Detecting discontinuity points from spectral data with the quotient-difference (qd) algorithm
This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 236; číslo 9; s. 2406 - 2424 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2012
|
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper introduces a new technique for the localization of discontinuity points from spectral data. Through this work, we will be able to detect discontinuity points of a 2π-periodic piecewise smooth function from its Fourier coefficients. This could be useful in detecting edges and reducing the effects of the Gibbs phenomenon which appears near discontinuities and affects signal restitution. Our approach consists in moving from a discontinuity point detection problem to a pole detection problem, then adapting the quotient-difference (qd) algorithm in order to detect those discontinuity points. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2011.11.027 |