A New Long-Term Photovoltaic Power Forecasting Model Based on Stacking Generalization Methodology

In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a ne...

Full description

Saved in:
Bibliographic Details
Published in:Natural resources research (New York, N.Y.) Vol. 31; no. 3; pp. 1265 - 1287
Main Authors: Ofori-Ntow Jnr, Eric, Ziggah, Yao Yevenyo, Rodrigues, Maria Joao, Relvas, Susana
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2022
Springer Nature B.V
Subjects:
ISSN:1520-7439, 1573-8981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index ( LM ), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest LM score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power.
AbstractList In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index ( LM ), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest LM score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power.
In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the availability of solar energy has become a concern of many studies because of the intermittent characteristics of solar power. This study proposes a new stacked generalization methodology for predicting long-term photovoltaic power. In the proposed methodology, the base learners used consisted of group method of data handling (GMDH), least squares support vector machine (LSSVM), emotional neural network (ENN), and radial basis function neural network (RBFNN). The backpropagation neural network (BPNN) served as the meta-learner in the stacked approach. The proposed stacked generalization method showed superiority over the four standalone state-of-the-art methods (GMDH, LSSVM, ENN, and RBFNN) when tested with real data using performance indicators such as Bayesian information criteria (BIC), percent mean average relative error (PMARE), Legates and McCabe index (LM), mean absolute error, and root mean square error. The stacked model had the lowest BIC and PMARE values of 10,417.54 and 0.3617% for testing results. It also had the highest LM score of 0.996711 as compared with the benchmark standalone models, confirming its strength in forecasting photovoltaic power.
Author Ofori-Ntow Jnr, Eric
Ziggah, Yao Yevenyo
Relvas, Susana
Rodrigues, Maria Joao
Author_xml – sequence: 1
  givenname: Eric
  orcidid: 0000-0003-3021-2437
  surname: Ofori-Ntow Jnr
  fullname: Ofori-Ntow Jnr, Eric
  email: eric.jnr@tecnico.ulisboa.pt
  organization: CEG-IST, Instituto Superior Tecnico, Universidade de Lisboa, Faculty of Engineering, University of Mines and Technology
– sequence: 2
  givenname: Yao Yevenyo
  surname: Ziggah
  fullname: Ziggah, Yao Yevenyo
  organization: Faculty of Geosciences and Environmental Studies, University of Mines and Technology
– sequence: 3
  givenname: Maria Joao
  surname: Rodrigues
  fullname: Rodrigues, Maria Joao
  organization: Lisboa E-Nova and Instituto Superior Tecnico, Universidade de Lisboa
– sequence: 4
  givenname: Susana
  surname: Relvas
  fullname: Relvas, Susana
  organization: CEG-IST, Instituto Superior Tecnico, Universidade de Lisboa
BookMark eNp9kM1KAzEUhYNU0Kov4CrgOprkzjSZZRWtQtWCdR0ymUydOk40SS316U0dQXDR1f3hfPcezhANOtdZhE4ZPWeUiovAGM2BUM5JmnNJYA8dslwAkYVkg23PKREZFAdoGMKSJghkfoj0GD_YNZ66bkHm1r_h2YuL7tO1UTcGz9zaenzjvDU6xKZb4HtX2RZf6mAr7Dr8FLV53e4ntrNet82Xjk3a39v44irXusXmGO3Xug325Lceoeeb6_nVLZk-Tu6uxlNieFZEYgBqKbWteZlcaqB1DRUvMp3xcsSzMrMVzQtTjYxkIISgsoTUCqaZrEcg4Aid9XffvftY2RDV0q18l14qXjAJIChjSSV7lfEuBG9rZZr44zl63bSKUbUNVPWBqhSo-glUQUL5P_TdN2_ab3ZD0EMhibuF9X-udlDfT7aJ5g
CitedBy_id crossref_primary_10_1016_j_egyr_2025_03_060
crossref_primary_10_1016_j_prime_2023_100293
crossref_primary_10_1016_j_jhydrol_2023_130034
crossref_primary_10_1063_5_0189132
crossref_primary_10_1371_journal_pone_0324047
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1016_j_energy_2023_128669
crossref_primary_10_3390_en17010097
crossref_primary_10_1016_j_renene_2024_121853
crossref_primary_10_1002_srin_202300241
crossref_primary_10_1016_j_asoc_2025_113646
crossref_primary_10_3390_su151713146
crossref_primary_10_1007_s11053_024_10360_2
crossref_primary_10_1109_ACCESS_2023_3323526
Cites_doi 10.1016/j.renene.2019.03.020
10.1016/j.isatra.2018.06.004
10.1109/ACCESS.2020.2981506
10.1016/j.energy.2016.03.070
10.1016/j.renene.2019.02.087
10.1080/15567249.2020.1717678
10.1016/j.jclepro.2019.04.331
10.1016/j.enconman.2017.11.019
10.1016/j.jmsy.2021.01.018
10.1016/j.renene.2020.05.150
10.1016/j.neucom.2019.08.105
10.1016/j.energy.2016.11.061
10.1023/A:1018628609742
10.1007/s12652-020-01900-8
10.1016/j.enconman.2019.05.005
10.1016/j.solener.2012.03.006
10.1016/j.ref.2021.07.002
10.1016/j.swevo.2016.12.004
10.1016/j.renene.2017.11.011
10.1016/j.solener.2018.02.006
10.1016/j.phytol.2021.03.009
10.1016/j.measurement.2017.11.023
10.1016/j.bbe.2020.09.005
10.1016/j.ijmst.2020.05.020
10.1016/j.enconman.2018.06.021
10.1016/j.renene.2020.01.005
10.1016/j.rser.2017.08.017
10.1002/er.5608
10.1016/j.petlm.2021.04.003
10.1016/j.ijheatmasstransfer.2018.09.057
10.1016/j.ifacol.2018.11.774
10.3934/energy.2020.2.252
10.1016/j.seta.2018.11.008
10.1016/j.apenergy.2017.10.076
10.1016/j.scitotenv.2018.04.040
10.1016/j.energy.2015.01.066
10.1016/j.jhydrol.2019.05.068
10.1016/j.neucom.2019.09.110
10.1016/j.engappai.2020.103801
10.1016/j.scs.2020.102679
10.1016/j.apenergy.2019.114216
10.1016/j.trip.2020.100250
10.1016/j.asoc.2020.106389
10.1016/j.enconman.2020.113076
10.1016/j.apenergy.2021.117291
10.1016/S0893-6080(05)80023-1
10.1063/1.5139689
10.1016/j.petrol.2021.108836
10.1016/j.energy.2019.116225
10.1007/s00366-021-01332-8
10.1016/j.saa.2021.120190
10.1016/j.measurement.2019.106971
10.1016/j.dsp.2021.103054
10.1016/j.scitotenv.2021.145534
10.1016/j.compeleceng.2020.106730
10.1016/j.engfailanal.2020.104909
10.1109/EFEA.2018.8617079
10.1016/j.enconman.2020.113552
10.1109/ICIINFS.2014.7036502
10.1016/j.apenergy.2019.113541
10.1016/j.engappai.2019.103447
10.1016/j.enconman.2021.114569
10.1016/j.ijleo.2021.167518
10.1016/j.cageo.2021.104754
10.1016/j.scitotenv.2019.136134
10.1007/s10654-018-0390-z
10.1016/j.ijleo.2021.167088
10.1016/j.apenergy.2021.117410
10.1016/j.energy.2021.120996
10.1016/j.jclepro.2019.119252
10.1109/ITME.2018.00221
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2022
International Association for Mathematical Geosciences 2022.
Copyright_xml – notice: International Association for Mathematical Geosciences 2022
– notice: International Association for Mathematical Geosciences 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s11053-022-10058-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 1287
ExternalDocumentID 10_1007_s11053_022_10058_3
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c249t-c33f88aef2b439a30ff3d294a42b624b4ed059cd6c81377708b3c8171a18f6373
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784391100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 00:48:09 EST 2025
Sat Nov 29 06:27:46 EST 2025
Tue Nov 18 21:29:39 EST 2025
Fri Feb 21 02:45:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Long-term forecasting
Photovoltaic power
Stacked generalization methodology
Solar energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-c33f88aef2b439a30ff3d294a42b624b4ed059cd6c81377708b3c8171a18f6373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3021-2437
PQID 2918337011
PQPubID 2043663
PageCount 23
ParticipantIDs proquest_journals_2918337011
crossref_citationtrail_10_1007_s11053_022_10058_3
crossref_primary_10_1007_s11053_022_10058_3
springer_journals_10_1007_s11053_022_10058_3
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sobri, Koohi-Kamali, Rahim (CR52) 2018; 156
CR39
CR37
CR34
Youcefi, Hadjadj, Boukredera (CR64) 2021
Zhang, Dang, Simoes (CR67) 2018; 81
CR31
CR71
Rozario, Devarajan (CR46) 2021; 12
Zhai, Chen (CR66) 2018; 635
Zhang, Lv, Ma, Zhao, Wang, O’Hare (CR69) 2020; 397
CR2
VanDeventer, Jamei, Thirunavukkarasu, Seyedmahmoudian, Soon, Horan, Mekhilef, Stojcevski (CR60) 2019; 140
CR4
Dong, Yang, Reindl, Walsh (CR9) 2015; 82
Khan, Khan, Li, Bakhsh, Mehmood, Zaib (CR27) 2021; 39
Li, Wen, Tseng, Wang (CR30) 2019; 228
CR8
Majumder, Dash, Bisoi (CR36) 2018; 171
CR7
Liu (CR32) 2022; 61
CR49
CR44
CR42
Amarasinghe, Abeygunawardana, Jayasekara, Edirisinghe, Abeygunawardane (CR1) 2020; 8
CR41
CR40
Sun, Wu, Wu, Han, Yang, Wang (CR54) 2021; 43
Rostami, Hemmati-Sarapardeh, Karkevandi-Talkhooncheh, Husein, Shamshirband, Rabczuk (CR45) 2019; 129
Huld, Müller, Gambardella (CR21) 2012; 86
Bigdeli, Borujeni, Afshar (CR3) 2017; 34
Zang, Liu, Sun, Cheng, Wei, Sun (CR65) 2020; 160
Zhang, Chen, Pan, Zhao (CR68) 2019; 195
Sun, Wang, Zhang, Zheng (CR53) 2018; 163
Takeda, Tamura, Sato (CR56) 2016; 104
Zhang, Zhang, He, Li, Xu, Gong (CR70) 2021; 62
Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (CR47) 2018; 209
Liu, Lu, Cai (CR33) 2020; 8
CR18
CR17
CR16
CR15
CR59
CR13
CR57
CR10
Shahid, Singh (CR48) 2020; 40
Eseye, Zhang, Zheng (CR12) 2018; 118
CR51
CR50
Prasad, Ali, Xiang, Khan (CR43) 2020; 152
Temeng, Ziggah, Arthur (CR58) 2020; 30
Monjoly, André, Calif, Soubdhan (CR38) 2017; 119
Lu, Chang (CR35) 2018; 51
Garud, Jayaraj, Lee (CR14) 2021; 45
Ebtehaj, Bonakdari, Gharabaghi (CR11) 2018; 116
CR28
Suykens, Vandewalle (CR55) 1999; 9
CR26
CR25
de Freitas Viscondi, Alves-Souza (CR6) 2019; 31
CR24
CR23
Yang, Mourshed, Liu, Xu, Feng (CR63) 2020; 397
CR22
Kushwaha, Pindoriya (CR29) 2019; 140
Heydari, Astiaso Garcia, Keynia, Bisegna, De Santoli (CR19) 2019; 14
CR20
CR103
CR62
CR100
CR101
Walton, Binns, Bonakdari, Ebtehaj, Gharabaghi (CR61) 2019; 575
Das, Tey, Seyedmahmoudian, Mekhilef, Idris, Van Deventer, Horan, Stojcevski (CR5) 2018; 81
S Monjoly (10058_CR38) 2017; 119
W Zhang (10058_CR67) 2018; 81
PAGM Amarasinghe (10058_CR1) 2020; 8
Z Yang (10058_CR63) 2020; 397
HJ Sun (10058_CR54) 2021; 43
AH Shahid (10058_CR48) 2020; 40
LL Li (10058_CR30) 2019; 228
10058_CR39
10058_CR8
10058_CR49
10058_CR7
10058_CR4
10058_CR44
10058_CR2
10058_CR42
10058_CR41
N Bigdeli (10058_CR3) 2017; 34
10058_CR40
Y Zhang (10058_CR70) 2021; 62
R Walton (10058_CR61) 2019; 575
V Kushwaha (10058_CR29) 2019; 140
I Majumder (10058_CR36) 2018; 171
G de Freitas Viscondi (10058_CR6) 2019; 31
H Zang (10058_CR65) 2020; 160
10058_CR28
F Liu (10058_CR33) 2020; 8
10058_CR37
C Liu (10058_CR32) 2022; 61
Y Zhang (10058_CR68) 2019; 195
A Heydari (10058_CR19) 2019; 14
10058_CR34
10058_CR103
A Rostami (10058_CR45) 2019; 129
10058_CR101
10058_CR31
10058_CR100
AT Khan (10058_CR27) 2021; 39
HJ Lu (10058_CR35) 2018; 51
10058_CR71
S Sun (10058_CR53) 2018; 163
Z Dong (10058_CR9) 2015; 82
JAK Suykens (10058_CR55) 1999; 9
10058_CR18
10058_CR17
10058_CR26
10058_CR25
10058_CR24
AT Eseye (10058_CR12) 2018; 118
10058_CR23
10058_CR22
R Prasad (10058_CR43) 2020; 152
10058_CR20
10058_CR62
APR Rozario (10058_CR46) 2021; 12
VA Temeng (10058_CR58) 2020; 30
S Salcedo-Sanz (10058_CR47) 2018; 209
B Zhai (10058_CR66) 2018; 635
S Sobri (10058_CR52) 2018; 156
H Takeda (10058_CR56) 2016; 104
MR Youcefi (10058_CR64) 2021
UK Das (10058_CR5) 2018; 81
T Huld (10058_CR21) 2012; 86
10058_CR16
KS Garud (10058_CR14) 2021; 45
10058_CR15
10058_CR59
W VanDeventer (10058_CR60) 2019; 140
10058_CR13
10058_CR57
I Ebtehaj (10058_CR11) 2018; 116
10058_CR10
10058_CR51
10058_CR50
T Zhang (10058_CR69) 2020; 397
References_xml – volume: 140
  start-page: 124
  year: 2019
  end-page: 139
  ident: CR29
  article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.03.020
– volume: 81
  start-page: 105
  year: 2018
  end-page: 120
  ident: CR67
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Transaction
  doi: 10.1016/j.isatra.2018.06.004
– ident: CR22
– ident: CR49
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 8
  start-page: 62423
  year: 2020
  end-page: 62438
  ident: CR33
  article-title: A hybrid method with adaptive sub-series clustering and attention-based stacked residual LSTMs for multivariate time series forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981506
– volume: 104
  start-page: 184
  year: 2016
  end-page: 198
  ident: CR56
  article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.070
– volume: 140
  start-page: 367
  year: 2019
  end-page: 379
  ident: CR60
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.02.087
– ident: CR8
– ident: CR25
– ident: CR42
– volume: 14
  start-page: 341
  issue: 10–12
  year: 2019
  end-page: 358
  ident: CR19
  article-title: Hybrid intelligent strategy for multifactor influenced electrical energy consumption forecasting
  publication-title: Energy Sources, Part b, Economy, Planning, and Policy
  doi: 10.1080/15567249.2020.1717678
– volume: 228
  start-page: 359
  year: 2019
  end-page: 375
  ident: CR30
  article-title: Renewable energy prediction: A novel short-term prediction model of photovoltaic output power
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.04.331
– volume: 156
  start-page: 459
  year: 2018
  end-page: 497
  ident: CR52
  article-title: Solar photovoltaic generation forecasting methods: A review
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.11.019
– ident: CR101
– ident: CR71
– volume: 62
  start-page: 792
  year: 2021
  end-page: 799
  ident: CR70
  article-title: Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.01.018
– volume: 160
  start-page: 26
  year: 2020
  end-page: 41
  ident: CR65
  article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.05.150
– volume: 397
  start-page: 438
  year: 2020
  end-page: 446
  ident: CR69
  article-title: A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.105
– ident: CR15
– ident: CR50
– volume: 119
  start-page: 288
  year: 2017
  end-page: 298
  ident: CR38
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.061
– ident: CR57
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR55
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 12
  start-page: 4855
  issue: 5
  year: 2021
  end-page: 4862
  ident: CR46
  article-title: Monitoring the quality of water in shrimp ponds and forecasting of dissolved oxygen using Fuzzy C means clustering based radial basis function neural networks
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01900-8
– volume: 195
  start-page: 180
  year: 2019
  end-page: 197
  ident: CR68
  article-title: A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.05.005
– volume: 86
  start-page: 1803
  issue: 6
  year: 2012
  end-page: 1815
  ident: CR21
  article-title: A new solar radiation database for estimating PV performance in Europe and Africa
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.03.006
– ident: CR26
– ident: CR100
– ident: CR18
– volume: 39
  start-page: 49
  year: 2021
  end-page: 58
  ident: CR27
  article-title: Optimally configured Gated Recurrent Unit using Hyperband for the long-term forecasting of photovoltaic plant
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2021.07.002
– volume: 34
  start-page: 75
  year: 2017
  end-page: 88
  ident: CR3
  article-title: Time series analysis and short-term forecasting of solar irradiation, a new hybrid approach
  publication-title: Swarm Evolutionary Computation
  doi: 10.1016/j.swevo.2016.12.004
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: CR12
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.011
– ident: CR2
– ident: CR37
– ident: CR10
– volume: 163
  start-page: 189
  year: 2018
  end-page: 199
  ident: CR53
  article-title: A decomposition-clustering-ensemble learning approach for solar radiation forecasting
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.02.006
– volume: 61
  start-page: 775
  issue: 1
  year: 2022
  end-page: 784
  ident: CR32
  article-title: Risk prediction of digital transformation of manufacturing supply chain based on Principal Component Analysis and Backpropagation Artificial Neural
  publication-title: Network
– ident: CR40
– volume: 43
  start-page: 108
  year: 2021
  end-page: 113
  ident: CR54
  article-title: Optimization of vacuum assisted heat reflux extraction process of radix isatidis using least squares-support vector machine algorithm
  publication-title: Phytochemistry Letters
  doi: 10.1016/j.phytol.2021.03.009
– volume: 116
  start-page: 473
  year: 2018
  end-page: 482
  ident: CR11
  article-title: Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.023
– ident: CR23
– volume: 40
  start-page: 1568
  issue: 1
  year: 2020
  end-page: 1585
  ident: CR48
  article-title: A novel approach for coronary artery disease diagnosis using hybrid Particle Swarm Optimization based Emotional Neural Network
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.09.005
– volume: 30
  start-page: 683
  issue: 5
  year: 2020
  end-page: 689
  ident: CR58
  article-title: A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2020.05.020
– ident: CR44
– ident: CR103
– volume: 171
  start-page: 787
  year: 2018
  end-page: 806
  ident: CR36
  article-title: Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.06.021
– volume: 152
  start-page: 9
  year: 2020
  end-page: 22
  ident: CR43
  article-title: A double decomposition-based modelling approach to forecast weekly solar radiation
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.01.005
– volume: 81
  start-page: 912
  year: 2018
  end-page: 928
  ident: CR5
  article-title: Forecasting of photovoltaic power generation and model optimization: A review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.08.017
– volume: 45
  start-page: 6
  issue: 1
  year: 2021
  end-page: 35
  ident: CR14
  article-title: A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.5608
– year: 2021
  ident: CR64
  article-title: New model for standpipe pressure prediction while drilling using Group Method of Data Handling
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2021.04.003
– volume: 129
  start-page: 7
  year: 2019
  end-page: 17
  ident: CR45
  article-title: Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structure-based approach
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.057
– ident: CR17
– ident: CR31
– volume: 51
  start-page: 634
  issue: 28
  year: 2018
  end-page: 638
  ident: CR35
  article-title: A hybrid approach for day-ahead forecast of PV Power generation
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.774
– ident: CR13
– volume: 8
  start-page: 252
  issue: 2
  year: 2020
  end-page: 271
  ident: CR1
  article-title: Ensemble models for solar power forecasting—a weather classification approach
  publication-title: AIMS Energy
  doi: 10.3934/energy.2020.2.252
– volume: 31
  start-page: 54
  year: 2019
  end-page: 63
  ident: CR6
  article-title: A Systematic Literature Review on big data for solar photovoltaic electricity generation forecasting
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2018.11.008
– ident: CR34
– volume: 209
  start-page: 79
  year: 2018
  end-page: 94
  ident: CR47
  article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.10.076
– ident: CR7
– ident: CR59
– volume: 635
  start-page: 644
  year: 2018
  end-page: 658
  ident: CR66
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China
  publication-title: Science of Total Environment
  doi: 10.1016/j.scitotenv.2018.04.040
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR24
– volume: 82
  start-page: 570
  year: 2015
  end-page: 577
  ident: CR9
  article-title: A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.066
– ident: CR20
– volume: 575
  start-page: 671
  year: 2019
  end-page: 689
  ident: CR61
  article-title: Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.05.068
– volume: 397
  start-page: 415
  year: 2020
  end-page: 421
  ident: CR63
  article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.110
– volume: 171
  start-page: 787
  year: 2018
  ident: 10058_CR36
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.06.021
– ident: 10058_CR59
  doi: 10.1016/j.engappai.2020.103801
– ident: 10058_CR42
  doi: 10.1016/j.scs.2020.102679
– ident: 10058_CR31
  doi: 10.1016/j.apenergy.2019.114216
– volume: 129
  start-page: 7
  year: 2019
  ident: 10058_CR45
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.057
– ident: 10058_CR10
  doi: 10.1016/j.trip.2020.100250
– volume: 195
  start-page: 180
  year: 2019
  ident: 10058_CR68
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.05.005
– ident: 10058_CR40
  doi: 10.1016/j.asoc.2020.106389
– volume: 156
  start-page: 459
  year: 2018
  ident: 10058_CR52
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.11.019
– volume: 397
  start-page: 438
  year: 2020
  ident: 10058_CR69
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.105
– volume: 31
  start-page: 54
  year: 2019
  ident: 10058_CR6
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2018.11.008
– volume: 8
  start-page: 62423
  year: 2020
  ident: 10058_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981506
– ident: 10058_CR24
  doi: 10.1016/j.enconman.2020.113076
– volume: 81
  start-page: 105
  year: 2018
  ident: 10058_CR67
  publication-title: ISA Transaction
  doi: 10.1016/j.isatra.2018.06.004
– volume: 62
  start-page: 792
  year: 2021
  ident: 10058_CR70
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.01.018
– ident: 10058_CR17
  doi: 10.1016/j.apenergy.2021.117291
– volume: 140
  start-page: 367
  year: 2019
  ident: 10058_CR60
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.02.087
– ident: 10058_CR100
  doi: 10.1016/S0893-6080(05)80023-1
– ident: 10058_CR22
  doi: 10.1063/1.5139689
– volume: 118
  start-page: 357
  year: 2018
  ident: 10058_CR12
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.011
– ident: 10058_CR37
  doi: 10.1016/j.petrol.2021.108836
– ident: 10058_CR62
  doi: 10.1016/j.energy.2019.116225
– volume: 160
  start-page: 26
  year: 2020
  ident: 10058_CR65
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.05.150
– ident: 10058_CR39
  doi: 10.1007/s00366-021-01332-8
– volume: 397
  start-page: 415
  year: 2020
  ident: 10058_CR63
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.110
– volume: 40
  start-page: 1568
  issue: 1
  year: 2020
  ident: 10058_CR48
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.09.005
– ident: 10058_CR26
  doi: 10.1016/j.saa.2021.120190
– volume: 61
  start-page: 775
  issue: 1
  year: 2022
  ident: 10058_CR32
  publication-title: Network
– volume: 81
  start-page: 912
  year: 2018
  ident: 10058_CR5
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.08.017
– ident: 10058_CR34
  doi: 10.1016/j.measurement.2019.106971
– ident: 10058_CR25
  doi: 10.1016/j.dsp.2021.103054
– volume: 163
  start-page: 189
  year: 2018
  ident: 10058_CR53
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.02.006
– volume: 575
  start-page: 671
  year: 2019
  ident: 10058_CR61
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.05.068
– volume: 209
  start-page: 79
  year: 2018
  ident: 10058_CR47
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.10.076
– ident: 10058_CR101
– ident: 10058_CR8
  doi: 10.1016/j.scitotenv.2021.145534
– ident: 10058_CR4
  doi: 10.1016/j.compeleceng.2020.106730
– ident: 10058_CR7
  doi: 10.1016/j.engfailanal.2020.104909
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10058_CR55
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– ident: 10058_CR20
  doi: 10.1109/EFEA.2018.8617079
– volume: 228
  start-page: 359
  year: 2019
  ident: 10058_CR30
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.04.331
– ident: 10058_CR13
  doi: 10.1016/j.enconman.2020.113552
– volume: 86
  start-page: 1803
  issue: 6
  year: 2012
  ident: 10058_CR21
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.03.006
– volume: 152
  start-page: 9
  year: 2020
  ident: 10058_CR43
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.01.005
– ident: 10058_CR51
  doi: 10.1109/ICIINFS.2014.7036502
– volume: 51
  start-page: 634
  issue: 28
  year: 2018
  ident: 10058_CR35
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.774
– year: 2021
  ident: 10058_CR64
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2021.04.003
– ident: 10058_CR16
  doi: 10.1016/j.apenergy.2019.113541
– volume: 140
  start-page: 124
  year: 2019
  ident: 10058_CR29
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.03.020
– ident: 10058_CR2
  doi: 10.1016/j.engappai.2019.103447
– volume: 8
  start-page: 252
  issue: 2
  year: 2020
  ident: 10058_CR1
  publication-title: AIMS Energy
  doi: 10.3934/energy.2020.2.252
– volume: 12
  start-page: 4855
  issue: 5
  year: 2021
  ident: 10058_CR46
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01900-8
– volume: 82
  start-page: 570
  year: 2015
  ident: 10058_CR9
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.066
– volume: 39
  start-page: 49
  year: 2021
  ident: 10058_CR27
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2021.07.002
– ident: 10058_CR18
  doi: 10.1016/j.enconman.2021.114569
– ident: 10058_CR49
  doi: 10.1016/j.ijleo.2021.167518
– ident: 10058_CR23
  doi: 10.1016/j.cageo.2021.104754
– ident: 10058_CR41
  doi: 10.1016/j.scitotenv.2019.136134
– ident: 10058_CR103
  doi: 10.1007/s10654-018-0390-z
– ident: 10058_CR15
  doi: 10.1016/j.ijleo.2021.167088
– ident: 10058_CR28
  doi: 10.1016/j.apenergy.2021.117410
– volume: 45
  start-page: 6
  issue: 1
  year: 2021
  ident: 10058_CR14
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.5608
– volume: 116
  start-page: 473
  year: 2018
  ident: 10058_CR11
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.023
– volume: 14
  start-page: 341
  issue: 10–12
  year: 2019
  ident: 10058_CR19
  publication-title: Energy Sources, Part b, Economy, Planning, and Policy
  doi: 10.1080/15567249.2020.1717678
– volume: 104
  start-page: 184
  year: 2016
  ident: 10058_CR56
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.070
– ident: 10058_CR50
– ident: 10058_CR44
  doi: 10.1016/j.energy.2021.120996
– volume: 30
  start-page: 683
  issue: 5
  year: 2020
  ident: 10058_CR58
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2020.05.020
– volume: 635
  start-page: 644
  year: 2018
  ident: 10058_CR66
  publication-title: Science of Total Environment
  doi: 10.1016/j.scitotenv.2018.04.040
– volume: 43
  start-page: 108
  year: 2021
  ident: 10058_CR54
  publication-title: Phytochemistry Letters
  doi: 10.1016/j.phytol.2021.03.009
– volume: 34
  start-page: 75
  year: 2017
  ident: 10058_CR3
  publication-title: Swarm Evolutionary Computation
  doi: 10.1016/j.swevo.2016.12.004
– ident: 10058_CR57
  doi: 10.1016/j.jclepro.2019.119252
– ident: 10058_CR71
  doi: 10.1109/ITME.2018.00221
– volume: 119
  start-page: 288
  year: 2017
  ident: 10058_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.061
SSID ssj0007385
Score 2.3580668
Snippet In recent times, solar energy has become a highly promising source of energy and one of the most regular types of sustainable energy. Forecasting the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1265
SubjectTerms Artificial neural networks
Back propagation networks
Bayesian analysis
Chemistry and Earth Sciences
Computer Science
Earth and Environmental Science
Earth Sciences
Energy sources
Errors
Forecasting
Fossil Fuels (incl. Carbon Capture)
Geography
Group method of data handling
Mathematical Modeling and Industrial Mathematics
Mathematical models
Methodology
Mineral Resources
Neural networks
Original Paper
Photovoltaics
Physics
Radial basis function
Solar energy
Solar power
Statistics for Engineering
Support vector machines
Sustainable Development
Sustainable energy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RaKVyaCkFdSmtfODWWt3Ejj9OCBAfB7paIZC4RbaTwEqrBEhaiX_P2OsQWgku3CIlcaLMy3g843kPYEdqmxlRMWq41JRbJqhmTtBEZFkpMy0yExqFT-Vkoi4v9TQm3Nq4rbL3icFRF43zOfJfqUbwMYlw3L25pV41yldXo4TGG1jxTGWI85X9w8n07NEXe66WwJiKiyQfese2mUXzHIYWvoaZoisaZ4qyf6emId78r0QaZp6jj6995zX4EGNOsrcAySdYKut1WH3CRLgO746Dwu_9ZzB7BB0fOW3qK3qObptMr5uuQSfWmZkjUy-qRryepzOt3zFNvJjanOzjZFiQpiYYvDqffSeRzzq2eZLfQak6PGMDLo4Ozw9OaNRhoA4XZx11jFVKmbJKLX5Cw8ZVxYpUc8NTK1JueVlgkOYK4ZTnL5RjZRkeysQkqhJMsk1Yrpu6_AJEyMIqy600uuIFdyqzXBtEMwaSukjMCJLeBLmLJOVeK2OeD_TK3mw5mi0PZsvZCH483nOzoOh48ert3lZ5_F3bfDDUCH721h5OPz_a1sujfYX3qQdYyNpsw3J396f8Bm_d327W3n2PYH0ACEvt0Q
  priority: 102
  providerName: ProQuest
Title A New Long-Term Photovoltaic Power Forecasting Model Based on Stacking Generalization Methodology
URI https://link.springer.com/article/10.1007/s11053-022-10058-3
https://www.proquest.com/docview/2918337011
Volume 31
WOSCitedRecordID wos000784391100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PCBAR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PATMY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: KB.
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKAIOhW6L2JaufOBWXG1ixx9HFkErla5WQBG3yHYSQEIJIqFS_33HxmGhaiuVm6U4TjQeP48_5j2AHaltZkTFqOFSU26ZoJo5QRORZaXMtMhMSBQ-ktOpOj_Xs5gU1va33fsjyYDU82Q3DAX8mWOK0DHOFGULsJR5thm_Rj85e8Bfz88SWFJxYeTD7Zgq8-c2nk5H8xjzt2PRMNscrj_vPzfgVYwuyd69O7yGF2U9gPVeuYHEgTyAtUc0hANYiUrolz8HsPw5SP36Urgc6to3YPYIYiE5auoLeopITmaXTdcgrnXmypGZ11kjXuLTmdZfoiZeX-2aTHB-LEhTE4xnnd-QJ5HiOmZ-km9BvDp87S18Pzw43f9CozQDdbhe66hjrFLKlFVq0cKGjauKFanmhqdWpNzyssC4zRXCKU9pKMfKMizKxCSqEkyyTVism7rcAiJkYZXlVhpd8YI7lVmuDTo4xpa6SMwQkr6Hchd5y718xnU-Z1z2Fs_R4nmweM6G8PHhnZt71o5_1t7uOz6PI7jNU41gxyTC3xB2-46eP_57a-_-r_p7WE29r4SNnW1Y7G7vyg_w0v3ortrbESxNDqaz4xEsfJ18GgU__wWcWPHu
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLQg4tNCCWCjFBziB1Y3t-OOAUFtaWnW7WqFF6i21nQQqVUnpBqr-qf5Gxt6kC0j01gO3SEkcxX6eGXs87wG8VsalVpacWqEMFY5LariXNJFpWqjUyNTGQuGhGo300ZEZL8BVVwsTjlV2NjEa6rz2YY98gxkEH1cIxw9n32lQjQrZ1U5CYwaLg-LyApds0_f7H3F83zC2uzPZ3qOtqgD1uNRoqOe81NoWJXPojC0flCXPmRFWMCeZcKLIMeTwufQ6sPGpgXYcL1ViE11Krji2ewcWBRcy7cHi1s5o_Pna9gdumMjQiouyEOq3ZTqzYj0MZULOlKHpG6Sa8j9d4Ty-_SslGz3d7vL_1kePYKmNqcnmbBI8hoWiWoGHvzEtrsC9T1HB-HIV7CZBw06GdfWVTtAtkfG3uqnRSDf2xJNxEI0jQa_U22k4EU6CWNwp2UJnn5O6Ihic-5BdIC1fd1vGSg6jEnf8xhP4cit_-xR6VV0Vz4BIlTvthFPWlCIXXqdOGIuzFQNlkye2D0k35JlvSdiDFshpNqePDjDJECZZhEnG-_D2-p2zGQXJjU-vddjIWnM0zebA6MO7Dl3z2_9u7fnNrb2C-3uTw2E23B8dvIAHLIA77lCtQa85_1G8hLv-Z3MyPV9vJwqB49vG3S9BWUl0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8oKMgD6AHhFLQPvGlzt9tuPx7x49R4Xi6KhrdN290FErJLuIWE_55pr8uBURPjW5PtdjfT6XTamfn9APaltpkRFaOGS025ZYJq5gRNRJaVMtMiM6FQeCwnE3V0pKd3qvhDtnsXkpzXNHiUprodnBfVYFH4hm6Bjz-maEaGmaLsISxzPMn4pK5v33_e2mKP1RIQU_GQ5F3vWDbz-zHub00Lf_OXEGnYeUYb___PT2E9ep3kYK4mz-BBWfdgo2N0IHGB92DtDjxhD1YjQ_rJdQ8efwwUwL4VkkbdbBPMAUEbScZNfUwP0cKT6UnTNmjvWnPqyNTzrxFP_enMzCdXE8-7dkbe4r5ZkKYm6Oc6f1FPIvR1rAglXwOpdfjaFvwYfTh894lGygbq8BzXUsdYpZQpq9SitA0bVhUrUs0NT61IueVlgf6cK4RTHupQDpVl2JSJSVQlmGTbsFQ3dbkDRMjCKsutNLriBXcqs1wbVHz0OXWRmD4k3WzlLuKZe1qNs3yBxOwlnqPE8yDxnPXh9e0753M0j7_23u2UII8re5anGo0gk2gW-_Cmm_TF4z-P9vzfur-Clen7UT7-PPnyAp6kXm3C3c8uLLUXl-UePHJX7ens4mVQ-BtGXftA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Long-Term+Photovoltaic+Power+Forecasting+Model+Based+on+Stacking+Generalization+Methodology&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Ofori-Ntow+Jnr%2C+Eric&rft.au=Ziggah%2C+Yao+Yevenyo&rft.au=Rodrigues%2C+Maria+Joao&rft.au=Relvas%2C+Susana&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=3&rft.spage=1265&rft.epage=1287&rft_id=info:doi/10.1007%2Fs11053-022-10058-3&rft.externalDocID=10_1007_s11053_022_10058_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon