Detecting discontinuity points from spectral data with the quotient-difference (qd) algorithm

This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 236; číslo 9; s. 2406 - 2424
Hlavní autori: Allouche, Hassane, Ghanou, Noura, Tigma, Khalid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2012
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the effects of the Gibbs phenomenon which appears near discontinuities and affects signal restitution. Our approach consists in moving from a discontinuity point detection problem to a pole detection problem, then adapting the quotient-difference (qd) algorithm in order to detect those discontinuity points.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2011.11.027