Strongly Polynomial FPTASes for Monotone Dynamic Programs

In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 84; no. 10; pp. 2785 - 2819
Main Authors: Alon, Tzvi, Halman, Nir
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2022
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K -approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s - t paths, Mobile agent routing and Counting n -tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs.
AbstractList In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K-approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s-t paths, Mobile agent routing and Counting n-tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs.
In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone dynamic programs. While some ad-hoc SFPTASes for specific problems are already known, this is the first framework yielding such SFPTASes. In addition, it is possible to use our algorithm to get efficient (non strongly polynomial) FPTASes. Our results are derived by improving former (non strongly polynomial) FPTASes which were designed via the method of K -approximation sets and functions. We demonstrate our SFPTAS framework on five application problems, namely, 0/1 Knapsack, counting 0/1 Knapsack, Counting s - t paths, Mobile agent routing and Counting n -tuples, for the last problem we get the fastest SFPTAS known to date. In addition, we use our algorithm to get the fastest (non strongly polynomial) FPTASes for the following other three application problems: Stochastic ordered knapsack, Bi-criteria path problem with maximum survival probability and Minimizing the makespan of deteriorating jobs.
Author Halman, Nir
Alon, Tzvi
Author_xml – sequence: 1
  givenname: Tzvi
  surname: Alon
  fullname: Alon, Tzvi
  organization: Hebrew University of Jerusalem
– sequence: 2
  givenname: Nir
  orcidid: 0000-0002-6098-9792
  surname: Halman
  fullname: Halman, Nir
  email: halman@biu.ac.il
  organization: Bar-Ilan University
BookMark eNp9kF1LwzAUhoNMcFP_gFcFr6snH23SyzGdChMHm9chTZPR0SYz6S767-2sIHixq8OB9znv4ZmhifPOIHSH4QED8McIwDKaAiEpQJGxVFygKWZ0WDOGJ2gKmIuU5ZhfoVmMewBMeJFPUbHpgne7pk_Wvumdb2vVJMv1dr4xMbE-JO_e-W4oS556p9paJ-vgd0G18QZdWtVEc_s7r9Hn8nm7eE1XHy9vi_kq1YQVXapLw0xpIc8qIjJbFjrnolCAaVlqSm1ulS2tAVyUwI3IMkEEMFFVtsJUW0Ov0f149xD819HETu79MbihUhKOC04Jw2JIkTGlg48xGCsPoW5V6CUGeVIkR0VyUCR_FMkTJP5Buu5UV3vXBVU351E6onHocTsT_r46Q30DZlF85A
CitedBy_id crossref_primary_10_1016_j_ejor_2025_05_024
crossref_primary_10_1016_j_tcs_2024_114910
crossref_primary_10_1007_s10479_023_05265_x
crossref_primary_10_1016_j_dam_2025_08_008
Cites_doi 10.1016/j.disopt.2017.11.001
10.1287/moor.1090.0391
10.1023/A:1009626427432
10.1145/2422.322418
10.1287/opre.1120.1093
10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
10.1007/s11590-018-1251-0
10.1287/moor.1080.0330
10.1016/j.tcs.2016.06.015
10.1016/j.ic.2019.04.001
10.1137/130925153
10.1504/IJPS.2012.050127
10.1016/j.ejor.2018.04.013
10.1023/B:JOCO.0000021934.29833.6b
10.1287/ijoc.12.1.57.11901
10.1145/321906.321909
10.1007/s10951-019-00616-8
10.1007/s00291-018-0543-1
10.1002/nav.3800030106
10.1016/j.tcs.2007.03.006
10.1137/11083976X
10.1137/19M1308633
10.1137/18M1208423
10.1007/s10107-007-0189-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-00954-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2819
ExternalDocumentID 10_1007_s00453_022_00954_8
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1074/21
  funderid: http://dx.doi.org/10.13039/501100003977
– fundername: Israel Science Foundation
  funderid: http://dx.doi.org/10.13039/501100003977
– fundername: Israel Science Foundation
  grantid: 399/17
  funderid: http://dx.doi.org/10.13039/501100003977
– fundername: United States - Israel Binational Science Foundation
  grantid: 2018095
  funderid: http://dx.doi.org/10.13039/100006221
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c249t-cbe4ebf065d285fb9c6789a013bbc33f6fafbfe019b07e855828048ddfd13cfe3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805040100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:04:35 EDT 2025
Tue Nov 18 21:55:46 EST 2025
Sat Nov 29 02:20:33 EST 2025
Fri Feb 21 02:44:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Strongly polynomial algorithms
approximation sets and functions
Dynamic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-cbe4ebf065d285fb9c6789a013bbc33f6fafbfe019b07e855828048ddfd13cfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6098-9792
PQID 2719732418
PQPubID 2043795
PageCount 35
ParticipantIDs proquest_journals_2719732418
crossref_primary_10_1007_s00453_022_00954_8
crossref_citationtrail_10_1007_s00453_022_00954_8
springer_journals_10_1007_s00453_022_00954_8
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MittalSSchultzAA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361386397304611710.1287/opre.1120.1093
HalmanNA technical note: fully polynomial time approximation schemes for minimizing makespan of deteriorating jobs with non-linear processing timesJ. Sched.2020236643648418200010.1007/s10951-019-00616-8
IbaraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.321909
KovalyovMYKubiakWA fully polynomial approximation scheme for minimizing makespan of deteriorating jobsJ. Heuristics19983428729710.1023/A:1009626427432
BertsekasDDynamic programming and optimal control1995MAAthena scientific Belmont0904.90170
OrlinJA faster strongly polynomial time algorithm for submodular function minimizationMath. Program.20091182237251247079010.1007/s10107-007-0189-2
ŠtefankovičDVempalaSVigodaEA deterministic polynomial-time approximation scheme for counting knapsack solutionsSIAM J. Comput.201241356366291433110.1137/11083976X
DeanBGoemansMVondrákJApproximating the stochastic knapsack problem: the benefit of adaptivityMath. Oper. Res.2008334945964246465310.1287/moor.1080.0330
LevnerEElaloufAChengTCAn improved FPTAS for mobile agent routing with time constraintsJ. Univ. Comput. Sci.201117131854186228790181247.68021
HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829
Gawrychowski, P., Markin, L., Weimann, O.: A faster FPTAS for # knapsack. arXiv:1802.05791 (2018)
Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., Zofi, M.: Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum 41(2), 469–489 (2019)
Díaz-NúñezFHalmanNVásquezÓThe TV advertisements scheduling problemOptim. Lett.20191318194390207710.1007/s11590-018-1251-0
SmithWVarious optimizers for single-stage productionNaval Res. Logist. Q.195631–259668910910.1002/nav.3800030106
GareyMRJohnsonDSComputers and Intractability: a Guide to the Theory of NP-Completeness1979New YorkW.H. Freeman0411.68039
HalmanNKellererHStrusevichVApproximation schemes for non-separable non-linear Boolean programming problems under nested knapsack constraintsEur. J. Oper. Res.20182702435447380708810.1016/j.ejor.2018.04.013
HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional actions and scalar statesSIAM J. Optim.201929211311163393933810.1137/18M1208423
KovalyovMvan de VeldeSScheduling deteriorating jobs to minimize makespanNav. Res. Logist.1998455511523163870510.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discret. Math.20142817251796326860410.1137/130925153
KovalyovMYKubiakWA Generic FPTAS For Partition Type Optimization ProblemsInt. J. Plann. Schedul.2012120923310.1504/IJPS.2012.050127
WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000125774176468610.1287/ijoc.12.1.57.11901
Alon, T.: Fully polynomial time approximation schemes (FPTAS) for some counting problems. Master’s thesis. arXiv preprintarXiv:1611.00992 (2016)
HalmanNNanniciniGOrlinJOn the complexity of energy storage problemsDiscret. Optim.2018283153379903510.1016/j.disopt.2017.11.001
Hochbaum, D.: Various notions of approximations: good, better, best, and more. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard problems, PWS Publishing Company, Boston (1997)
RizziRTomescuAFaster FPTASes for counting and random generation of knapsack solutionsInf. Comput.2019267135144395863010.1016/j.ic.2019.04.001
AlonTHalmanNAutomatic generation of FPTASes for stochastic monotone dynamic programs made easierSIAM J. Discret. Math.20213526792722433562410.1137/19M1308633
PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheoret. Comput. Sci.2007382151156235211010.1016/j.tcs.2007.03.006
Chan, T.M.: Approximation schemes for 0–1 knapsack. In: Proceedings of the 1st Symposium of Simplicity in Algorithms (SOSA), pp. 5:1–5:12. (2018)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer Science & Business Media (2012)
HalmanNA deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easyTheor. Comput. Sci.20166454147354195610.1016/j.tcs.2016.06.015
CamponogaraEShimaRBMobile agent routing with time constraints: a resource constrained longest-path approachJ. Univ. Comput. Sci.20101633724011216.68302
MegiddoNLinear programming in linear time when the dimension is fixedJ. ACM (JACM)198431111412782138810.1145/2422.322418
HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demandMath. Oper. Res.200934674685255534210.1287/moor.1090.0391
KellererHPferschyUImproved dynamic programming in connection with an FPTAS for the knapsack problemJ. Comb. Optim.20048511205812910.1023/B:JOCO.0000021934.29833.6b
N Halman (954_CR14) 2014; 28
M Kovalyov (954_CR24) 1998; 45
B Dean (954_CR6) 2008; 33
954_CR5
954_CR1
K Pruhs (954_CR30) 2007; 382
E Levner (954_CR26) 2011; 17
N Halman (954_CR11) 2016; 645
N Megiddo (954_CR27) 1984; 31
954_CR20
GJ Woeginger (954_CR34) 2000; 12
J Orlin (954_CR29) 2009; 118
E Camponogara (954_CR4) 2010; 16
N Halman (954_CR18) 2009; 34
W Smith (954_CR32) 1956; 3
N Halman (954_CR12) 2020; 23
MY Kovalyov (954_CR22) 1998; 3
T Alon (954_CR2) 2021; 35
H Kellerer (954_CR25) 2004; 8
N Halman (954_CR13) 2020; 32
S Mittal (954_CR28) 2013; 61
D Bertsekas (954_CR3) 1995
N Halman (954_CR15) 2018; 270
OH Ibara (954_CR21) 1975; 22
N Halman (954_CR17) 2019; 29
954_CR10
R Rizzi (954_CR31) 2019; 267
MR Garey (954_CR8) 1979
MY Kovalyov (954_CR23) 2012; 1
N Halman (954_CR16) 2018; 28
F Díaz-Núñez (954_CR7) 2019; 13
954_CR19
954_CR9
D Štefankovič (954_CR33) 2012; 41
References_xml – reference: GareyMRJohnsonDSComputers and Intractability: a Guide to the Theory of NP-Completeness1979New YorkW.H. Freeman0411.68039
– reference: Gawrychowski, P., Markin, L., Weimann, O.: A faster FPTAS for # knapsack. arXiv:1802.05791 (2018)
– reference: HalmanNNanniciniGToward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional actions and scalar statesSIAM J. Optim.201929211311163393933810.1137/18M1208423
– reference: Hochbaum, D.: Various notions of approximations: good, better, best, and more. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard problems, PWS Publishing Company, Boston (1997)
– reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheoret. Comput. Sci.2007382151156235211010.1016/j.tcs.2007.03.006
– reference: Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer Science & Business Media (2012)
– reference: HalmanNA technical note: fully polynomial time approximation schemes for minimizing makespan of deteriorating jobs with non-linear processing timesJ. Sched.2020236643648418200010.1007/s10951-019-00616-8
– reference: Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., Zofi, M.: Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum 41(2), 469–489 (2019)
– reference: RizziRTomescuAFaster FPTASes for counting and random generation of knapsack solutionsInf. Comput.2019267135144395863010.1016/j.ic.2019.04.001
– reference: HalmanNNanniciniGOrlinJOn the complexity of energy storage problemsDiscret. Optim.2018283153379903510.1016/j.disopt.2017.11.001
– reference: KovalyovMYKubiakWA fully polynomial approximation scheme for minimizing makespan of deteriorating jobsJ. Heuristics19983428729710.1023/A:1009626427432
– reference: KovalyovMvan de VeldeSScheduling deteriorating jobs to minimize makespanNav. Res. Logist.1998455511523163870510.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
– reference: Chan, T.M.: Approximation schemes for 0–1 knapsack. In: Proceedings of the 1st Symposium of Simplicity in Algorithms (SOSA), pp. 5:1–5:12. (2018)
– reference: BertsekasDDynamic programming and optimal control1995MAAthena scientific Belmont0904.90170
– reference: MegiddoNLinear programming in linear time when the dimension is fixedJ. ACM (JACM)198431111412782138810.1145/2422.322418
– reference: Díaz-NúñezFHalmanNVásquezÓThe TV advertisements scheduling problemOptim. Lett.20191318194390207710.1007/s11590-018-1251-0
– reference: ŠtefankovičDVempalaSVigodaEA deterministic polynomial-time approximation scheme for counting knapsack solutionsSIAM J. Comput.201241356366291433110.1137/11083976X
– reference: WoegingerGJWhen does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?INFORMS J. Comput.2000125774176468610.1287/ijoc.12.1.57.11901
– reference: MittalSSchultzAA general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into oneOper. Res.201361386397304611710.1287/opre.1120.1093
– reference: AlonTHalmanNAutomatic generation of FPTASes for stochastic monotone dynamic programs made easierSIAM J. Discret. Math.20213526792722433562410.1137/19M1308633
– reference: CamponogaraEShimaRBMobile agent routing with time constraints: a resource constrained longest-path approachJ. Univ. Comput. Sci.20101633724011216.68302
– reference: LevnerEElaloufAChengTCAn improved FPTAS for mobile agent routing with time constraintsJ. Univ. Comput. Sci.201117131854186228790181247.68021
– reference: HalmanNKellererHStrusevichVApproximation schemes for non-separable non-linear Boolean programming problems under nested knapsack constraintsEur. J. Oper. Res.20182702435447380708810.1016/j.ejor.2018.04.013
– reference: KellererHPferschyUImproved dynamic programming in connection with an FPTAS for the knapsack problemJ. Comb. Optim.20048511205812910.1023/B:JOCO.0000021934.29833.6b
– reference: HalmanNKlabjanDLiC-LOrlinJSimchi-LeviDFully polynomial time approximation schemes for stochastic dynamic programsSIAM J. Discret. Math.20142817251796326860410.1137/130925153
– reference: SmithWVarious optimizers for single-stage productionNaval Res. Logist. Q.195631–259668910910.1002/nav.3800030106
– reference: DeanBGoemansMVondrákJApproximating the stochastic knapsack problem: the benefit of adaptivityMath. Oper. Res.2008334945964246465310.1287/moor.1080.0330
– reference: HalmanNProvably near-optimal approximation schemes for implicit stochastic and for sample-based dynamic programsINFORMS J. Comput.202032411571181417783707303829
– reference: HalmanNA deterministic fully polynomial time approximation scheme for counting integer knapsack solutions made easyTheor. Comput. Sci.20166454147354195610.1016/j.tcs.2016.06.015
– reference: HalmanNKlabjanDMostagirMOrlinJSimchi-LeviDA fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demandMath. Oper. Res.200934674685255534210.1287/moor.1090.0391
– reference: OrlinJA faster strongly polynomial time algorithm for submodular function minimizationMath. Program.20091182237251247079010.1007/s10107-007-0189-2
– reference: Alon, T.: Fully polynomial time approximation schemes (FPTAS) for some counting problems. Master’s thesis. arXiv preprintarXiv:1611.00992 (2016)
– reference: IbaraOHKimCEFast approximation algorithms for the knapsack and sum of subset problemsJ. ACM197522446346837846310.1145/321906.321909
– reference: KovalyovMYKubiakWA Generic FPTAS For Partition Type Optimization ProblemsInt. J. Plann. Schedul.2012120923310.1504/IJPS.2012.050127
– volume: 28
  start-page: 31
  year: 2018
  ident: 954_CR16
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2017.11.001
– volume: 34
  start-page: 674
  year: 2009
  ident: 954_CR18
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1090.0391
– volume: 3
  start-page: 287
  issue: 4
  year: 1998
  ident: 954_CR22
  publication-title: J. Heuristics
  doi: 10.1023/A:1009626427432
– volume: 31
  start-page: 114
  issue: 1
  year: 1984
  ident: 954_CR27
  publication-title: J. ACM (JACM)
  doi: 10.1145/2422.322418
– volume: 61
  start-page: 386
  year: 2013
  ident: 954_CR28
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1093
– volume: 45
  start-page: 511
  issue: 5
  year: 1998
  ident: 954_CR24
  publication-title: Nav. Res. Logist.
  doi: 10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
– volume: 13
  start-page: 81
  issue: 1
  year: 2019
  ident: 954_CR7
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-018-1251-0
– volume: 33
  start-page: 945
  issue: 4
  year: 2008
  ident: 954_CR6
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1080.0330
– volume: 645
  start-page: 41
  year: 2016
  ident: 954_CR11
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2016.06.015
– volume: 267
  start-page: 135
  year: 2019
  ident: 954_CR31
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2019.04.001
– ident: 954_CR9
– volume: 28
  start-page: 1725
  year: 2014
  ident: 954_CR14
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/130925153
– volume: 1
  start-page: 209
  year: 2012
  ident: 954_CR23
  publication-title: Int. J. Plann. Schedul.
  doi: 10.1504/IJPS.2012.050127
– ident: 954_CR1
– volume: 270
  start-page: 435
  issue: 2
  year: 2018
  ident: 954_CR15
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.04.013
– volume: 8
  start-page: 5
  year: 2004
  ident: 954_CR25
  publication-title: J. Comb. Optim.
  doi: 10.1023/B:JOCO.0000021934.29833.6b
– volume: 17
  start-page: 1854
  issue: 13
  year: 2011
  ident: 954_CR26
  publication-title: J. Univ. Comput. Sci.
– volume: 12
  start-page: 57
  year: 2000
  ident: 954_CR34
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.12.1.57.11901
– ident: 954_CR5
– volume: 22
  start-page: 463
  issue: 4
  year: 1975
  ident: 954_CR21
  publication-title: J. ACM
  doi: 10.1145/321906.321909
– ident: 954_CR20
– ident: 954_CR10
– volume: 23
  start-page: 643
  issue: 6
  year: 2020
  ident: 954_CR12
  publication-title: J. Sched.
  doi: 10.1007/s10951-019-00616-8
– ident: 954_CR19
  doi: 10.1007/s00291-018-0543-1
– volume: 3
  start-page: 59
  issue: 1–2
  year: 1956
  ident: 954_CR32
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800030106
– volume-title: Computers and Intractability: a Guide to the Theory of NP-Completeness
  year: 1979
  ident: 954_CR8
– volume: 16
  start-page: 372
  issue: 3
  year: 2010
  ident: 954_CR4
  publication-title: J. Univ. Comput. Sci.
– volume: 382
  start-page: 151
  year: 2007
  ident: 954_CR30
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2007.03.006
– volume: 41
  start-page: 356
  year: 2012
  ident: 954_CR33
  publication-title: SIAM J. Comput.
  doi: 10.1137/11083976X
– volume: 35
  start-page: 2679
  year: 2021
  ident: 954_CR2
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/19M1308633
– volume-title: Dynamic programming and optimal control
  year: 1995
  ident: 954_CR3
– volume: 29
  start-page: 1131
  issue: 2
  year: 2019
  ident: 954_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1208423
– volume: 32
  start-page: 1157
  issue: 4
  year: 2020
  ident: 954_CR13
  publication-title: INFORMS J. Comput.
– volume: 118
  start-page: 237
  issue: 2
  year: 2009
  ident: 954_CR29
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0189-2
SSID ssj0012796
Score 2.3527117
Snippet In this paper we introduce a framework for the automatic generation of Strongly Polynomial Fully Polynomial Time Approximation Schemes (SFPTASes) for monotone...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2785
SubjectTerms Agents (artificial intelligence)
Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematical analysis
Mathematics of Computing
Polynomials
Theory of Computation
Title Strongly Polynomial FPTASes for Monotone Dynamic Programs
URI https://link.springer.com/article/10.1007/s00453-022-00954-8
https://www.proquest.com/docview/2719732418
Volume 84
WOSCitedRecordID wos000805040100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Link
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPvFRJQdvGujuZpvssajFg5Ria-ltyWQTEYqVbhX6751kH0VRQc957DKTyXy78_gIueDcgmnj4VVSZYyDMgwgEQy4EiaWgen4LN_xvej35WSSDMqisLzKdq9Ckv6mrovdHPpwMceQOVzAmVwnG-jupCNseBiO69hBKDwrl-OdZxwddFkq8_0en93RCmN-CYt6b9Nr_u89d8h2iS5ptzgOu2TNvOyRZsXcQEtD3ifJ0P0Bf5ou6WA2XbrKZFzVG4y6Q5NThLEUTX3m2nTTm4Kxng6KPK78gDz2bkfXd6wkUWAav6wWTIPhBiwijSyUsYVEo3tKFCI_AB1FtmOVBWsQ6UFbGBm7MBpadZbZLIi0NdEhabzg844IbQM3UaIDZSNXkBonEAsjIg1aW54peUyCSpapLjuMO6KLaVr3RvaySVE2qZdNimsu6zWvRX-NX2e3KhWlpa3laSgC13KIBzh8ValkNfzzbid_m35KtkKnVZ_J1yKNxfzNnJFN_b54zufn_gx-AAsG1Tk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BX1xXvEyNQ--aWBt06V9HOqYOMdwc-wtJGkiwthkncL-vSfpZSgq6HNy0nIuOV97bghdUGqkroPyikgkhEqhiZQxI5IKpsPI0w2X5TvssG43Go3iXl4UlhbZ7kVI0t3UZbGbRR825ugTiwsoiVbRGgWPZTvmP_aHZezAZ24ql507Tyg46LxU5vszPrujJcb8EhZ13qZV_d97bqOtHF3iZqYOO2hFT3ZRtZjcgHND3kNx3_4Bfx4vcG86XtjKZKBq9QbNvk4xwFgMpj61bbrxTTaxHveyPK50Hz21bgfXbZIPUSAKvqzmRElNtTSANBI_Co2MFbinWADyk1IFgWkYYaTRgPRknekotGE0sOokMYkXKKODA1SZwPMOEa5LqoNYecIEtiA1jGXINAuUVMrQRERHyCt4yVXeYdwOuhjzsjey4w0H3nDHGw40lyXNa9Zf49fdtUJEPLe1lPvMsy2HqAfLV4VIlss_n3b8t-3naKM9eOjwzl33_gRt-lbCLquvhirz2Zs-Revqff6Szs6cPn4AE0XYHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXvEyNQ--adjapkv7OJxFcYzC5thbSNJEhLGNtQr79ybpZSoqiM_JScu59HzpuQFwhbHisqWVlwUsQZgziTgPCeKYEekHjmzbLN9Rj_T7wXgcxh-q-G22exmSzGsaTJemadacJ6pZFb4ZJGLijy4yGAGjYB1sYJNIb-7rg1EVR3CJndBlZtAjrJ11UTbz_RmfXdMKb34JkVrPE9X__867YKdAnbCTq8keWJPTfVAvJzrAwsAPQDgwf8afJ0sYzyZLU7GsqaJ42BnIFGp4C_UnYGbad8NuPskexnl-V3oInqK74e09KoYrIKFvXBkSXGLJlUYgiRv4iodCu62QaUTIufA81VZMcSU1AuQtIgPfhNe0tSeJShxPKOkdgdpUP-8YwBbH0guFw5RnClX9kPtEEk9wIRROWHACnJKvVBSdx80AjAmteiZb3lDNG2p5QzXNdUUzz_tu_Lq7UYqLFjaYUpc4phURdvTyTSme1fLPp53-bfsl2Iq7Ee099B_PwLZrBGyT_Rqgli1e5TnYFG_ZS7q4sKr5Dr5g4QE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Polynomial+FPTASes+for+Monotone+Dynamic+Programs&rft.jtitle=Algorithmica&rft.au=Alon%2C+Tzvi&rft.au=Halman%2C+Nir&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=10&rft.spage=2785&rft.epage=2819&rft_id=info:doi/10.1007%2Fs00453-022-00954-8&rft.externalDocID=10_1007_s00453_022_00954_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon