Detecting discontinuity points from spectral data with the quotient-difference (qd) algorithm
This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and applied mathematics Jg. 236; H. 9; S. 2406 - 2424 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2012
|
| Schlagworte: | |
| ISSN: | 0377-0427, 1879-1778 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the effects of the Gibbs phenomenon which appears near discontinuities and affects signal restitution. Our approach consists in moving from a discontinuity point detection problem to a pole detection problem, then adapting the quotient-difference (qd) algorithm in order to detect those discontinuity points. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2011.11.027 |