Detecting discontinuity points from spectral data with the quotient-difference (qd) algorithm

This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 236; číslo 9; s. 2406 - 2424
Hlavní autoři: Allouche, Hassane, Ghanou, Noura, Tigma, Khalid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2012
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the effects of the Gibbs phenomenon which appears near discontinuities and affects signal restitution. Our approach consists in moving from a discontinuity point detection problem to a pole detection problem, then adapting the quotient-difference (qd) algorithm in order to detect those discontinuity points.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2011.11.027