Secure model predictive static programming with initial value generator for online computational guidance of near-space vehicles
•Compared to the traditional initial value generator, a variable coefficient near-optimal initial value generator is proposed to obtain better initial values for trajectory optimization problems. The primary objective of initial value generator is to swiftly provide an initial control guess that clo...
Uloženo v:
| Vydáno v: | Aerospace science and technology Ročník 156; s. 109768 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Masson SAS
01.01.2025
|
| Témata: | |
| ISSN: | 1270-9638 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Compared to the traditional initial value generator, a variable coefficient near-optimal initial value generator is proposed to obtain better initial values for trajectory optimization problems. The primary objective of initial value generator is to swiftly provide an initial control guess that closely approximates the optimal trajectory, thereby preventing trajectory divergence in subsequent iterations.•Compared to the conventional and small-step local Euler discretization method for MPSP, a large-step global flipped-Radau pseudospectral method is developed for high efficiency discretization, and the original problem is directly optimized by performance index which improves online optimization efficiency.•Compared to the conventional MPSP method, an improved TR-MPSP method is proposed to ensure that the problem is solved within the feasible domain and constraints. Meanwhile, this approach guarantees the updated trajectory approximates reference trajectory, thereby significantly enhancing solution stability and optimization accuracy with the same number of iterations.
For online trajectory programming of near-space vehicles with limited computation resources, conventional model predictive static programming approaches have two main challenges. Firstly, an inadequate initial control guess can lead to trajectory divergence or slow convergence, resulting in mission failure. Secondly, Euler discretization is a small-step local algorithm by point-to-point recursion. To ensure high precision solution, more discretization points are required, leading to low computation efficiency and accuracy; meanwhile conventional methods cannot guarantee that the problems are solved within the constraints and feasible domains, potentially affecting the solution stability. To solve the first problem, a variable coefficient near-optimal initial value generator is developed to provide an initial control guess that approximates the optimal trajectory, preventing divergence in subsequent iterations. To address the second problem, the trust-region constrained model predictive static programming is proposed with flipped-Radau pseudospectrum. This method reduces the number of discretization points and optimizes the performance index directly, thereby enhancing efficiency; meanwhile the trust region improves accuracy and ensures the updated trajectory remains close to the reference trajectory. Finally, the combination of above approaches enhances the calculating efficiency and precision significantly for online trajectory programming. Applied to a near-space vehicle, the proposed method reduces optimization time by 25 % for rapid and high-precision solutions, and improves terminal position accuracy from 43 m to 1 m with flipped-Radau pseudospectrum. |
|---|---|
| AbstractList | •Compared to the traditional initial value generator, a variable coefficient near-optimal initial value generator is proposed to obtain better initial values for trajectory optimization problems. The primary objective of initial value generator is to swiftly provide an initial control guess that closely approximates the optimal trajectory, thereby preventing trajectory divergence in subsequent iterations.•Compared to the conventional and small-step local Euler discretization method for MPSP, a large-step global flipped-Radau pseudospectral method is developed for high efficiency discretization, and the original problem is directly optimized by performance index which improves online optimization efficiency.•Compared to the conventional MPSP method, an improved TR-MPSP method is proposed to ensure that the problem is solved within the feasible domain and constraints. Meanwhile, this approach guarantees the updated trajectory approximates reference trajectory, thereby significantly enhancing solution stability and optimization accuracy with the same number of iterations.
For online trajectory programming of near-space vehicles with limited computation resources, conventional model predictive static programming approaches have two main challenges. Firstly, an inadequate initial control guess can lead to trajectory divergence or slow convergence, resulting in mission failure. Secondly, Euler discretization is a small-step local algorithm by point-to-point recursion. To ensure high precision solution, more discretization points are required, leading to low computation efficiency and accuracy; meanwhile conventional methods cannot guarantee that the problems are solved within the constraints and feasible domains, potentially affecting the solution stability. To solve the first problem, a variable coefficient near-optimal initial value generator is developed to provide an initial control guess that approximates the optimal trajectory, preventing divergence in subsequent iterations. To address the second problem, the trust-region constrained model predictive static programming is proposed with flipped-Radau pseudospectrum. This method reduces the number of discretization points and optimizes the performance index directly, thereby enhancing efficiency; meanwhile the trust region improves accuracy and ensures the updated trajectory remains close to the reference trajectory. Finally, the combination of above approaches enhances the calculating efficiency and precision significantly for online trajectory programming. Applied to a near-space vehicle, the proposed method reduces optimization time by 25 % for rapid and high-precision solutions, and improves terminal position accuracy from 43 m to 1 m with flipped-Radau pseudospectrum. |
| ArticleNumber | 109768 |
| Author | Dai, Hong-Hua Wang, Yuan-Zhuo |
| Author_xml | – sequence: 1 givenname: Yuan-Zhuo surname: Wang fullname: Wang, Yuan-Zhuo organization: National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Shaanxi, Xian, 710072, China – sequence: 2 givenname: Hong-Hua surname: Dai fullname: Dai, Hong-Hua email: hhdai@nwpu.edu.cn organization: National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Shaanxi, Xian, 710072, China |
| BookMark | eNp9kM1OwzAMgHMYEhvwANzyAh3pz9pGnNDEnzSJA7tHmeN0mdqkStIibjw6mcaZg2XZ8mfZ34osrLNIyH3O1jnL64fTWoa4LlhRpZo3dbsgy7xoWMbrsr0mqxBOjLGCV8WS_HwiTB7p4BT2dPSoDEQzIw1RRgOp4zovh8HYjn6ZeKTGmmhkT2fZT0g7tOhldJ7qFM72xiIFN4zTGXc2DXaTUdICUqepRemzMMpUzXg00GO4JVda9gHv_vIN2b8877dv2e7j9X37tMugqHjMAMq24q3Um5oprVXTYFNrwKpqG76Rh1IxznjeHsqm4NCySlfYItQKGg5Kljckv6wF70LwqMXozSD9t8iZOFsTJ5GsibM1cbGWmMcLg-mu2aAXAQymV5TxCFEoZ_6hfwGrJX1r |
| Cites_doi | 10.1109/LRA.2022.3152696 10.1007/s11071-018-4105-5 10.2514/1.G002745 10.2514/1.61615 10.1016/j.paerosci.2018.07.004 10.3390/s22187066 10.1109/TAES.2023.3237796 10.1016/j.ast.2023.108137 10.1016/j.arcontrol.2021.04.013 10.3390/s22228723 10.1007/s11071-021-07038-2 10.1080/00207179.2023.2188644 10.1109/MCS.2024.3358624 10.1016/j.ast.2023.108732 10.1109/TAES.2022.3211245 10.1016/j.ast.2024.109112 10.2514/1.14367 10.1016/j.cja.2021.10.037 10.1016/j.paerosci.2019.05.003 10.2514/1.G000038 10.1109/TITS.2016.2535399 10.3390/a13010023 10.1016/j.apm.2023.09.018 10.1007/s00170-019-04421-7 10.1109/TNNLS.2019.2955400 10.1109/TSMCB.2012.2185694 10.1016/j.jprocont.2014.10.007 10.1016/j.ast.2023.108855 10.3390/aerospace9030135 10.3390/s21134603 10.2514/1.G007570 10.1016/j.jfranklin.2024.106849 10.1016/j.ast.2020.106134 10.2514/2.4231 10.2514/1.G002893 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2024.109768 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ast_2024_109768 S1270963824008976 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c249t-cc38498af560dffd77e76fce448795ab3d090918b3729c804f4e8ec6dc79cda3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001372039200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Sat Nov 29 02:39:58 EST 2025 Sat Dec 21 15:58:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Trajectory programming Optimal control Flipped-Radau pseudospectrum Model predictive static programming Near-space vehicle Near-optimal initial value generator |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-cc38498af560dffd77e76fce448795ab3d090918b3729c804f4e8ec6dc79cda3 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2024_109768 elsevier_sciencedirect_doi_10_1016_j_ast_2024_109768 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2025 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Wilt, Sands (bib0016) 2022; 22 Chai, Tsourdos, Savvaris, Chai, Xia, Chen (bib0004) 2020; 31 Ding, Yue, Chen, Si (bib0006) 2022; 35 Cai, Yue, Wang, Cui (bib0019) 2022; 107 le Roux, Padhi, Craig (bib0025) 2014; 24 Sagliano, Seelbinder, Theil, Lu (bib0003) 2024; 47 Sun, Chai, Chai, Zhang, Felicetti, Tsourdos (bib0007) 2024 Zhou, Yan, Tang (bib0033) 2020; 106 Sharma, Kumar, Padhi (bib0035) 2023; 59 Smeresky, Rizzo, Sands (bib0015) 2020; 13 Sandberg, Sands (bib0013) 2022; 9 Liu, Li, Xin (bib0036) 2023; 59 Padhi, Kothari (bib0023) 2009; 5 Halbe, Raja, Padhi (bib0030) 2014; 37 Badrikouhi, Bamdad (bib0020) 2024; 125 Lu, Wang, Weston, Chen, Yang (bib0005) 2016; 17 Zheng, Hong, Tang (bib0029) 2019 Cheng, Song, Wang, Li (bib0028) 2024; 145 Malyuta, Yu, Elango, Açıkmeşe (bib0011) 2021; 52 Vakanski, Mantegh, Irish, Janabi-Sharifi (bib0017) 2012; 42 Sands (bib0022) 2021; 21 Zhou (bib0034) 2023; 134 Lu (bib0001) 2017; 40 Padhi, Banerjee, Mathavaraj, Srianish (bib0024) 2024; 44 Raigoza, Sands (bib0014) 2022; 22 Wu, Wei, Zhang, Liu, Li (bib0008) 2024; 149 Betts (bib0009) 1998; 21 Ghasemi, Kashiri, Dardel (bib0021) 2012; 226 Mondal, Padhi (bib0032) 2018; 41 Lu, Doman, Schierman (bib0037) 2006; 29 Wang, Han, Lu (bib0038) 2024; 97 Chai, Savvaris, Tsourdos, Chai, Xia (bib0010) 2019; 109 Maity, Oza, Padhi (bib0031) 2014; 37 Liu, Cao, Qu, Cheng (bib0018) 2020; 107 Hameed, Bindu, Vutukuri (bib0027) 2024; 144 Li, Huang, Yang (bib0012) 2018; 102 Howell, Le Cleac'h, Singh, Florence, Manchester, Sindhwani (bib0002) 2022; 7 Zhang, Chin, Ławryńczuk (bib0026) 2018; 92 Liu (10.1016/j.ast.2024.109768_bib0018) 2020; 107 Sands (10.1016/j.ast.2024.109768_bib0022) 2021; 21 Vakanski (10.1016/j.ast.2024.109768_bib0017) 2012; 42 Hameed (10.1016/j.ast.2024.109768_bib0027) 2024; 144 Zheng (10.1016/j.ast.2024.109768_bib0029) 2019 Raigoza (10.1016/j.ast.2024.109768_bib0014) 2022; 22 Padhi (10.1016/j.ast.2024.109768_bib0023) 2009; 5 Wang (10.1016/j.ast.2024.109768_bib0038) 2024; 97 Malyuta (10.1016/j.ast.2024.109768_bib0011) 2021; 52 Mondal (10.1016/j.ast.2024.109768_bib0032) 2018; 41 Smeresky (10.1016/j.ast.2024.109768_bib0015) 2020; 13 Wu (10.1016/j.ast.2024.109768_bib0008) 2024; 149 Sun (10.1016/j.ast.2024.109768_bib0007) 2024 Lu (10.1016/j.ast.2024.109768_bib0001) 2017; 40 Li (10.1016/j.ast.2024.109768_bib0012) 2018; 102 Badrikouhi (10.1016/j.ast.2024.109768_bib0020) 2024; 125 Lu (10.1016/j.ast.2024.109768_bib0005) 2016; 17 Maity (10.1016/j.ast.2024.109768_bib0031) 2014; 37 Chai (10.1016/j.ast.2024.109768_bib0010) 2019; 109 Liu (10.1016/j.ast.2024.109768_bib0036) 2023; 59 Lu (10.1016/j.ast.2024.109768_bib0037) 2006; 29 Chai (10.1016/j.ast.2024.109768_bib0004) 2020; 31 Zhang (10.1016/j.ast.2024.109768_bib0026) 2018; 92 Ding (10.1016/j.ast.2024.109768_bib0006) 2022; 35 Halbe (10.1016/j.ast.2024.109768_bib0030) 2014; 37 Zhou (10.1016/j.ast.2024.109768_bib0033) 2020; 106 Sandberg (10.1016/j.ast.2024.109768_bib0013) 2022; 9 Cheng (10.1016/j.ast.2024.109768_bib0028) 2024; 145 Ghasemi (10.1016/j.ast.2024.109768_bib0021) 2012; 226 Sagliano (10.1016/j.ast.2024.109768_bib0003) 2024; 47 Sharma (10.1016/j.ast.2024.109768_bib0035) 2023; 59 Padhi (10.1016/j.ast.2024.109768_bib0024) 2024; 44 le Roux (10.1016/j.ast.2024.109768_bib0025) 2014; 24 Zhou (10.1016/j.ast.2024.109768_bib0034) 2023; 134 Howell (10.1016/j.ast.2024.109768_bib0002) 2022; 7 Wilt (10.1016/j.ast.2024.109768_bib0016) 2022; 22 Betts (10.1016/j.ast.2024.109768_bib0009) 1998; 21 Cai (10.1016/j.ast.2024.109768_bib0019) 2022; 107 |
| References_xml | – volume: 9 start-page: 135 year: 2022 ident: bib0013 article-title: Autonomous trajectory generation algorithms for spacecraft slew maneuvers publication-title: aerosp. – volume: 13 start-page: 23 year: 2020 ident: bib0015 article-title: Optimal learning and self-awareness versus PDI publication-title: Algorithms – start-page: 415 year: 2019 end-page: 420 ident: bib0029 article-title: Model predictive static programming rendezvous trajectory generation of unmanned aerial vehicles publication-title: 2019 IEEE International Conference on Unmanned Systems (ICUS) – volume: 22 start-page: 7066 year: 2022 ident: bib0014 article-title: Autonomous trajectory generation comparison for de-orbiting with multiple collision avoidance publication-title: Sensors – volume: 5 start-page: 399 year: 2009 end-page: 411 ident: bib0023 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design publication-title: Int. J. Innovat. Comput. Inf. Control – volume: 7 start-page: 6750 year: 2022 end-page: 6757 ident: bib0002 article-title: Trajectory optimization with optimization-based dynamics publication-title: IEEE Robot. Autom. Lett. – volume: 17 start-page: 2911 year: 2016 end-page: 2920 ident: bib0005 article-title: Partial train speed trajectory optimization using mixed-integer linear programming publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 21 start-page: 4603 year: 2021 ident: bib0022 article-title: Virtual sensoring of motion using pontryagin's treatment of hamiltonian systems publication-title: Sensors – volume: 59 start-page: 3982 year: 2023 end-page: 3994 ident: bib0035 article-title: Pseudo-spectral MPSP-based unified midcourse and terminal guidance for reentry targets publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 107 start-page: 2309 year: 2022 end-page: 2326 ident: bib0019 article-title: Hierarchical motion planning at the acceleration level based on task priority matrix for space robot publication-title: Nonlinear Dyn. – volume: 31 start-page: 5005 year: 2020 end-page: 5013 ident: bib0004 article-title: Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach publication-title: IEEE Trans Neural. Netw. Learn. Syst. – volume: 107 start-page: 1091 year: 2020 end-page: 1099 ident: bib0018 article-title: An Improved PSO algorithm for time-optimal trajectory planning of delta robot in intelligent packaging publication-title: Int. J. Adv. Manuf. Technol. – volume: 92 start-page: 1001 year: 2018 end-page: 1021 ident: bib0026 article-title: Nonlinear model predictive control based on piecewise linear hammerstein models publication-title: Nonlinear Dyn. – year: 2024 ident: bib0007 article-title: Convex-concave optimization for a launch vehicle ascent trajectory with chance constraints publication-title: J. Franklin Inst. – volume: 134 year: 2023 ident: bib0034 article-title: Active-set pseudospectral model predictive static programming for midcourse guidance publication-title: Aerosp. Sci. Technol. – volume: 22 start-page: 8723 year: 2022 ident: bib0016 article-title: Microsatellite uncertainty control using deterministic artificial intelligence publication-title: Sensors – volume: 24 start-page: 29 year: 2014 end-page: 40 ident: bib0025 article-title: Optimal control of grinding mill circuit using model predictive static programming: a new nonlinear MPC paradigm publication-title: J. Process Control – volume: 37 start-page: 134 year: 2014 end-page: 148 ident: bib0030 article-title: Robust reentry guidance of a reusable launch vehicle using model predictive static programming publication-title: J. Guid. Control. Dyn. – volume: 109 year: 2019 ident: bib0010 article-title: A review of optimization techniques in spacecraft flight trajectory design publication-title: Prog. Aerosp. Sci. – volume: 145 year: 2024 ident: bib0028 article-title: A model predictive solution to cooperative guidance of hypersonic reentry vehicle with impact angle and distance coordination publication-title: Aerosp. Sci. Technol. – volume: 47 start-page: 20 year: 2024 end-page: 35 ident: bib0003 article-title: Six-degree-of-freedom rocket landing optimization via augmented convex–concave decomposition publication-title: J. Guid. Control. Dyn. – volume: 52 start-page: 282 year: 2021 end-page: 315 ident: bib0011 article-title: Advances in trajectory optimization for space vehicle control publication-title: Annu. Rev. Control – volume: 226 start-page: 473 year: 2012 end-page: 484 ident: bib0021 article-title: Time-optimal trajectory planning of robot manipulators in point-to-point motion using an indirect method publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 37 start-page: 1897 year: 2014 end-page: 1913 ident: bib0031 article-title: Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles publication-title: J. Guid. Control Dyn. – volume: 29 start-page: 269 year: 2006 end-page: 278 ident: bib0037 article-title: Adaptive terminal guidance for hypervelocity impact in specified direction publication-title: J. Guid. Control. Dyn. – volume: 144 year: 2024 ident: bib0027 article-title: Approach and landing guidance using constrained model predictive static programming publication-title: Aerosp. Sci. Technol. – volume: 42 start-page: 1039 year: 2012 end-page: 1052 ident: bib0017 article-title: Trajectory learning for robot programming by demonstration using hidden markov model and dynamic time warping publication-title: IEEE Transact. Syst. Man, and Cybernetics, Part B (Cybernetics) – volume: 44 start-page: 55 year: 2024 end-page: 80 ident: bib0024 article-title: Computational guidance using model predictive static programming for challenging space missions: an introductory tutorial with example scenarios publication-title: IEEE Control Systems – volume: 35 start-page: 1 year: 2022 end-page: 18 ident: bib0006 article-title: Review of control and guidance technology on hypersonic vehicle publication-title: Chin. J. Aeronaut. – volume: 41 start-page: 779 year: 2018 end-page: 787 ident: bib0032 article-title: Angle-constrained terminal guidance using quasi-spectral model predictive static programming publication-title: J. Guid. Control. Dyn. – volume: 125 start-page: 210 year: 2024 end-page: 229 ident: bib0020 article-title: Design, modelling, implementation, and trajectory planning of a 3-DOF cable driven parallel robot publication-title: Appl. Math. Model. – volume: 59 start-page: 2232 year: 2023 end-page: 2244 ident: bib0036 article-title: Pseudospectral convex optimization based model predictive static programming for constrained guidance publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 40 start-page: 193 year: 2017 ident: bib0001 article-title: Introducing computational guidance and control publication-title: J. Guid. Control Dyn. – volume: 21 start-page: 193 year: 1998 end-page: 207 ident: bib0009 article-title: Survey of numerical methods for trajectory optimization publication-title: J. Guid. Control. Dyn. – volume: 106 year: 2020 ident: bib0033 article-title: Generalized quasi-spectral model predictive static programming method using gaussian quadrature collocation publication-title: Aerosp. Sci. Technol. – volume: 102 start-page: 60 year: 2018 end-page: 75 ident: bib0012 article-title: Review of optimization methodologies in global and china trajectory optimization competitions publication-title: Prog. Aerosp. Sci. – volume: 149 year: 2024 ident: bib0008 article-title: Learning-based spacecraft multi-constraint rapid trajectory planning for emergency collision avoidance publication-title: Aerosp. Sci. Technol. – volume: 97 start-page: 999 year: 2024 end-page: 1013 ident: bib0038 article-title: Improved time-optimal static programming algorithm for hypersonic vehicle publication-title: Int. J. Control – volume: 7 start-page: 6750 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0002 article-title: Trajectory optimization with optimization-based dynamics publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3152696 – volume: 92 start-page: 1001 year: 2018 ident: 10.1016/j.ast.2024.109768_bib0026 article-title: Nonlinear model predictive control based on piecewise linear hammerstein models publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4105-5 – volume: 40 start-page: 193 year: 2017 ident: 10.1016/j.ast.2024.109768_bib0001 article-title: Introducing computational guidance and control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G002745 – volume: 37 start-page: 134 year: 2014 ident: 10.1016/j.ast.2024.109768_bib0030 article-title: Robust reentry guidance of a reusable launch vehicle using model predictive static programming publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.61615 – volume: 102 start-page: 60 year: 2018 ident: 10.1016/j.ast.2024.109768_bib0012 article-title: Review of optimization methodologies in global and china trajectory optimization competitions publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.07.004 – volume: 22 start-page: 7066 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0014 article-title: Autonomous trajectory generation comparison for de-orbiting with multiple collision avoidance publication-title: Sensors doi: 10.3390/s22187066 – volume: 59 start-page: 3982 year: 2023 ident: 10.1016/j.ast.2024.109768_bib0035 article-title: Pseudo-spectral MPSP-based unified midcourse and terminal guidance for reentry targets publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2023.3237796 – volume: 134 year: 2023 ident: 10.1016/j.ast.2024.109768_bib0034 article-title: Active-set pseudospectral model predictive static programming for midcourse guidance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108137 – volume: 52 start-page: 282 year: 2021 ident: 10.1016/j.ast.2024.109768_bib0011 article-title: Advances in trajectory optimization for space vehicle control publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2021.04.013 – volume: 22 start-page: 8723 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0016 article-title: Microsatellite uncertainty control using deterministic artificial intelligence publication-title: Sensors doi: 10.3390/s22228723 – volume: 107 start-page: 2309 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0019 article-title: Hierarchical motion planning at the acceleration level based on task priority matrix for space robot publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07038-2 – volume: 97 start-page: 999 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0038 article-title: Improved time-optimal static programming algorithm for hypersonic vehicle publication-title: Int. J. Control doi: 10.1080/00207179.2023.2188644 – volume: 44 start-page: 55 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0024 article-title: Computational guidance using model predictive static programming for challenging space missions: an introductory tutorial with example scenarios publication-title: IEEE Control Systems doi: 10.1109/MCS.2024.3358624 – volume: 144 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0027 article-title: Approach and landing guidance using constrained model predictive static programming publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108732 – volume: 59 start-page: 2232 year: 2023 ident: 10.1016/j.ast.2024.109768_bib0036 article-title: Pseudospectral convex optimization based model predictive static programming for constrained guidance publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2022.3211245 – volume: 149 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0008 article-title: Learning-based spacecraft multi-constraint rapid trajectory planning for emergency collision avoidance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109112 – volume: 29 start-page: 269 year: 2006 ident: 10.1016/j.ast.2024.109768_bib0037 article-title: Adaptive terminal guidance for hypervelocity impact in specified direction publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.14367 – volume: 35 start-page: 1 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0006 article-title: Review of control and guidance technology on hypersonic vehicle publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.10.037 – volume: 109 year: 2019 ident: 10.1016/j.ast.2024.109768_bib0010 article-title: A review of optimization techniques in spacecraft flight trajectory design publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2019.05.003 – volume: 37 start-page: 1897 year: 2014 ident: 10.1016/j.ast.2024.109768_bib0031 article-title: Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000038 – volume: 17 start-page: 2911 year: 2016 ident: 10.1016/j.ast.2024.109768_bib0005 article-title: Partial train speed trajectory optimization using mixed-integer linear programming publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2535399 – volume: 13 start-page: 23 year: 2020 ident: 10.1016/j.ast.2024.109768_bib0015 article-title: Optimal learning and self-awareness versus PDI publication-title: Algorithms doi: 10.3390/a13010023 – volume: 125 start-page: 210 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0020 article-title: Design, modelling, implementation, and trajectory planning of a 3-DOF cable driven parallel robot publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.09.018 – volume: 107 start-page: 1091 year: 2020 ident: 10.1016/j.ast.2024.109768_bib0018 article-title: An Improved PSO algorithm for time-optimal trajectory planning of delta robot in intelligent packaging publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-04421-7 – volume: 31 start-page: 5005 year: 2020 ident: 10.1016/j.ast.2024.109768_bib0004 article-title: Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach publication-title: IEEE Trans Neural. Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2955400 – volume: 42 start-page: 1039 year: 2012 ident: 10.1016/j.ast.2024.109768_bib0017 article-title: Trajectory learning for robot programming by demonstration using hidden markov model and dynamic time warping publication-title: IEEE Transact. Syst. Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2012.2185694 – volume: 24 start-page: 29 year: 2014 ident: 10.1016/j.ast.2024.109768_bib0025 article-title: Optimal control of grinding mill circuit using model predictive static programming: a new nonlinear MPC paradigm publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.10.007 – volume: 145 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0028 article-title: A model predictive solution to cooperative guidance of hypersonic reentry vehicle with impact angle and distance coordination publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108855 – start-page: 415 year: 2019 ident: 10.1016/j.ast.2024.109768_bib0029 article-title: Model predictive static programming rendezvous trajectory generation of unmanned aerial vehicles – volume: 9 start-page: 135 year: 2022 ident: 10.1016/j.ast.2024.109768_bib0013 article-title: Autonomous trajectory generation algorithms for spacecraft slew maneuvers publication-title: aerosp. doi: 10.3390/aerospace9030135 – volume: 21 start-page: 4603 year: 2021 ident: 10.1016/j.ast.2024.109768_bib0022 article-title: Virtual sensoring of motion using pontryagin's treatment of hamiltonian systems publication-title: Sensors doi: 10.3390/s21134603 – volume: 5 start-page: 399 year: 2009 ident: 10.1016/j.ast.2024.109768_bib0023 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design publication-title: Int. J. Innovat. Comput. Inf. Control – volume: 226 start-page: 473 year: 2012 ident: 10.1016/j.ast.2024.109768_bib0021 article-title: Time-optimal trajectory planning of robot manipulators in point-to-point motion using an indirect method – volume: 47 start-page: 20 year: 2024 ident: 10.1016/j.ast.2024.109768_bib0003 article-title: Six-degree-of-freedom rocket landing optimization via augmented convex–concave decomposition publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.G007570 – year: 2024 ident: 10.1016/j.ast.2024.109768_bib0007 article-title: Convex-concave optimization for a launch vehicle ascent trajectory with chance constraints publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2024.106849 – volume: 106 year: 2020 ident: 10.1016/j.ast.2024.109768_bib0033 article-title: Generalized quasi-spectral model predictive static programming method using gaussian quadrature collocation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106134 – volume: 21 start-page: 193 year: 1998 ident: 10.1016/j.ast.2024.109768_bib0009 article-title: Survey of numerical methods for trajectory optimization publication-title: J. Guid. Control. Dyn. doi: 10.2514/2.4231 – volume: 41 start-page: 779 year: 2018 ident: 10.1016/j.ast.2024.109768_bib0032 article-title: Angle-constrained terminal guidance using quasi-spectral model predictive static programming publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.G002893 |
| SSID | ssj0002942 |
| Score | 2.393084 |
| Snippet | •Compared to the traditional initial value generator, a variable coefficient near-optimal initial value generator is proposed to obtain better initial values... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109768 |
| SubjectTerms | Flipped-Radau pseudospectrum Model predictive static programming Near-optimal initial value generator Near-space vehicle Optimal control Trajectory programming |
| Title | Secure model predictive static programming with initial value generator for online computational guidance of near-space vehicles |
| URI | https://dx.doi.org/10.1016/j.ast.2024.109768 |
| Volume | 156 |
| WOSCitedRecordID | wos001372039200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0M7FH2i6Qs3dCrAQJUpkRyNIkXaIejgwe0iUHwkDlo5SCwjY396j6QoyWkCNEMXwZZlSuB9Oh4_frwj5H1tWWmE1dQYWVJWOkHFR62pLOpMWMsxwmeh2AQ_PhbLpfw2mWzTXpjtT9404upKnv9XU-M5NLbfOnsHc_eN4gn8jEbHI5odj_9k-MCg21jixqcAMKvg0jxp4JOzdoKsXz0Ju_LyITSUT_ttfUVlG1beg_4w5tEIuvN2k2jDk3ZlwkYDrwHB3qPolPDb1p4Gid043J1bHITDr2n7UBBs3kDnR5fzvVUN_XHargcCPVbVXjcn9KhVY44iL0YcRXSrOc-of9V3_G4x9px-JTwW2PnLqUd-4exAXXrxa84Ohmt3E2hfG9h6uWFSsp1V2ETlm6hiE_fIXs4LKaZkb_7lcPm1H8NzGcou9c-d1sODMvDac9wc0YyilMVj8qibXsA8wuIJmdjmKXk4Sjr5jPyOAIEAEBgAAhEgMAIIeIBABxAIAIEeIIAAgQgQ2AEIJIDA2sEAEEgAeU4Wnw8Xn45oV4eDapycb6jWM8GkUA6jY-Oc4dzy0mmLM3suC1XPTCYx7BS1XwLWImOOWXz9S6O51EbNXpBps27sSwJMMc3wYsdxZu5UXc9yU6o6U0qYrKjlPvmQurI6j9lWqluNt09Y6uyqA3EMAysEzu1_e3WXe7wmDwY8vyHTzUVr35L7ertZXV6861DzB4cYkn8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+model+predictive+static+programming+with+initial+value+generator+for+online+computational+guidance+of+near-space+vehicles&rft.jtitle=Aerospace+science+and+technology&rft.au=Wang%2C+Yuan-Zhuo&rft.au=Dai%2C+Hong-Hua&rft.date=2025-01-01&rft.issn=1270-9638&rft.volume=156&rft.spage=109768&rft_id=info:doi/10.1016%2Fj.ast.2024.109768&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2024_109768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |