multiobjective evolutionary algorithms for data mining: part iIEEE Trans Evol Comput2013181419
– reference: Abdel-BassetMChangVMohamedRHsma\_woa: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray imagesAppl Soft Comput202095
– reference: YangGMabuSShimadaKHirasawaKA novel evolutionary method to search interesting association rules by keywordsExpert Syst Appl201138101337813385
– reference: PremkumarMJangirPSowmyaRAlhelouHHHeidariAAChenHMosma: multi-objective slime mould algorithm based on elitist non-dominated sortingIEEE Access2020932293248
– reference: SantosTXavierSA convergence indicator for multi-objective optimisation algorithmsTEMA (São Carlos)20181934374483897658
– reference: Salleb-Aouissi A, Vrain C, Nortet C (2007) Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, vol 7, pp 1035–1040
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput200262182197
– reference: MengFChenXInterval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measuresSoft Comput2015197207120821360.91072
– reference: Djenouri Y, Fournier-Viger P, Belhadi A, Lin JC-W (2019) Metaheuristics for frequent and high-utility itemset mining. In: High-utility pattern mining, pp 261–278. Springer, Cham
– reference: AudetCBigeonJCartierDLe DigabelSSalomonLPerformance indicators in multiobjective optimizationEur J Oper Res202029239742242263261487.90580
– reference: KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data (TKDD)2016104129
– reference: SchutzeOEsquivelXLaraACoelloCACUsing the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimizationIEEE Trans Evol Comput2012164504522
– reference: Hilali H (2009) Application de la classification textuelle pour l’extraction des règles d’association maximales. PhD thesis, Université du Québec à Trois-Rivières
– reference: DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput199973205230
– reference: Minaei-BidgoliBBarmakiRNasiriMMining numerical association rules via multi-objective genetic algorithmsInf Sci20132331524
– reference: SrinivasanSRamakrishnanSEvolutionary multi objective optimization for rule mining: a reviewArtif Intell Rev2011363205248
– reference: HájekPHavelIChytilMThe guha method of automatic hypotheses determinationComputing1966142933080168.26105
– reference: SunJGuoBHuYZhangYMulti-objective optimization of spectrum sensing and power allocation based on improved slime mould algorithmJ Phys Conf Ser20211966
– reference: Kuo C-L, Shieh C-S, Lin C-H, Shih S-P (2007) Design of fuzzy sliding-mode controller for chaos synchronization. In: Asian simulation conference, pp 36–45. Springer
– reference: Ventura S, Luna JM (2016) Genetic programming in pattern mining. In: Pattern mining with evolutionary algorithms, pp 87–117. Springer, Cham
– reference: BaiWEkeILeeKYAn improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problemControl Eng Pract201761163172
– reference: Varol AltayEAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Humaniz Comput202011834493469
– reference: Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 255–264
– reference: Ngatchou P, Zarei A, El-Sharkawi A (2005) Pareto multi objective optimization. In: Proceedings of the 13th international conference on, intelligent systems application to power systems, pp 84–91 . IEEE
– reference: HarifiSMohammadzadehJKhalilianMEbrahimnejadSGiza pyramids construction: an ancient-inspired metaheuristic algorithm for optimizationEvol Intell20201417431761
– reference: HedayatASSloaneNJAStufkenJOrthogonal arrays: theory and applications1999New YorkSpringer0935.05001
– reference: AlataşBAkinEAn efficient genetic algorithm for automated mining of both positive and negative quantitative association rulesSoft Comput2006103230237
– reference: Ramaswamy S, Mahajan S, Silberschatz A (1998) On the discovery of interesting patterns in association rules. In: VLDB, vol 98, pp 368–379. Citeseer
– reference: KhunkittiSSiritaratiwatAPremrudeepreechacharnSMulti-objective optimal power flow problems based on slime mould algorithmSustainability202113137448
– reference: FisherRA mathematical examination of the methods of determining the accuracy of an observation etc monthly notices royMonthly Not Roy Astron Soc192080758770
– reference: SongADingXChenJLiMCaoWPuKMulti-objective association rule mining with binary bat algorithmIntell Data Anal2016201105128
– reference: Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216
– reference: ManitaGZermaniAA modified jellyfish search optimizer with orthogonal learning strategyProcedia Comput Sci2021192697708
– reference: LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur Gener Comput Syst2020111300323
– reference: LiHZhangQMultiobjective optimization problems with complicated pareto sets, moea/d and nsga-iiIEEE Trans Evol Comput2008132284302
– reference: ShortliffeEHBuchananBGA model of inexact reasoning in medicineMath Biosci1975233–4351379381762
– reference: BerryMJLinoffGSData mining techniques: for marketing, sales, and customer relationship management2004New YorkWiley
– reference: LiXWangJYinMEnhancing the performance of cuckoo search algorithm using orthogonal learning methodNeural Comput Appl201424612331247
– reference: GhoshANathBMulti-objective rule mining using genetic algorithmsInf Sci20041631–31231332062866
– reference: FrawleyWJPiatetsky-ShapiroGMatheusCJKnowledge discovery in databases: an overviewAI Mag19921335757
– reference: NguyenDNguyenLTVoBHongT-PA novel method for constrained class association rule miningInf Sci201532010712533679781390.68549
– reference: Alcala-FdezJFlugy-PapeNBonariniAHerreraFAnalysis of the effectiveness of the genetic algorithms based on extraction of association rulesFund Inform20109811142654371
– reference: HousseinEHMahdyMASheblDManzoorASarkarRMohamedWMAn efficient slime mould algorithm for solving multi-objective optimization problemsExpert Syst Appl2022187
– reference: ChenC-HHongT-PTsengVSAn improved approach to find membership functions and multiple minimum supports in fuzzy data miningExpert Syst Appl20093661001610024
– reference: ZhangLFuGChengFQiuJSuYA multi-objective evolutionary approach for mining frequent and high utility itemsetsAppl Soft Comput201862974986
– reference: AltayEVAlatasBPerformance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule miningJ Ambient Intell Human Comput20191134493469
– reference: Luebbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data quality tools. In: Proceedings 2003 VLDB conference, pp 548–559. Elsevier
– reference: MartínDRoseteAAlcalá-FdezJHerreraFQar-cip-nsga-ii: a new multi-objective evolutionary algorithm to mine quantitative association rulesInf Sci20142581283133391
– reference: GhafariSMTjortjisCA survey on association rules mining using heuristicsWiley Interdiscip Rev Data Min Knowl Discov2019941307
– reference: CustódioALMadeiraJAVazAIFVicenteLNDirect multisearch for multiobjective optimizationSIAM J Optim20112131109114028375651230.90167
– reference: KeYChengJNgWAn information-theoretic approach to quantitative association rule miningKnowl Inf Syst2008162213244
– reference: AhnK-IKimJ-YEfficient mining of frequent itemsets and a measure of interest for association rule miningJ Inf Knowl Manag2004303245257
– reference: Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, 264, pp 1–30.
– reference: ÁlvarezVPVazquezJMAn evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretizationExpert Syst Appl2012391585593
– reference: SarathKRaviVAssociation rule mining using binary particle swarm optimizationEng Appl Artif Intell201326818321840
– reference: DehuriSPatnaikSGhoshAMallRApplication of elitist multi-objective genetic algorithm for classification rule generationAppl Soft Comput200881477487
– reference: Nouasria A (2016) Extraction d’associations lexicales fortes dans les commentaires. PhD thesis, Université du Québec à Trois-Rivières
– reference: Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2003) Evolutionary approach for mining association rules on dynamic databases. In: Pacific-Asia conference on knowledge discovery and data mining, pp 325–336. Springer
– volume: 1
  start-page: 293
  issue: 4
  year: 1966
  ident: 7985_CR5
  publication-title: Computing
  doi: 10.1007/BF02345483
– ident: 7985_CR15
– volume: 8
  start-page: 477
  issue: 1
  year: 2008
  ident: 7985_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.02.009
– ident: 7985_CR36
  doi: 10.1145/253262.253325
– volume: 24
  start-page: 1233
  issue: 6
  year: 2014
  ident: 7985_CR46
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1354-6
– volume: 233
  start-page: 15
  year: 2013
  ident: 7985_CR56
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.01.028
– volume: 3
  start-page: 245
  issue: 03
  year: 2004
  ident: 7985_CR38
  publication-title: J Inf Knowl Manag
  doi: 10.1142/S0219649204000869
– volume: 9
  start-page: 3229
  year: 2020
  ident: 7985_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047936
– ident: 7985_CR1
  doi: 10.1016/B978-012722442-8/50055-0
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  ident: 7985_CR53
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.925798
– volume: 20
  start-page: 105
  issue: 1
  year: 2016
  ident: 7985_CR55
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-150796
– volume: 320
  start-page: 107
  year: 2015
  ident: 7985_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.05.006
– ident: 7985_CR35
– volume: 62
  start-page: 974
  year: 2018
  ident: 7985_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.033
– ident: 7985_CR50
– volume: 21
  start-page: 1109
  issue: 3
  year: 2011
  ident: 7985_CR31
  publication-title: SIAM J Optim
  doi: 10.1137/10079731X
– volume: 23
  start-page: 351
  issue: 3–4
  year: 1975
  ident: 7985_CR37
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(75)90047-4
– volume: 19
  start-page: 437
  issue: 3
  year: 2018
  ident: 7985_CR30
  publication-title: TEMA (São Carlos)
  doi: 10.5540/tema.2018.019.03.437
– volume: 292
  start-page: 397
  year: 2020
  ident: 7985_CR29
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.11.016
– volume: 26
  start-page: 1832
  issue: 8
  year: 2013
  ident: 7985_CR6
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.06.003
– volume: 36
  start-page: 205
  issue: 3
  year: 2011
  ident: 7985_CR25
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9212-3
– volume: 80
  start-page: 758
  year: 1920
  ident: 7985_CR45
  publication-title: Monthly Not Roy Astron Soc
  doi: 10.1093/mnras/80.8.758
– ident: 7985_CR19
  doi: 10.1007/978-3-540-77600-0_5
– ident: 7985_CR24
  doi: 10.1007/978-3-319-33858-3_5
– volume: 192
  start-page: 697
  year: 2021
  ident: 7985_CR47
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2021.08.072
– ident: 7985_CR16
  doi: 10.1007/3-540-36175-8_32
– volume: 11
  start-page: 3449
  year: 2019
  ident: 7985_CR12
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-019-01540-7
– volume: 95
  year: 2020
  ident: 7985_CR43
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106642
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 7985_CR52
  publication-title: Evol Comput
  doi: 10.1162/evco.1999.7.3.205
– volume: 111
  start-page: 300
  year: 2020
  ident: 7985_CR42
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 258
  start-page: 1
  year: 2014
  ident: 7985_CR59
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.09.009
– volume: 187
  year: 2022
  ident: 7985_CR40
  publication-title: Expert Syst Appl
– volume-title: Function approximation repository
  year: 2000
  ident: 7985_CR57
– ident: 7985_CR22
  doi: 10.1007/978-3-030-04921-8_10
– volume: 10
  start-page: 1
  issue: 4
  year: 2016
  ident: 7985_CR11
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/2898359
– volume: 10
  start-page: 230
  issue: 3
  year: 2006
  ident: 7985_CR14
  publication-title: Soft Comput
  doi: 10.1007/s00500-005-0476-x
– ident: 7985_CR33
– volume: 61
  start-page: 163
  year: 2017
  ident: 7985_CR48
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2017.02.010
– volume: 13
  start-page: 57
  issue: 3
  year: 1992
  ident: 7985_CR2
  publication-title: AI Mag
– volume: 98
  start-page: 1
  issue: 1
  year: 2010
  ident: 7985_CR21
  publication-title: Fund Inform
– volume: 19
  start-page: 2071
  issue: 7
  year: 2015
  ident: 7985_CR13
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1393-7
– ident: 7985_CR3
  doi: 10.1145/170036.170072
– volume: 13
  start-page: 7448
  issue: 13
  year: 2021
  ident: 7985_CR39
  publication-title: Sustainability
  doi: 10.3390/su13137448
– volume: 1966
  year: 2021
  ident: 7985_CR41
  publication-title: J Phys Conf Ser
– volume: 11
  start-page: 3449
  issue: 8
  year: 2020
  ident: 7985_CR54
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-019-01540-7
– volume: 36
  start-page: 10016
  issue: 6
  year: 2009
  ident: 7985_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.067
– volume: 18
  start-page: 4
  issue: 1
  year: 2013
  ident: 7985_CR23
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2290086
– volume: 9
  start-page: 1307
  issue: 4
  year: 2019
  ident: 7985_CR26
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1307
– ident: 7985_CR28
– volume: 39
  start-page: 585
  issue: 1
  year: 2012
  ident: 7985_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.049
– volume-title: Orthogonal arrays: theory and applications
  year: 1999
  ident: 7985_CR49
  doi: 10.1007/978-1-4612-1478-6
– volume-title: Data mining techniques: for marketing, sales, and customer relationship management
  year: 2004
  ident: 7985_CR4
– volume: 14
  start-page: 1743
  year: 2020
  ident: 7985_CR51
  publication-title: Evol Intell
  doi: 10.1007/s12065-020-00451-3
– volume: 38
  start-page: 13378
  issue: 10
  year: 2011
  ident: 7985_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.166
– ident: 7985_CR34
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 7985_CR44
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 163
  start-page: 123
  issue: 1–3
  year: 2004
  ident: 7985_CR58
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2003.03.021
– volume: 16
  start-page: 213
  issue: 2
  year: 2008
  ident: 7985_CR7
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0104-4
– volume: 16
  start-page: 504
  issue: 4
  year: 2012
  ident: 7985_CR32
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2011.2161872
SSID ssj0004685
Score 2.3838558
Snippet Association rule mining (ARM) is defined by its crucial role in finding common pattern in data mining. It has different types such as fuzzy, binary, numerical....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6125
SubjectTerms Algorithms
Artificial Intelligence
Benchmarks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Machine learning
Multiple objective analysis
Optimization
Original Article
Probability and Statistics in Computer Science
Source code
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcOBCWUWhIB-4QaTGS5McK0TFCSGoUG-RHTulKEuVhf4-4ywtIECCsxdZHnvmjWfGD6FLIm3BNPUsHQhuMTWEK6Uks8gwIDqwuSPcmmzCub93p1PvoSkKy9ts9zYkWWnqVbGbecEE15eYbEnP5dZyE22BueOGsOHx6flDNWRFxAl-i8npYbQplfl-js_maI0xv4RFK2sz7v5vnXtot0GXeFQfh320oZMD1G2ZG3BzkQ_RYoTjVM1DwJ-4Sim0Uvlaqz4MwDPW0FxGCotolmbz4iXG5r0WmxhPOjPYHTdsEzMMoBcnZR33ibBYSxtnZaRzHFcMFEdoMr6d3NxZDfeCFYBDVlhKuopr23EEtaVgYcCpx4nmSkrOwlARFmot9GAoBKcAK0IBGtxzNVO2ZFzSY9RJ0kSfIOzBKDaQggwEnApwyEyg0hWeowOHUkF7yG4l4AfNv-SGHiPyVz8qVzvqw4761Y76yx66Wo1Z1L9y_Nq73wrWb25o7hND5uCAMwgLuG4FuW7-ebbTv3U_QzuGob5OW-ujTpGV-hxtB2_FPM8uqpP7Dkmg68o
  priority: 102
  providerName: Springer Nature
Title A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining
URI https://link.springer.com/article/10.1007/s00521-022-07985-w
https://www.proquest.com/docview/2780571483
Volume 35
WOSCitedRecordID wos000884201700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241217
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241217
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61wKEXnq26FJAP3MDqxo9NcqooAnFarShCiEvkV7ZU2c2yD_bvd-w4LCCVSy85JLET6Rvbn2fG8wEcM50o4XhOnVGSCtvDIWW1oKxnmDOJTFXWiE2k_X52d5cPosNtFtMq2zkxTNS2Nt5H_p354vspknf-Y_JIvWqUj65GCY2PsJ4w5PpozwN5_-JcZJDkxB2Mz-4RPB6aCUfnvD8U7zKfe5lnki5fL0wrtvkmQBrWncut__3jbdiMjJOcNSayAx_ceBe2WjUHEgf3HkzOyKi2DyVyUhLSDGmt_zTTIUEyOnL4eFFZoqohfmX-e0S8D5f4uE899HyeRAWKIUEiTMaLJhZUEbWyADJdVG5GRkGV4jPcXF7cnF_RqMdADW7S5tTqzEqXpKniiVaiNJLnkjlptZaiLC0TpXPKdXtKSY5Uo1Q4q-eZEzbRQmr-BdbG9dh9BZJjK9HVinUVWgoC54OXmcpTZ1LOFe9A0mJRmFir3EtmVMVzleWAX4H4FQG_YtmBk-c2k6ZSx7tvH7SgFXHUzooVYh04bWFfPf53b_vv9_YNPnmV-iZ17QDW5tOFO4QN8zR_mE2PYP3nRX9wfRRsF6_Xv27_AhUF9-E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvtLzEQik-tCew2PixSQ4IVdCqVcuqhz1UXCy_shRlN9t9sOJH8R8ZO0m3rURvPXCNY0uJvxnPeB4fwC4ziRae59RbLalwPRQpZwRlPcu8TWSqs5psIu33s_Pz_GwN_rS1MCGtstWJUVG7yoY78o8sNN9P0XjnnyeXNLBGhehqS6FRw-LE_16iyzb7dPwV93ePscODwZcj2rAKUIuuxpw6kznpkzTVPDFaFFbyXDIvnTFSFIVjovBe-25Pa8nxwCw06qY888IlRkjDcdkH8DAyd6H4nMnv18owIwMoOkwhmUjwpkYnVuqF61d8ykKqZ55Jurx5Dq6M21vx2HjMHW7-Zz9oC5409jTZrwXgKaz58TPYbLkqSKO6nsNkn4wqd1GgxU1iEiWtzM9a2RM0tUcehxelI7oc4kfNf4xIuKEmIapVDYO3Qhp-jSFBM5-MF3WkqyR6hW8yXZR-RkaRc-MFDO7js1_C-rga-1dAcpwlukazrkY5QBc0hGYznafeppxr3oGk3Xplm07sgRCkVFc9pCNcFMJFRbioZQfeX82Z1H1I7nx7u8WIanTSTK0A0oEPLcpWw_9e7fXdq72Dx0eDb6fq9Lh_8gY2GFqBdZLeNqzPpwv_Fh7ZX_OL2XQnigsBdc_o-wsu1VWe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbxYn1itmoM3Xezm0d09FrUoSilapLcl2WRrZR9lu2v_vsk-2ioqiOc8CMlMMpP5Zj4AzhE3GZHYMaTHqEFEW6mU4MRAbQ9Jz6QWswuyCavXs4dDp7-UxZ-j3auQZJHToKs0RenVRPhX88Q3_Zup3GCkkZOOTY3ZKljTgEUN6nt6flnKjMxJOZUPo_E9BJdpM9_P8flpWtibX0Kk-cvTrf9_zdtgq7Q6YacQkx2wIqNdUK8YHWCp4Htg0oFhLMa-skthDjU0Yv5WXIlQGaShVM1ZICALRnEyTl9DqP9xoY79xCNt08OShWIElTEMo6yIBwWQLaQAJlkgpzDMmSn2waB7O7i-M0pOBsNTjlpqCG4LKk3LYtjkjPgexQ5FkgrOKfF9gYgvJZOtNmMUK3PDZ-pmd2xJhMkJ5fgA1KI4kocAOmoUaXGGWkxJi3LUdADTZo4lPQtjhhvArE7D9cp65Zo2I3DnlZbzHXXVjrr5jrqzBriYj5kU1Tp-7d2sDtktNXfqIk3yYCknUS3gsjrURfPPsx39rfsZ2OjfdN3H-97DMdjUJPYFsq0JammSyROw7r2n42lymgv0B-QF95I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+multi-objective+slime+mould+algorithm+with+orthogonal+learning+for+numerical+association+rules+mining&rft.jtitle=Neural+computing+%26+applications&rft.au=Yacoubi%2C+Salma&rft.au=Manita%2C+Ghaith&rft.au=Amdouni%2C+Hamida&rft.au=Mirjalili%2C+Seyedali&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=8&rft.spage=6125&rft.epage=6151&rft_id=info:doi/10.1007%2Fs00521-022-07985-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon