A New Long-Term Photovoltaic Power Forecasting Model Based on Stacking Generalization Methodology
In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a ne...
Saved in:
| Published in: | Natural resources research (New York, N.Y.) Vol. 31; no. 3; pp. 1265 - 1287 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1520-7439, 1573-8981 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index (
LM
), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest
LM
score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power. |
|---|---|
| AbstractList | In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index (
LM
), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest
LM
score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power. In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index (LM), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest LM score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power. |
| Author | Ofori-Ntow Jnr, Eric Ziggah, Yao Yevenyo Relvas, Susana Rodrigues, Maria Joao |
| Author_xml | – sequence: 1 givenname: Eric orcidid: 0000-0003-3021-2437 surname: Ofori-Ntow Jnr fullname: Ofori-Ntow Jnr, Eric email: eric.jnr@tecnico.ulisboa.pt organization: CEG-IST, Instituto Superior Tecnico, Universidade de Lisboa, Faculty of Engineering, University of Mines and Technology – sequence: 2 givenname: Yao Yevenyo surname: Ziggah fullname: Ziggah, Yao Yevenyo organization: Faculty of Geosciences and Environmental Studies, University of Mines and Technology – sequence: 3 givenname: Maria Joao surname: Rodrigues fullname: Rodrigues, Maria Joao organization: Lisboa E-Nova and Instituto Superior Tecnico, Universidade de Lisboa – sequence: 4 givenname: Susana surname: Relvas fullname: Relvas, Susana organization: CEG-IST, Instituto Superior Tecnico, Universidade de Lisboa |
| BookMark | eNp9kM1KAzEUhYNU0Kov4CrgOprkzjSZZRWtQtWCdR0ymUydOk40SS316U0dQXDR1f3hfPcezhANOtdZhE4ZPWeUiovAGM2BUM5JmnNJYA8dslwAkYVkg23PKREZFAdoGMKSJghkfoj0GD_YNZ66bkHm1r_h2YuL7tO1UTcGz9zaenzjvDU6xKZb4HtX2RZf6mAr7Dr8FLV53e4ntrNet82Xjk3a39v44irXusXmGO3Xug325Lceoeeb6_nVLZk-Tu6uxlNieFZEYgBqKbWteZlcaqB1DRUvMp3xcsSzMrMVzQtTjYxkIISgsoTUCqaZrEcg4Aid9XffvftY2RDV0q18l14qXjAJIChjSSV7lfEuBG9rZZr44zl63bSKUbUNVPWBqhSo-glUQUL5P_TdN2_ab3ZD0EMhibuF9X-udlDfT7aJ5g |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2025_03_060 crossref_primary_10_1016_j_prime_2023_100293 crossref_primary_10_1016_j_jhydrol_2023_130034 crossref_primary_10_1063_5_0189132 crossref_primary_10_1371_journal_pone_0324047 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_1016_j_energy_2023_128669 crossref_primary_10_3390_en17010097 crossref_primary_10_1016_j_renene_2024_121853 crossref_primary_10_1002_srin_202300241 crossref_primary_10_1016_j_asoc_2025_113646 crossref_primary_10_3390_su151713146 crossref_primary_10_1007_s11053_024_10360_2 crossref_primary_10_1109_ACCESS_2023_3323526 |
| Cites_doi | 10.1016/j.renene.2019.03.020 10.1016/j.isatra.2018.06.004 10.1109/ACCESS.2020.2981506 10.1016/j.energy.2016.03.070 10.1016/j.renene.2019.02.087 10.1080/15567249.2020.1717678 10.1016/j.jclepro.2019.04.331 10.1016/j.enconman.2017.11.019 10.1016/j.jmsy.2021.01.018 10.1016/j.renene.2020.05.150 10.1016/j.neucom.2019.08.105 10.1016/j.energy.2016.11.061 10.1023/A:1018628609742 10.1007/s12652-020-01900-8 10.1016/j.enconman.2019.05.005 10.1016/j.solener.2012.03.006 10.1016/j.ref.2021.07.002 10.1016/j.swevo.2016.12.004 10.1016/j.renene.2017.11.011 10.1016/j.solener.2018.02.006 10.1016/j.phytol.2021.03.009 10.1016/j.measurement.2017.11.023 10.1016/j.bbe.2020.09.005 10.1016/j.ijmst.2020.05.020 10.1016/j.enconman.2018.06.021 10.1016/j.renene.2020.01.005 10.1016/j.rser.2017.08.017 10.1002/er.5608 10.1016/j.petlm.2021.04.003 10.1016/j.ijheatmasstransfer.2018.09.057 10.1016/j.ifacol.2018.11.774 10.3934/energy.2020.2.252 10.1016/j.seta.2018.11.008 10.1016/j.apenergy.2017.10.076 10.1016/j.scitotenv.2018.04.040 10.1016/j.energy.2015.01.066 10.1016/j.jhydrol.2019.05.068 10.1016/j.neucom.2019.09.110 10.1016/j.engappai.2020.103801 10.1016/j.scs.2020.102679 10.1016/j.apenergy.2019.114216 10.1016/j.trip.2020.100250 10.1016/j.asoc.2020.106389 10.1016/j.enconman.2020.113076 10.1016/j.apenergy.2021.117291 10.1016/S0893-6080(05)80023-1 10.1063/1.5139689 10.1016/j.petrol.2021.108836 10.1016/j.energy.2019.116225 10.1007/s00366-021-01332-8 10.1016/j.saa.2021.120190 10.1016/j.measurement.2019.106971 10.1016/j.dsp.2021.103054 10.1016/j.scitotenv.2021.145534 10.1016/j.compeleceng.2020.106730 10.1016/j.engfailanal.2020.104909 10.1109/EFEA.2018.8617079 10.1016/j.enconman.2020.113552 10.1109/ICIINFS.2014.7036502 10.1016/j.apenergy.2019.113541 10.1016/j.engappai.2019.103447 10.1016/j.enconman.2021.114569 10.1016/j.ijleo.2021.167518 10.1016/j.cageo.2021.104754 10.1016/j.scitotenv.2019.136134 10.1007/s10654-018-0390-z 10.1016/j.ijleo.2021.167088 10.1016/j.apenergy.2021.117410 10.1016/j.energy.2021.120996 10.1016/j.jclepro.2019.119252 10.1109/ITME.2018.00221 |
| ContentType | Journal Article |
| Copyright | International Association for Mathematical Geosciences 2022 International Association for Mathematical Geosciences 2022. |
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2022 – notice: International Association for Mathematical Geosciences 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY |
| DOI | 10.1007/s11053-022-10058-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Geology Physics Computer Science |
| EISSN | 1573-8981 |
| EndPage | 1287 |
| ExternalDocumentID | 10_1007_s11053_022_10058_3 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c249t-c33f88aef2b439a30ff3d294a42b624b4ed059cd6c81377708b3c8171a18f6373 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784391100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-7439 |
| IngestDate | Wed Nov 05 00:48:09 EST 2025 Sat Nov 29 06:27:46 EST 2025 Tue Nov 18 21:29:39 EST 2025 Fri Feb 21 02:45:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Long-term forecasting Photovoltaic power Stacked generalization methodology Solar energy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-c33f88aef2b439a30ff3d294a42b624b4ed059cd6c81377708b3c8171a18f6373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3021-2437 |
| PQID | 2918337011 |
| PQPubID | 2043663 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2918337011 crossref_citationtrail_10_1007_s11053_022_10058_3 crossref_primary_10_1007_s11053_022_10058_3 springer_journals_10_1007_s11053_022_10058_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20220600 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
| PublicationTitle | Natural resources research (New York, N.Y.) |
| PublicationTitleAbbrev | Nat Resour Res |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Sobri, Koohi-Kamali, Rahim (CR52) 2018; 156 CR39 CR37 CR34 Youcefi, Hadjadj, Boukredera (CR64) 2021 Zhang, Dang, Simoes (CR67) 2018; 81 CR31 CR71 Rozario, Devarajan (CR46) 2021; 12 Zhai, Chen (CR66) 2018; 635 Zhang, Lv, Ma, Zhao, Wang, O’Hare (CR69) 2020; 397 CR2 VanDeventer, Jamei, Thirunavukkarasu, Seyedmahmoudian, Soon, Horan, Mekhilef, Stojcevski (CR60) 2019; 140 CR4 Dong, Yang, Reindl, Walsh (CR9) 2015; 82 Khan, Khan, Li, Bakhsh, Mehmood, Zaib (CR27) 2021; 39 Li, Wen, Tseng, Wang (CR30) 2019; 228 CR8 Majumder, Dash, Bisoi (CR36) 2018; 171 CR7 Liu (CR32) 2022; 61 CR49 CR44 CR42 Amarasinghe, Abeygunawardana, Jayasekara, Edirisinghe, Abeygunawardane (CR1) 2020; 8 CR41 CR40 Sun, Wu, Wu, Han, Yang, Wang (CR54) 2021; 43 Rostami, Hemmati-Sarapardeh, Karkevandi-Talkhooncheh, Husein, Shamshirband, Rabczuk (CR45) 2019; 129 Huld, Müller, Gambardella (CR21) 2012; 86 Bigdeli, Borujeni, Afshar (CR3) 2017; 34 Zang, Liu, Sun, Cheng, Wei, Sun (CR65) 2020; 160 Zhang, Chen, Pan, Zhao (CR68) 2019; 195 Sun, Wang, Zhang, Zheng (CR53) 2018; 163 Takeda, Tamura, Sato (CR56) 2016; 104 Zhang, Zhang, He, Li, Xu, Gong (CR70) 2021; 62 Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (CR47) 2018; 209 Liu, Lu, Cai (CR33) 2020; 8 CR18 CR17 CR16 CR15 CR59 CR13 CR57 CR10 Shahid, Singh (CR48) 2020; 40 Eseye, Zhang, Zheng (CR12) 2018; 118 CR51 CR50 Prasad, Ali, Xiang, Khan (CR43) 2020; 152 Temeng, Ziggah, Arthur (CR58) 2020; 30 Monjoly, André, Calif, Soubdhan (CR38) 2017; 119 Lu, Chang (CR35) 2018; 51 Garud, Jayaraj, Lee (CR14) 2021; 45 Ebtehaj, Bonakdari, Gharabaghi (CR11) 2018; 116 CR28 Suykens, Vandewalle (CR55) 1999; 9 CR26 CR25 de Freitas Viscondi, Alves-Souza (CR6) 2019; 31 CR24 CR23 Yang, Mourshed, Liu, Xu, Feng (CR63) 2020; 397 CR22 Kushwaha, Pindoriya (CR29) 2019; 140 Heydari, Astiaso Garcia, Keynia, Bisegna, De Santoli (CR19) 2019; 14 CR20 CR103 CR62 CR100 CR101 Walton, Binns, Bonakdari, Ebtehaj, Gharabaghi (CR61) 2019; 575 Das, Tey, Seyedmahmoudian, Mekhilef, Idris, Van Deventer, Horan, Stojcevski (CR5) 2018; 81 S Monjoly (10058_CR38) 2017; 119 W Zhang (10058_CR67) 2018; 81 PAGM Amarasinghe (10058_CR1) 2020; 8 Z Yang (10058_CR63) 2020; 397 HJ Sun (10058_CR54) 2021; 43 AH Shahid (10058_CR48) 2020; 40 LL Li (10058_CR30) 2019; 228 10058_CR39 10058_CR8 10058_CR49 10058_CR7 10058_CR4 10058_CR44 10058_CR2 10058_CR42 10058_CR41 N Bigdeli (10058_CR3) 2017; 34 10058_CR40 Y Zhang (10058_CR70) 2021; 62 R Walton (10058_CR61) 2019; 575 V Kushwaha (10058_CR29) 2019; 140 I Majumder (10058_CR36) 2018; 171 G de Freitas Viscondi (10058_CR6) 2019; 31 H Zang (10058_CR65) 2020; 160 10058_CR28 F Liu (10058_CR33) 2020; 8 10058_CR37 C Liu (10058_CR32) 2022; 61 Y Zhang (10058_CR68) 2019; 195 A Heydari (10058_CR19) 2019; 14 10058_CR34 10058_CR103 A Rostami (10058_CR45) 2019; 129 10058_CR101 10058_CR31 10058_CR100 AT Khan (10058_CR27) 2021; 39 HJ Lu (10058_CR35) 2018; 51 10058_CR71 S Sun (10058_CR53) 2018; 163 Z Dong (10058_CR9) 2015; 82 JAK Suykens (10058_CR55) 1999; 9 10058_CR18 10058_CR17 10058_CR26 10058_CR25 10058_CR24 AT Eseye (10058_CR12) 2018; 118 10058_CR23 10058_CR22 R Prasad (10058_CR43) 2020; 152 10058_CR20 10058_CR62 APR Rozario (10058_CR46) 2021; 12 VA Temeng (10058_CR58) 2020; 30 S Salcedo-Sanz (10058_CR47) 2018; 209 B Zhai (10058_CR66) 2018; 635 S Sobri (10058_CR52) 2018; 156 H Takeda (10058_CR56) 2016; 104 MR Youcefi (10058_CR64) 2021 UK Das (10058_CR5) 2018; 81 T Huld (10058_CR21) 2012; 86 10058_CR16 KS Garud (10058_CR14) 2021; 45 10058_CR15 10058_CR59 W VanDeventer (10058_CR60) 2019; 140 10058_CR13 10058_CR57 I Ebtehaj (10058_CR11) 2018; 116 10058_CR10 10058_CR51 10058_CR50 T Zhang (10058_CR69) 2020; 397 |
| References_xml | – volume: 140 start-page: 124 year: 2019 end-page: 139 ident: CR29 article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast publication-title: Renewable Energy doi: 10.1016/j.renene.2019.03.020 – volume: 81 start-page: 105 year: 2018 end-page: 120 ident: CR67 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Transaction doi: 10.1016/j.isatra.2018.06.004 – ident: CR22 – ident: CR49 – ident: CR4 – ident: CR39 – ident: CR16 – ident: CR51 – volume: 8 start-page: 62423 year: 2020 end-page: 62438 ident: CR33 article-title: A hybrid method with adaptive sub-series clustering and attention-based stacked residual LSTMs for multivariate time series forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981506 – volume: 104 start-page: 184 year: 2016 end-page: 198 ident: CR56 article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis publication-title: Energy doi: 10.1016/j.energy.2016.03.070 – volume: 140 start-page: 367 year: 2019 end-page: 379 ident: CR60 article-title: Short-term PV power forecasting using hybrid GASVM technique publication-title: Renewable Energy doi: 10.1016/j.renene.2019.02.087 – ident: CR8 – ident: CR25 – ident: CR42 – volume: 14 start-page: 341 issue: 10–12 year: 2019 end-page: 358 ident: CR19 article-title: Hybrid intelligent strategy for multifactor influenced electrical energy consumption forecasting publication-title: Energy Sources, Part b, Economy, Planning, and Policy doi: 10.1080/15567249.2020.1717678 – volume: 228 start-page: 359 year: 2019 end-page: 375 ident: CR30 article-title: Renewable energy prediction: A novel short-term prediction model of photovoltaic output power publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.04.331 – volume: 156 start-page: 459 year: 2018 end-page: 497 ident: CR52 article-title: Solar photovoltaic generation forecasting methods: A review publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2017.11.019 – ident: CR101 – ident: CR71 – volume: 62 start-page: 792 year: 2021 end-page: 799 ident: CR70 article-title: Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.01.018 – volume: 160 start-page: 26 year: 2020 end-page: 41 ident: CR65 article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations publication-title: Renewable Energy doi: 10.1016/j.renene.2020.05.150 – volume: 397 start-page: 438 year: 2020 end-page: 446 ident: CR69 article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.105 – ident: CR15 – ident: CR50 – volume: 119 start-page: 288 year: 2017 end-page: 298 ident: CR38 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach publication-title: Energy doi: 10.1016/j.energy.2016.11.061 – ident: CR57 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR55 article-title: Least squares support vector machine classifiers publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – volume: 12 start-page: 4855 issue: 5 year: 2021 end-page: 4862 ident: CR46 article-title: Monitoring the quality of water in shrimp ponds and forecasting of dissolved oxygen using Fuzzy C means clustering based radial basis function neural networks publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01900-8 – volume: 195 start-page: 180 year: 2019 end-page: 197 ident: CR68 article-title: A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.05.005 – volume: 86 start-page: 1803 issue: 6 year: 2012 end-page: 1815 ident: CR21 article-title: A new solar radiation database for estimating PV performance in Europe and Africa publication-title: Solar Energy doi: 10.1016/j.solener.2012.03.006 – ident: CR26 – ident: CR100 – ident: CR18 – volume: 39 start-page: 49 year: 2021 end-page: 58 ident: CR27 article-title: Optimally configured Gated Recurrent Unit using Hyperband for the long-term forecasting of photovoltaic plant publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2021.07.002 – volume: 34 start-page: 75 year: 2017 end-page: 88 ident: CR3 article-title: Time series analysis and short-term forecasting of solar irradiation, a new hybrid approach publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2016.12.004 – volume: 118 start-page: 357 year: 2018 end-page: 367 ident: CR12 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renewable Energy doi: 10.1016/j.renene.2017.11.011 – ident: CR2 – ident: CR37 – ident: CR10 – volume: 163 start-page: 189 year: 2018 end-page: 199 ident: CR53 article-title: A decomposition-clustering-ensemble learning approach for solar radiation forecasting publication-title: Solar Energy doi: 10.1016/j.solener.2018.02.006 – volume: 61 start-page: 775 issue: 1 year: 2022 end-page: 784 ident: CR32 article-title: Risk prediction of digital transformation of manufacturing supply chain based on Principal Component Analysis and Backpropagation Artificial Neural publication-title: Network – ident: CR40 – volume: 43 start-page: 108 year: 2021 end-page: 113 ident: CR54 article-title: Optimization of vacuum assisted heat reflux extraction process of radix isatidis using least squares-support vector machine algorithm publication-title: Phytochemistry Letters doi: 10.1016/j.phytol.2021.03.009 – volume: 116 start-page: 473 year: 2018 end-page: 482 ident: CR11 article-title: Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling publication-title: Measurement doi: 10.1016/j.measurement.2017.11.023 – ident: CR23 – volume: 40 start-page: 1568 issue: 1 year: 2020 end-page: 1585 ident: CR48 article-title: A novel approach for coronary artery disease diagnosis using hybrid Particle Swarm Optimization based Emotional Neural Network publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2020.09.005 – volume: 30 start-page: 683 issue: 5 year: 2020 end-page: 689 ident: CR58 article-title: A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2020.05.020 – ident: CR44 – ident: CR103 – volume: 171 start-page: 787 year: 2018 end-page: 806 ident: CR36 article-title: Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.06.021 – volume: 152 start-page: 9 year: 2020 end-page: 22 ident: CR43 article-title: A double decomposition-based modelling approach to forecast weekly solar radiation publication-title: Renewable Energy doi: 10.1016/j.renene.2020.01.005 – volume: 81 start-page: 912 year: 2018 end-page: 928 ident: CR5 article-title: Forecasting of photovoltaic power generation and model optimization: A review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.08.017 – volume: 45 start-page: 6 issue: 1 year: 2021 end-page: 35 ident: CR14 article-title: A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models publication-title: International Journal of Energy Research doi: 10.1002/er.5608 – year: 2021 ident: CR64 article-title: New model for standpipe pressure prediction while drilling using Group Method of Data Handling publication-title: Petroleum doi: 10.1016/j.petlm.2021.04.003 – volume: 129 start-page: 7 year: 2019 end-page: 17 ident: CR45 article-title: Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structure-based approach publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.057 – ident: CR17 – ident: CR31 – volume: 51 start-page: 634 issue: 28 year: 2018 end-page: 638 ident: CR35 article-title: A hybrid approach for day-ahead forecast of PV Power generation publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.11.774 – ident: CR13 – volume: 8 start-page: 252 issue: 2 year: 2020 end-page: 271 ident: CR1 article-title: Ensemble models for solar power forecasting—a weather classification approach publication-title: AIMS Energy doi: 10.3934/energy.2020.2.252 – volume: 31 start-page: 54 year: 2019 end-page: 63 ident: CR6 article-title: A Systematic Literature Review on big data for solar photovoltaic electricity generation forecasting publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2018.11.008 – ident: CR34 – volume: 209 start-page: 79 year: 2018 end-page: 94 ident: CR47 article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.10.076 – ident: CR7 – ident: CR59 – volume: 635 start-page: 644 year: 2018 end-page: 658 ident: CR66 article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China publication-title: Science of Total Environment doi: 10.1016/j.scitotenv.2018.04.040 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR24 – volume: 82 start-page: 570 year: 2015 end-page: 577 ident: CR9 article-title: A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance publication-title: Energy doi: 10.1016/j.energy.2015.01.066 – ident: CR20 – volume: 575 start-page: 671 year: 2019 end-page: 689 ident: CR61 article-title: Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.05.068 – volume: 397 start-page: 415 year: 2020 end-page: 421 ident: CR63 article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.110 – volume: 171 start-page: 787 year: 2018 ident: 10058_CR36 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.06.021 – ident: 10058_CR59 doi: 10.1016/j.engappai.2020.103801 – ident: 10058_CR42 doi: 10.1016/j.scs.2020.102679 – ident: 10058_CR31 doi: 10.1016/j.apenergy.2019.114216 – volume: 129 start-page: 7 year: 2019 ident: 10058_CR45 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.057 – ident: 10058_CR10 doi: 10.1016/j.trip.2020.100250 – volume: 195 start-page: 180 year: 2019 ident: 10058_CR68 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.05.005 – ident: 10058_CR40 doi: 10.1016/j.asoc.2020.106389 – volume: 156 start-page: 459 year: 2018 ident: 10058_CR52 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2017.11.019 – volume: 397 start-page: 438 year: 2020 ident: 10058_CR69 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.105 – volume: 31 start-page: 54 year: 2019 ident: 10058_CR6 publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2018.11.008 – volume: 8 start-page: 62423 year: 2020 ident: 10058_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981506 – ident: 10058_CR24 doi: 10.1016/j.enconman.2020.113076 – volume: 81 start-page: 105 year: 2018 ident: 10058_CR67 publication-title: ISA Transaction doi: 10.1016/j.isatra.2018.06.004 – volume: 62 start-page: 792 year: 2021 ident: 10058_CR70 publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.01.018 – ident: 10058_CR17 doi: 10.1016/j.apenergy.2021.117291 – volume: 140 start-page: 367 year: 2019 ident: 10058_CR60 publication-title: Renewable Energy doi: 10.1016/j.renene.2019.02.087 – ident: 10058_CR100 doi: 10.1016/S0893-6080(05)80023-1 – ident: 10058_CR22 doi: 10.1063/1.5139689 – volume: 118 start-page: 357 year: 2018 ident: 10058_CR12 publication-title: Renewable Energy doi: 10.1016/j.renene.2017.11.011 – ident: 10058_CR37 doi: 10.1016/j.petrol.2021.108836 – ident: 10058_CR62 doi: 10.1016/j.energy.2019.116225 – volume: 160 start-page: 26 year: 2020 ident: 10058_CR65 publication-title: Renewable Energy doi: 10.1016/j.renene.2020.05.150 – ident: 10058_CR39 doi: 10.1007/s00366-021-01332-8 – volume: 397 start-page: 415 year: 2020 ident: 10058_CR63 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.110 – volume: 40 start-page: 1568 issue: 1 year: 2020 ident: 10058_CR48 publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2020.09.005 – ident: 10058_CR26 doi: 10.1016/j.saa.2021.120190 – volume: 61 start-page: 775 issue: 1 year: 2022 ident: 10058_CR32 publication-title: Network – volume: 81 start-page: 912 year: 2018 ident: 10058_CR5 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.08.017 – ident: 10058_CR34 doi: 10.1016/j.measurement.2019.106971 – ident: 10058_CR25 doi: 10.1016/j.dsp.2021.103054 – volume: 163 start-page: 189 year: 2018 ident: 10058_CR53 publication-title: Solar Energy doi: 10.1016/j.solener.2018.02.006 – volume: 575 start-page: 671 year: 2019 ident: 10058_CR61 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.05.068 – volume: 209 start-page: 79 year: 2018 ident: 10058_CR47 publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.10.076 – ident: 10058_CR101 – ident: 10058_CR8 doi: 10.1016/j.scitotenv.2021.145534 – ident: 10058_CR4 doi: 10.1016/j.compeleceng.2020.106730 – ident: 10058_CR7 doi: 10.1016/j.engfailanal.2020.104909 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10058_CR55 publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – ident: 10058_CR20 doi: 10.1109/EFEA.2018.8617079 – volume: 228 start-page: 359 year: 2019 ident: 10058_CR30 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.04.331 – ident: 10058_CR13 doi: 10.1016/j.enconman.2020.113552 – volume: 86 start-page: 1803 issue: 6 year: 2012 ident: 10058_CR21 publication-title: Solar Energy doi: 10.1016/j.solener.2012.03.006 – volume: 152 start-page: 9 year: 2020 ident: 10058_CR43 publication-title: Renewable Energy doi: 10.1016/j.renene.2020.01.005 – ident: 10058_CR51 doi: 10.1109/ICIINFS.2014.7036502 – volume: 51 start-page: 634 issue: 28 year: 2018 ident: 10058_CR35 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.11.774 – year: 2021 ident: 10058_CR64 publication-title: Petroleum doi: 10.1016/j.petlm.2021.04.003 – ident: 10058_CR16 doi: 10.1016/j.apenergy.2019.113541 – volume: 140 start-page: 124 year: 2019 ident: 10058_CR29 publication-title: Renewable Energy doi: 10.1016/j.renene.2019.03.020 – ident: 10058_CR2 doi: 10.1016/j.engappai.2019.103447 – volume: 8 start-page: 252 issue: 2 year: 2020 ident: 10058_CR1 publication-title: AIMS Energy doi: 10.3934/energy.2020.2.252 – volume: 12 start-page: 4855 issue: 5 year: 2021 ident: 10058_CR46 publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01900-8 – volume: 82 start-page: 570 year: 2015 ident: 10058_CR9 publication-title: Energy doi: 10.1016/j.energy.2015.01.066 – volume: 39 start-page: 49 year: 2021 ident: 10058_CR27 publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2021.07.002 – ident: 10058_CR18 doi: 10.1016/j.enconman.2021.114569 – ident: 10058_CR49 doi: 10.1016/j.ijleo.2021.167518 – ident: 10058_CR23 doi: 10.1016/j.cageo.2021.104754 – ident: 10058_CR41 doi: 10.1016/j.scitotenv.2019.136134 – ident: 10058_CR103 doi: 10.1007/s10654-018-0390-z – ident: 10058_CR15 doi: 10.1016/j.ijleo.2021.167088 – ident: 10058_CR28 doi: 10.1016/j.apenergy.2021.117410 – volume: 45 start-page: 6 issue: 1 year: 2021 ident: 10058_CR14 publication-title: International Journal of Energy Research doi: 10.1002/er.5608 – volume: 116 start-page: 473 year: 2018 ident: 10058_CR11 publication-title: Measurement doi: 10.1016/j.measurement.2017.11.023 – volume: 14 start-page: 341 issue: 10–12 year: 2019 ident: 10058_CR19 publication-title: Energy Sources, Part b, Economy, Planning, and Policy doi: 10.1080/15567249.2020.1717678 – volume: 104 start-page: 184 year: 2016 ident: 10058_CR56 publication-title: Energy doi: 10.1016/j.energy.2016.03.070 – ident: 10058_CR50 – ident: 10058_CR44 doi: 10.1016/j.energy.2021.120996 – volume: 30 start-page: 683 issue: 5 year: 2020 ident: 10058_CR58 publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2020.05.020 – volume: 635 start-page: 644 year: 2018 ident: 10058_CR66 publication-title: Science of Total Environment doi: 10.1016/j.scitotenv.2018.04.040 – volume: 43 start-page: 108 year: 2021 ident: 10058_CR54 publication-title: Phytochemistry Letters doi: 10.1016/j.phytol.2021.03.009 – volume: 34 start-page: 75 year: 2017 ident: 10058_CR3 publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2016.12.004 – ident: 10058_CR57 doi: 10.1016/j.jclepro.2019.119252 – ident: 10058_CR71 doi: 10.1109/ITME.2018.00221 – volume: 119 start-page: 288 year: 2017 ident: 10058_CR38 publication-title: Energy doi: 10.1016/j.energy.2016.11.061 |
| SSID | ssj0007385 |
| Score | 2.3580668 |
| Snippet | In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1265 |
| SubjectTerms | Artificial neural networks Back propagation networks Bayesian analysis Chemistry and Earth Sciences Computer Science Earth and Environmental Science Earth Sciences Energy sources Errors Forecasting Fossil Fuels (incl. Carbon Capture) Geography Group method of data handling Mathematical Modeling and Industrial Mathematics Mathematical models Methodology Mineral Resources Neural networks Original Paper Photovoltaics Physics Radial basis function Solar energy Solar power Statistics for Engineering Support vector machines Sustainable Development Sustainable energy |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RaKVyaCkFdSmtfODWWt3Ejj9OCBAfB7paIZC4RbaTwEqrBEhaiX_P2OsQWgku3CIlcaLMy3g843kPYEdqmxlRMWq41JRbJqhmTtBEZFkpMy0yExqFT-Vkoi4v9TQm3Nq4rbL3icFRF43zOfJfqUbwMYlw3L25pV41yldXo4TGG1jxTGWI85X9w8n07NEXe66WwJiKiyQfese2mUXzHIYWvoaZoisaZ4qyf6emId78r0QaZp6jj6995zX4EGNOsrcAySdYKut1WH3CRLgO746Dwu_9ZzB7BB0fOW3qK3qObptMr5uuQSfWmZkjUy-qRryepzOt3zFNvJjanOzjZFiQpiYYvDqffSeRzzq2eZLfQak6PGMDLo4Ozw9OaNRhoA4XZx11jFVKmbJKLX5Cw8ZVxYpUc8NTK1JueVlgkOYK4ZTnL5RjZRkeysQkqhJMsk1Yrpu6_AJEyMIqy600uuIFdyqzXBtEMwaSukjMCJLeBLmLJOVeK2OeD_TK3mw5mi0PZsvZCH483nOzoOh48ert3lZ5_F3bfDDUCH721h5OPz_a1sujfYX3qQdYyNpsw3J396f8Bm_d327W3n2PYH0ACEvt0Q priority: 102 providerName: ProQuest |
| Title | A New Long-Term Photovoltaic Power Forecasting Model Based on Stacking Generalization Methodology |
| URI | https://link.springer.com/article/10.1007/s11053-022-10058-3 https://www.proquest.com/docview/2918337011 |
| Volume | 31 |
| WOSCitedRecordID | wos000784391100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: PCBAR dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: PATMY dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: KB. dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-8981 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: RSV dateStart: 19990301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKAIOhW6L2JaufOBWXG1ixx9HFkErla5WQBG3yHYSQEIJIqFS_33HxmGhaiuVm6U4TjQeP48_5j2AHaltZkTFqOFSU26ZoJo5QRORZaXMtMhMSBQ-ktOpOj_Xs5gU1va33fsjyYDU82Q3DAX8mWOK0DHOFGULsJR5thm_Rj85e8Bfz88SWFJxYeTD7Zgq8-c2nk5H8xjzt2PRMNscrj_vPzfgVYwuyd69O7yGF2U9gPVeuYHEgTyAtUc0hANYiUrolz8HsPw5SP36Urgc6to3YPYIYiE5auoLeopITmaXTdcgrnXmypGZ11kjXuLTmdZfoiZeX-2aTHB-LEhTE4xnnd-QJ5HiOmZ-km9BvDp87S18Pzw43f9CozQDdbhe66hjrFLKlFVq0cKGjauKFanmhqdWpNzyssC4zRXCKU9pKMfKMizKxCSqEkyyTVism7rcAiJkYZXlVhpd8YI7lVmuDTo4xpa6SMwQkr6Hchd5y718xnU-Z1z2Fs_R4nmweM6G8PHhnZt71o5_1t7uOz6PI7jNU41gxyTC3xB2-46eP_57a-_-r_p7WE29r4SNnW1Y7G7vyg_w0v3ortrbESxNDqaz4xEsfJ18GgU__wWcWPHu |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLQg4tNCCWCjFBziB1Y3t-OOAUFtaWnW7WqFF6i21nQQqVUnpBqr-qf5Gxt6kC0j01gO3SEkcxX6eGXs87wG8VsalVpacWqEMFY5LariXNJFpWqjUyNTGQuGhGo300ZEZL8BVVwsTjlV2NjEa6rz2YY98gxkEH1cIxw9n32lQjQrZ1U5CYwaLg-LyApds0_f7H3F83zC2uzPZ3qOtqgD1uNRoqOe81NoWJXPojC0flCXPmRFWMCeZcKLIMeTwufQ6sPGpgXYcL1ViE11Krji2ewcWBRcy7cHi1s5o_Pna9gdumMjQiouyEOq3ZTqzYj0MZULOlKHpG6Sa8j9d4Ty-_SslGz3d7vL_1kePYKmNqcnmbBI8hoWiWoGHvzEtrsC9T1HB-HIV7CZBw06GdfWVTtAtkfG3uqnRSDf2xJNxEI0jQa_U22k4EU6CWNwp2UJnn5O6Ihic-5BdIC1fd1vGSg6jEnf8xhP4cit_-xR6VV0Vz4BIlTvthFPWlCIXXqdOGIuzFQNlkye2D0k35JlvSdiDFshpNqePDjDJECZZhEnG-_D2-p2zGQXJjU-vddjIWnM0zebA6MO7Dl3z2_9u7fnNrb2C-3uTw2E23B8dvIAHLIA77lCtQa85_1G8hLv-Z3MyPV9vJwqB49vG3S9BWUl0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8oKMgD6AHhFLQPvGlzt9tuPx7x49R4Xi6KhrdN290FErJLuIWE_55pr8uBURPjW5PtdjfT6XTamfn9APaltpkRFaOGS025ZYJq5gRNRJaVMtMiM6FQeCwnE3V0pKd3qvhDtnsXkpzXNHiUprodnBfVYFH4hm6Bjz-maEaGmaLsISxzPMn4pK5v33_e2mKP1RIQU_GQ5F3vWDbz-zHub00Lf_OXEGnYeUYb___PT2E9ep3kYK4mz-BBWfdgo2N0IHGB92DtDjxhD1YjQ_rJdQ8efwwUwL4VkkbdbBPMAUEbScZNfUwP0cKT6UnTNmjvWnPqyNTzrxFP_enMzCdXE8-7dkbe4r5ZkKYm6Oc6f1FPIvR1rAglXwOpdfjaFvwYfTh894lGygbq8BzXUsdYpZQpq9SitA0bVhUrUs0NT61IueVlgf6cK4RTHupQDpVl2JSJSVQlmGTbsFQ3dbkDRMjCKsutNLriBXcqs1wbVHz0OXWRmD4k3WzlLuKZe1qNs3yBxOwlnqPE8yDxnPXh9e0753M0j7_23u2UII8re5anGo0gk2gW-_Cmm_TF4z-P9vzfur-Clen7UT7-PPnyAp6kXm3C3c8uLLUXl-UePHJX7ens4mVQ-BtGXftA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Long-Term+Photovoltaic+Power+Forecasting+Model+Based+on+Stacking+Generalization+Methodology&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Ofori-Ntow+Jnr%2C+Eric&rft.au=Ziggah%2C+Yao+Yevenyo&rft.au=Rodrigues%2C+Maria+Joao&rft.au=Relvas%2C+Susana&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=3&rft.spage=1265&rft.epage=1287&rft_id=info:doi/10.1007%2Fs11053-022-10058-3&rft.externalDocID=10_1007_s11053_022_10058_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |