Parameterized algorithms for minimum sum vertex cover
A minimum sum vertex cover of an n-vertex graph G is a bijection ϕ:V(G)→[n] that minimizes the cost ∑{u,v}∈E(G)min{ϕ(u),ϕ(v)}. Finding a minimum sum vertex cover of a graph (the MSVC problem) is NP-hard. MSVC is studied well in the realm of approximation algorithms. The best-known approximation fac...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 1029; s. 115032 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
02.03.2025
|
| Témata: | |
| ISSN: | 0304-3975 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A minimum sum vertex cover of an n-vertex graph G is a bijection ϕ:V(G)→[n] that minimizes the cost ∑{u,v}∈E(G)min{ϕ(u),ϕ(v)}. Finding a minimum sum vertex cover of a graph (the MSVC problem) is NP-hard. MSVC is studied well in the realm of approximation algorithms. The best-known approximation factor in polynomial time for the problem is 16/9 [Bansal, Batra, Farhadi, and Tetali, SODA 2021]. Recently, Stankovic [APPROX/RANDOM 2022] proved that achieving an approximation ratio better than 1.014 for MSVC is NP-hard, assuming the Unique Games Conjecture. We study the MSVC problem from the perspective of parameterized algorithms. The parameters we consider are the size of a minimum vertex cover and the size of a minimum clique modulator of the input graph. We obtain the following results.–MSVC can be solved in 22O(k)nO(1) time,where k is the size of a minimum vertex cover.–MSVC can be solved in f(k)⋅nO(1) time for some computable function f, where k is the size of a minimum clique modulator. |
|---|---|
| ISSN: | 0304-3975 |
| DOI: | 10.1016/j.tcs.2024.115032 |