Octagonal and hexadecagonal cut algorithms for finding the convex hull of finite sets with linear time complexity
This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and hexadecagon are used for discarding most of the given points interior to these polygons. In this way, the scope of the given problem can be redu...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 481; S. 128931 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.11.2024
|
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and hexadecagon are used for discarding most of the given points interior to these polygons. In this way, the scope of the given problem can be reduced significantly. In particular, the convex hull of n points distributed bleast-bmost-boundedly in some rectangle can be determined with the complexity O(n). Computational experiments demonstrate that our algorithms outperform the Quickhull algorithm by a significant factor of up to 47 times when applied to the tested data sets. The speedup compared to the CGAL library is even more pronounced. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2024.128931 |