Strongly Polynomial FPTASes for Monotone Dynamic Programs
In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 84; číslo 10; s. 2785 - 2819 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of
K
-approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting
s
-
t
paths, Mobile agent routing and Counting
n
-tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs. |
|---|---|
| AbstractList | In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K-approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s-t paths, Mobile agent routing and Counting n-tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs. In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K -approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s - t paths, Mobile agent routing and Counting n -tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs. |
| Author | Halman, Nir Alon, Tzvi |
| Author_xml | – sequence: 1 givenname: Tzvi surname: Alon fullname: Alon, Tzvi organization: Hebrew University of Jerusalem – sequence: 2 givenname: Nir orcidid: 0000-0002-6098-9792 surname: Halman fullname: Halman, Nir email: halman@biu.ac.il organization: Bar-Ilan University |
| BookMark | eNp9kF1LwzAUhoNMcFP_gFcFr6snH23SyzGdChMHm9chTZPR0SYz6S767-2sIHixq8OB9znv4ZmhifPOIHSH4QED8McIwDKaAiEpQJGxVFygKWZ0WDOGJ2gKmIuU5ZhfoVmMewBMeJFPUbHpgne7pk_Wvumdb2vVJMv1dr4xMbE-JO_e-W4oS556p9paJ-vgd0G18QZdWtVEc_s7r9Hn8nm7eE1XHy9vi_kq1YQVXapLw0xpIc8qIjJbFjrnolCAaVlqSm1ulS2tAVyUwI3IMkEEMFFVtsJUW0Ov0f149xD819HETu79MbihUhKOC04Jw2JIkTGlg48xGCsPoW5V6CUGeVIkR0VyUCR_FMkTJP5Buu5UV3vXBVU351E6onHocTsT_r46Q30DZlF85A |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2025_05_024 crossref_primary_10_1016_j_tcs_2024_114910 crossref_primary_10_1007_s10479_023_05265_x crossref_primary_10_1016_j_dam_2025_08_008 |
| Cites_doi | 10.1016/j.disopt.2017.11.001 10.1287/moor.1090.0391 10.1023/A:1009626427432 10.1145/2422.322418 10.1287/opre.1120.1093 10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6 10.1007/s11590-018-1251-0 10.1287/moor.1080.0330 10.1016/j.tcs.2016.06.015 10.1016/j.ic.2019.04.001 10.1137/130925153 10.1504/IJPS.2012.050127 10.1016/j.ejor.2018.04.013 10.1023/B:JOCO.0000021934.29833.6b 10.1287/ijoc.12.1.57.11901 10.1145/321906.321909 10.1007/s10951-019-00616-8 10.1007/s00291-018-0543-1 10.1002/nav.3800030106 10.1016/j.tcs.2007.03.006 10.1137/11083976X 10.1137/19M1308633 10.1137/18M1208423 10.1007/s10107-007-0189-2 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-022-00954-8 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 2819 |
| ExternalDocumentID | 10_1007_s00453_022_00954_8 |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1074/21 funderid: http://dx.doi.org/10.13039/501100003977 – fundername: Israel Science Foundation funderid: http://dx.doi.org/10.13039/501100003977 – fundername: Israel Science Foundation grantid: 399/17 funderid: http://dx.doi.org/10.13039/501100003977 – fundername: United States - Israel Binational Science Foundation grantid: 2018095 funderid: http://dx.doi.org/10.13039/100006221 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c249t-cbe4ebf065d285fb9c6789a013bbc33f6fafbfe019b07e855828048ddfd13cfe3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805040100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Thu Oct 02 15:04:35 EDT 2025 Tue Nov 18 21:55:46 EST 2025 Sat Nov 29 02:20:33 EST 2025 Fri Feb 21 02:44:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Strongly polynomial algorithms approximation sets and functions Dynamic programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-cbe4ebf065d285fb9c6789a013bbc33f6fafbfe019b07e855828048ddfd13cfe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6098-9792 |
| PQID | 2719732418 |
| PQPubID | 2043795 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2719732418 crossref_primary_10_1007_s00453_022_00954_8 crossref_citationtrail_10_1007_s00453_022_00954_8 springer_journals_10_1007_s00453_022_00954_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MittalSSchultzAA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361386397304611710.1287/opre.1120.1093 HalmanNA technical note: fully polynomial time approximation schemes for minimizing makespan of deteriorating jobs with non-linear processing timesJ. Sched.2020236643648418200010.1007/s10951-019-00616-8 IbaraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.321909 KovalyovMYKubiakWA fully polynomial approximation scheme for minimizing makespan of deteriorating jobsJ. Heuristics19983428729710.1023/A:1009626427432 BertsekasDDynamic programming and optimal control1995MAAthena scientific Belmont0904.90170 OrlinJA faster strongly polynomial time algorithm for submodular function minimizationMath. Program.20091182237251247079010.1007/s10107-007-0189-2 ŠtefankovičDVempalaSVigodaEA deterministic polynomial-time approximation scheme for counting knapsack solutionsSIAM J. Comput.201241356366291433110.1137/11083976X DeanBGoemansMVondrákJApproximating the stochastic knapsack problem: the benefit of adaptivityMath. Oper. Res.2008334945964246465310.1287/moor.1080.0330 LevnerEElaloufAChengTCAn improved FPTAS for mobile agent routing with time constraintsJ. Univ. Comput. Sci.201117131854186228790181247.68021 HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829 Gawrychowski, P., Markin, L., Weimann, O.: A faster FPTAS for # knapsack. arXiv:1802.05791 (2018) Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., Zofi, M.: Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum 41(2), 469–489 (2019) Díaz-NúñezFHalmanNVásquezÓThe TV advertisements scheduling problemOptim. Lett.20191318194390207710.1007/s11590-018-1251-0 SmithWVarious optimizers for single-stage productionNaval Res. Logist. Q.195631–259668910910.1002/nav.3800030106 GareyMRJohnsonDSComputers and Intractability: a Guide to the Theory of NP-Completeness1979New YorkW.H. Freeman0411.68039 HalmanNKellererHStrusevichVApproximation schemes for non-separable non-linear Boolean programming problems under nested knapsack constraintsEur. J. Oper. Res.20182702435447380708810.1016/j.ejor.2018.04.013 HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional actions and scalar statesSIAM J. Optim.201929211311163393933810.1137/18M1208423 KovalyovMvan de VeldeSScheduling deteriorating jobs to minimize makespanNav. Res. Logist.1998455511523163870510.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6 HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discret. Math.20142817251796326860410.1137/130925153 KovalyovMYKubiakWA Generic FPTAS For Partition Type Optimization ProblemsInt. J. Plann. Schedul.2012120923310.1504/IJPS.2012.050127 WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000125774176468610.1287/ijoc.12.1.57.11901 Alon, T.: Fully polynomial time approximation schemes (FPTAS) for some counting problems. Master’s thesis. arXiv preprintarXiv:1611.00992 (2016) HalmanNNanniciniGOrlinJOn the complexity of energy storage problemsDiscret. Optim.2018283153379903510.1016/j.disopt.2017.11.001 Hochbaum, D.: Various notions of approximations: good, better, best, and more. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard problems, PWS Publishing Company, Boston (1997) RizziRTomescuAFaster FPTASes for counting and random generation of knapsack solutionsInf. Comput.2019267135144395863010.1016/j.ic.2019.04.001 AlonTHalmanNAutomatic generation of FPTASes for stochastic monotone dynamic programs made easierSIAM J. Discret. Math.20213526792722433562410.1137/19M1308633 PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheoret. Comput. Sci.2007382151156235211010.1016/j.tcs.2007.03.006 Chan, T.M.: Approximation schemes for 0–1 knapsack. In: Proceedings of the 1st Symposium of Simplicity in Algorithms (SOSA), pp. 5:1–5:12. (2018) Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer Science & Business Media (2012) HalmanNA deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easyTheor. Comput. Sci.20166454147354195610.1016/j.tcs.2016.06.015 CamponogaraEShimaRBMobile agent routing with time constraints: a resource constrained longest-path approachJ. Univ. Comput. Sci.20101633724011216.68302 MegiddoNLinear programming in linear time when the dimension is fixedJ. ACM (JACM)198431111412782138810.1145/2422.322418 HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demandMath. Oper. Res.200934674685255534210.1287/moor.1090.0391 KellererHPferschyUImproved dynamic programming in connection with an FPTAS for the knapsack problemJ. Comb. Optim.20048511205812910.1023/B:JOCO.0000021934.29833.6b N Halman (954_CR14) 2014; 28 M Kovalyov (954_CR24) 1998; 45 B Dean (954_CR6) 2008; 33 954_CR5 954_CR1 K Pruhs (954_CR30) 2007; 382 E Levner (954_CR26) 2011; 17 N Halman (954_CR11) 2016; 645 N Megiddo (954_CR27) 1984; 31 954_CR20 GJ Woeginger (954_CR34) 2000; 12 J Orlin (954_CR29) 2009; 118 E Camponogara (954_CR4) 2010; 16 N Halman (954_CR18) 2009; 34 W Smith (954_CR32) 1956; 3 N Halman (954_CR12) 2020; 23 MY Kovalyov (954_CR22) 1998; 3 T Alon (954_CR2) 2021; 35 H Kellerer (954_CR25) 2004; 8 N Halman (954_CR13) 2020; 32 S Mittal (954_CR28) 2013; 61 D Bertsekas (954_CR3) 1995 N Halman (954_CR15) 2018; 270 OH Ibara (954_CR21) 1975; 22 N Halman (954_CR17) 2019; 29 954_CR10 R Rizzi (954_CR31) 2019; 267 MR Garey (954_CR8) 1979 MY Kovalyov (954_CR23) 2012; 1 N Halman (954_CR16) 2018; 28 F Díaz-Núñez (954_CR7) 2019; 13 954_CR19 954_CR9 D Štefankovič (954_CR33) 2012; 41 |
| References_xml | – reference: GareyMRJohnsonDSComputers and Intractability: a Guide to the Theory of NP-Completeness1979New YorkW.H. Freeman0411.68039 – reference: Gawrychowski, P., Markin, L., Weimann, O.: A faster FPTAS for # knapsack. arXiv:1802.05791 (2018) – reference: HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional actions and scalar statesSIAM J. Optim.201929211311163393933810.1137/18M1208423 – reference: Hochbaum, D.: Various notions of approximations: good, better, best, and more. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard problems, PWS Publishing Company, Boston (1997) – reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheoret. Comput. Sci.2007382151156235211010.1016/j.tcs.2007.03.006 – reference: Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer Science & Business Media (2012) – reference: HalmanNA technical note: fully polynomial time approximation schemes for minimizing makespan of deteriorating jobs with non-linear processing timesJ. Sched.2020236643648418200010.1007/s10951-019-00616-8 – reference: Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., Zofi, M.: Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum 41(2), 469–489 (2019) – reference: RizziRTomescuAFaster FPTASes for counting and random generation of knapsack solutionsInf. Comput.2019267135144395863010.1016/j.ic.2019.04.001 – reference: HalmanNNanniciniGOrlinJOn the complexity of energy storage problemsDiscret. Optim.2018283153379903510.1016/j.disopt.2017.11.001 – reference: KovalyovMYKubiakWA fully polynomial approximation scheme for minimizing makespan of deteriorating jobsJ. Heuristics19983428729710.1023/A:1009626427432 – reference: KovalyovMvan de VeldeSScheduling deteriorating jobs to minimize makespanNav. Res. Logist.1998455511523163870510.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6 – reference: Chan, T.M.: Approximation schemes for 0–1 knapsack. In: Proceedings of the 1st Symposium of Simplicity in Algorithms (SOSA), pp. 5:1–5:12. (2018) – reference: BertsekasDDynamic programming and optimal control1995MAAthena scientific Belmont0904.90170 – reference: MegiddoNLinear programming in linear time when the dimension is fixedJ. ACM (JACM)198431111412782138810.1145/2422.322418 – reference: Díaz-NúñezFHalmanNVásquezÓThe TV advertisements scheduling problemOptim. Lett.20191318194390207710.1007/s11590-018-1251-0 – reference: ŠtefankovičDVempalaSVigodaEA deterministic polynomial-time approximation scheme for counting knapsack solutionsSIAM J. Comput.201241356366291433110.1137/11083976X – reference: WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000125774176468610.1287/ijoc.12.1.57.11901 – reference: MittalSSchultzAA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361386397304611710.1287/opre.1120.1093 – reference: AlonTHalmanNAutomatic generation of FPTASes for stochastic monotone dynamic programs made easierSIAM J. Discret. Math.20213526792722433562410.1137/19M1308633 – reference: CamponogaraEShimaRBMobile agent routing with time constraints: a resource constrained longest-path approachJ. Univ. Comput. Sci.20101633724011216.68302 – reference: LevnerEElaloufAChengTCAn improved FPTAS for mobile agent routing with time constraintsJ. Univ. Comput. Sci.201117131854186228790181247.68021 – reference: HalmanNKellererHStrusevichVApproximation schemes for non-separable non-linear Boolean programming problems under nested knapsack constraintsEur. J. Oper. Res.20182702435447380708810.1016/j.ejor.2018.04.013 – reference: KellererHPferschyUImproved dynamic programming in connection with an FPTAS for the knapsack problemJ. Comb. Optim.20048511205812910.1023/B:JOCO.0000021934.29833.6b – reference: HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discret. Math.20142817251796326860410.1137/130925153 – reference: SmithWVarious optimizers for single-stage productionNaval Res. Logist. Q.195631–259668910910.1002/nav.3800030106 – reference: DeanBGoemansMVondrákJApproximating the stochastic knapsack problem: the benefit of adaptivityMath. Oper. Res.2008334945964246465310.1287/moor.1080.0330 – reference: HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829 – reference: HalmanNA deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easyTheor. Comput. Sci.20166454147354195610.1016/j.tcs.2016.06.015 – reference: HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demandMath. Oper. Res.200934674685255534210.1287/moor.1090.0391 – reference: OrlinJA faster strongly polynomial time algorithm for submodular function minimizationMath. Program.20091182237251247079010.1007/s10107-007-0189-2 – reference: Alon, T.: Fully polynomial time approximation schemes (FPTAS) for some counting problems. Master’s thesis. arXiv preprintarXiv:1611.00992 (2016) – reference: IbaraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.321909 – reference: KovalyovMYKubiakWA Generic FPTAS For Partition Type Optimization ProblemsInt. J. Plann. Schedul.2012120923310.1504/IJPS.2012.050127 – volume: 28 start-page: 31 year: 2018 ident: 954_CR16 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2017.11.001 – volume: 34 start-page: 674 year: 2009 ident: 954_CR18 publication-title: Math. Oper. Res. doi: 10.1287/moor.1090.0391 – volume: 3 start-page: 287 issue: 4 year: 1998 ident: 954_CR22 publication-title: J. Heuristics doi: 10.1023/A:1009626427432 – volume: 31 start-page: 114 issue: 1 year: 1984 ident: 954_CR27 publication-title: J. ACM (JACM) doi: 10.1145/2422.322418 – volume: 61 start-page: 386 year: 2013 ident: 954_CR28 publication-title: Oper. Res. doi: 10.1287/opre.1120.1093 – volume: 45 start-page: 511 issue: 5 year: 1998 ident: 954_CR24 publication-title: Nav. Res. Logist. doi: 10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6 – volume: 13 start-page: 81 issue: 1 year: 2019 ident: 954_CR7 publication-title: Optim. Lett. doi: 10.1007/s11590-018-1251-0 – volume: 33 start-page: 945 issue: 4 year: 2008 ident: 954_CR6 publication-title: Math. Oper. Res. doi: 10.1287/moor.1080.0330 – volume: 645 start-page: 41 year: 2016 ident: 954_CR11 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2016.06.015 – volume: 267 start-page: 135 year: 2019 ident: 954_CR31 publication-title: Inf. Comput. doi: 10.1016/j.ic.2019.04.001 – ident: 954_CR9 – volume: 28 start-page: 1725 year: 2014 ident: 954_CR14 publication-title: SIAM J. Discret. Math. doi: 10.1137/130925153 – volume: 1 start-page: 209 year: 2012 ident: 954_CR23 publication-title: Int. J. Plann. Schedul. doi: 10.1504/IJPS.2012.050127 – ident: 954_CR1 – volume: 270 start-page: 435 issue: 2 year: 2018 ident: 954_CR15 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.04.013 – volume: 8 start-page: 5 year: 2004 ident: 954_CR25 publication-title: J. Comb. Optim. doi: 10.1023/B:JOCO.0000021934.29833.6b – volume: 17 start-page: 1854 issue: 13 year: 2011 ident: 954_CR26 publication-title: J. Univ. Comput. Sci. – volume: 12 start-page: 57 year: 2000 ident: 954_CR34 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.12.1.57.11901 – ident: 954_CR5 – volume: 22 start-page: 463 issue: 4 year: 1975 ident: 954_CR21 publication-title: J. ACM doi: 10.1145/321906.321909 – ident: 954_CR20 – ident: 954_CR10 – volume: 23 start-page: 643 issue: 6 year: 2020 ident: 954_CR12 publication-title: J. Sched. doi: 10.1007/s10951-019-00616-8 – ident: 954_CR19 doi: 10.1007/s00291-018-0543-1 – volume: 3 start-page: 59 issue: 1–2 year: 1956 ident: 954_CR32 publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800030106 – volume-title: Computers and Intractability: a Guide to the Theory of NP-Completeness year: 1979 ident: 954_CR8 – volume: 16 start-page: 372 issue: 3 year: 2010 ident: 954_CR4 publication-title: J. Univ. Comput. Sci. – volume: 382 start-page: 151 year: 2007 ident: 954_CR30 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2007.03.006 – volume: 41 start-page: 356 year: 2012 ident: 954_CR33 publication-title: SIAM J. Comput. doi: 10.1137/11083976X – volume: 35 start-page: 2679 year: 2021 ident: 954_CR2 publication-title: SIAM J. Discret. Math. doi: 10.1137/19M1308633 – volume-title: Dynamic programming and optimal control year: 1995 ident: 954_CR3 – volume: 29 start-page: 1131 issue: 2 year: 2019 ident: 954_CR17 publication-title: SIAM J. Optim. doi: 10.1137/18M1208423 – volume: 32 start-page: 1157 issue: 4 year: 2020 ident: 954_CR13 publication-title: INFORMS J. Comput. – volume: 118 start-page: 237 issue: 2 year: 2009 ident: 954_CR29 publication-title: Math. Program. doi: 10.1007/s10107-007-0189-2 |
| SSID | ssj0012796 |
| Score | 2.3527117 |
| Snippet | In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2785 |
| SubjectTerms | Agents (artificial intelligence) Algorithm Analysis and Problem Complexity Algorithms Approximation Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematical analysis Mathematics of Computing Polynomials Theory of Computation |
| Title | Strongly Polynomial FPTASes for Monotone Dynamic Programs |
| URI | https://link.springer.com/article/10.1007/s00453-022-00954-8 https://www.proquest.com/docview/2719732418 |
| Volume | 84 |
| WOSCitedRecordID | wos000805040100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLCkadMchzo8yChujt1KkyYijE3WKey_9yVtNxQV9FbIR9uXvL5f-j5-CF2GYBJyISgBbCEJ5xZUSiq4yii1MmY29FGVowfR78fjsUyqpLCijnavXZL-S71KdnPow_kcGXG4gJN4E22BuYsdYcPjYLTyHTDhWbkc7zzhYKCrVJnv5_hsjtYY84tb1FubXvN_z7mHdit0ibvldthHG2Z6gJo1cwOuFPkQyYH7A_48WeJkNlm6zGQY1UuG3YEpMMBYDKo-c2W68W3JWI-TMo6rOEJPvbvhzT2pSBSIhpPVgmhluFEWkEbO4tAqqcE8yQyQn1I6CGxkM6usAaSnOsLEoXOjgVbnuc1poK0JjlFjCvc7QZgGkY4svJ3MQi4MV8JErMOsjKwBGBe2EK1lmeqqwrgjupikq9rIXjYpyCb1sknjFrpajXkt62v82rtdL1Fa6VqRMkFdySFOofm6XpJ188-znf6t-xnaYW5VfSRfGzUW8zdzjrb1--KlmF_4PfgBoXnSzA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecXp1D74pgWTpk3zONQxcY7i5thbadpEhLHJOoX9e096G4oK-lbIpe1JTs-XnssHcO6iSUg4JzZiC2EzplGlhMSriBAtfKrdLKpy2OW9nj8aiaBICkvLaPfSJZl9qatkN4M-jM-R2gYXMNtfhTWGFstUzH_sDyvfAeUZK5fhnbcZGugiVeb7OT6boyXG_OIWzaxNu_6_59yGrQJdWq18O-zAiprsQr1kbrAKRd4D0Td_wJ_HCyuYjhcmMxlHtYNBq69SC2Gshao-NWW6rZucsd4K8jiudB-e2reD645dkCjYMZ6s5nYsFVNSI9JIqO9qKWI0TyJC5Cdl7Dja05GWWiHSk1dc-a5xo6FWJ4lOiBNr5RxAbYL3OwSLOF7saXw7EbmMKya58ugV1cLTCmGc2wBSyjKMiwrjhuhiHFa1kTPZhCibMJNN6DfgohrzmtfX-LV3s1yisNC1NKScmJJDjGDzZbkky-afZzv6W_cz2OgMHrph9653fwyb1KxwFtXXhNp89qZOYD1-n7-ks9NsP34AjJzVsA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--adjSppc8DmdRHKOwOfZWmjQRYWxjq8L-vSe9eUEF8a2QS9uTnJ4vPed8B6FLB0xC4nmUALbghDENKsUFXMWUau5b2smiKkc9r9_3x2Mefsjiz6LdS5dkntNgWJqmaWue6FaV-GaQiPE_WsRgBEb8dbTBTCC9Oa8PRpUfwfKyCl2mBj1hYKyLtJnv5_hsmt7x5hcXaWZ5gvr_n3kX7RSoE3fybbKH1tR0H9XLig64UPADxAfmz_jTZIXD2WRlMpZhVBAOOwO1xABvMXwCZoa-G3fzSvY4zOO7lofoMbgd3tyRorgCkXDiSokUiimhAYEklu9owSWYLR4DIhRC2rZ2dayFVoAARdtTvmPca6DtSaITakut7CNUm8L9jhGmtitdDW_HY4d5iglPuVbb0tzVCuCd00C0lGskC-ZxUwBjElWcyZlsIpBNlMkm8hvoqhozz3k3fu3dLJcrKnRwGVkeNVREjELzdbk8780_z3byt-4XaCvsBlHvvv9wirYts8BZsF8T1dLFizpDm_I1fV4uzrOt-QYVo96U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Polynomial+FPTASes+for+Monotone+Dynamic+Programs&rft.jtitle=Algorithmica&rft.au=Alon%2C+Tzvi&rft.au=Halman%2C+Nir&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=10&rft.spage=2785&rft.epage=2819&rft_id=info:doi/10.1007%2Fs00453-022-00954-8&rft.externalDocID=10_1007_s00453_022_00954_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |