Octagonal and hexadecagonal cut algorithms for finding the convex hull of finite sets with linear time complexity

This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and hexadecagon are used for discarding most of the given points interior to these polygons. In this way, the scope of the given problem can be redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 481; S. 128931
Hauptverfasser: Hoang, Nam-Dũng, Linh, Nguyen Kieu, Phu, Hoang Xuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.11.2024
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and hexadecagon are used for discarding most of the given points interior to these polygons. In this way, the scope of the given problem can be reduced significantly. In particular, the convex hull of n points distributed bleast-bmost-boundedly in some rectangle can be determined with the complexity O(n). Computational experiments demonstrate that our algorithms outperform the Quickhull algorithm by a significant factor of up to 47 times when applied to the tested data sets. The speedup compared to the CGAL library is even more pronounced.
AbstractList This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and hexadecagon are used for discarding most of the given points interior to these polygons. In this way, the scope of the given problem can be reduced significantly. In particular, the convex hull of n points distributed bleast-bmost-boundedly in some rectangle can be determined with the complexity O(n). Computational experiments demonstrate that our algorithms outperform the Quickhull algorithm by a significant factor of up to 47 times when applied to the tested data sets. The speedup compared to the CGAL library is even more pronounced.
ArticleNumber 128931
Author Hoang, Nam-Dũng
Linh, Nguyen Kieu
Phu, Hoang Xuan
Author_xml – sequence: 1
  givenname: Nam-Dũng
  orcidid: 0000-0001-7752-824X
  surname: Hoang
  fullname: Hoang, Nam-Dũng
  email: hoangnamdung@hus.edu.vn
  organization: Faculty of Mathematics, Mechanics and Informatics, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
– sequence: 2
  givenname: Nguyen Kieu
  surname: Linh
  fullname: Linh, Nguyen Kieu
  email: linhnk@ptit.edu.vn
  organization: Posts and Telecommunications Institute of Technology, Km10, Nguyen Trai, Ha Dong, Hanoi, Viet Nam
– sequence: 3
  givenname: Hoang Xuan
  surname: Phu
  fullname: Phu, Hoang Xuan
  email: hxphu@math.ac.vn
  organization: Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam
BookMark eNp9kE1uwjAQRq2KSgXaA3TnCyS148TY6qpC_ZOQ2LRry3EmxCixqW0o3L5BsO5qpJnvzYzeDE2cd4DQIyU5JZQ_bXM9mLwgRZnTQkhGb9CUigXLKl7KCZoSInnGCGF3aBbjlhCy4LScop-1SXrjne6xdg3u4KgbMNeO2Ses-40PNnVDxK0PuLWusW6DUwfYeHeAI-72fY99ex7ZBDhCivh3JHBvHeiAkx3O2WHXw9Gm0z26bXUf4eFa5-j77fVr-ZGt1u-fy5dVZopSpqxuWyagIoVhzEBjSl41VS10xRg3hmspJKFFrYWUxix4BVxwTZu65gKoEJrNEb3sNcHHGKBVu2AHHU6KEnV2prZqdKbOztTF2cg8XxgYHztYCCoaC268bwOYpBpv_6H_AMXheK4
Cites_doi 10.1007/BF02237955
10.1145/359423.359430
10.1145/235815.235821
10.1016/0020-0190(73)90020-3
10.1137/0215021
10.1080/01630569508816643
10.1016/0020-0190(87)90207-9
10.1007/BF02712873
10.1080/02331934.2011.623163
10.1016/S0022-0000(05)80056-X
10.1007/s10013-014-0067-1
10.1016/0020-0190(78)90003-0
10.1016/j.cad.2015.07.013
10.1016/j.cam.2019.06.014
10.1016/0020-0190(84)90084-X
10.1007/BF02523195
10.1007/s11075-020-00873-1
10.1080/02331930802434732
10.1080/02331939208843821
10.1080/02331938708843244
10.1016/0020-0190(78)90021-2
10.1080/02331938708843217
10.1080/01630569108816423
10.1016/0020-0190(72)90045-2
10.1080/02331938708843234
10.1016/0020-0190(79)90072-3
10.1080/01630569708816755
10.1145/321556.321564
10.1145/355759.355766
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2024.128931
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2024_128931
S0096300324003928
GrantInformation_xml – fundername: Vietnam Academy of Science and Technology
  grantid: NVCC01.02/24-25
  funderid: https://doi.org/10.13039/100012046
– fundername: Vietnam Academy of Science and Technology
  grantid: ICRTM04_2024.03
  funderid: https://doi.org/10.13039/100012046
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c249t-bff38e502c33cedc465d5b8a5336cc6a989012ba899cc765e686a1dbb68e188a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001281645800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 02:52:45 EST 2025
Sat Aug 10 15:31:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Linear time algorithm
68Q25
Convex hull
Orienting curves
52B55
65Y20
65D18
Quickhull algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-bff38e502c33cedc465d5b8a5336cc6a989012ba899cc765e686a1dbb68e188a3
ORCID 0000-0001-7752-824X
ParticipantIDs crossref_primary_10_1016_j_amc_2024_128931
elsevier_sciencedirect_doi_10_1016_j_amc_2024_128931
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Eddy (br0170) 1977; 3
Kirkpatrick, Seidel (br0250) 1986
Phu (br0290) 1987; 18
Jarvis (br0230) 1973; 2
Chand, Kapur (br0110) 1970; 17
br0400
Dinh, Phu (br0160) 1992; 20
br0420
An, Hoang, Linh (br0040) 2020; 85
Devroye, Toussaint (br0130) 1981; 26
Hoang, Linh (br0220) 2015; 43
Dinh, Phu (br0150) 1992; 17
Graham (br0200) 1972; 1
Preparata, Hong (br0350) 1977; 20
An, Trang (br0060) 2013; 62
de Berg, Cheong, van Kreveld, Overmars (br0120) 2008
Gomes (br0190) 2016; 70
Chan (br0100) 1996; 16
Linh, Song, Ryu, An, Hoang, Kim (br0260) 2019; 363
Preparata, Shamos (br0360) 1985
Wenger (br0390) 1997; 17
Kallay (br0240) 1984; 19
Sugihara (br0380) 1994; 49
An, Huyen, Le (br0050) 2021; 397
Andrew (br0070) 1979; 9
Phu (br0300) 1987; 18
Akl, Toussaint (br0010) 1978; 7
Gries, Stojmenovic (br0210) 1987; 25
br0410
Dinh, Phu (br0140) 1992; 25
Phu, Bock, Schlöder (br0330) 1997; 18
Phu, Dinh (br0340) 1995; 16
Mitura, Simecek, Kotenkov (br0270) 2017
Phu (br0310) 1987; 18
Ferrada, Navarro, Hitschfeld (br0180) 2020; 364
O'Rourke (br0280) 1998
Phu (br0320) 1991; 12
Silin, Trinko (br0370) 1994; 34
An (br0020) 2007; 34
Barber, Dobkin, Huhdanpaa (br0080) 1996; 22
Bykat (br0090) 1978; 7
An (br0030) 2010; 59
Phu (10.1016/j.amc.2024.128931_br0340) 1995; 16
An (10.1016/j.amc.2024.128931_br0060) 2013; 62
Jarvis (10.1016/j.amc.2024.128931_br0230) 1973; 2
Akl (10.1016/j.amc.2024.128931_br0010) 1978; 7
Phu (10.1016/j.amc.2024.128931_br0300) 1987; 18
Kirkpatrick (10.1016/j.amc.2024.128931_br0250) 1986
Phu (10.1016/j.amc.2024.128931_br0330) 1997; 18
Chan (10.1016/j.amc.2024.128931_br0100) 1996; 16
Dinh (10.1016/j.amc.2024.128931_br0160) 1992; 20
Barber (10.1016/j.amc.2024.128931_br0080) 1996; 22
Sugihara (10.1016/j.amc.2024.128931_br0380) 1994; 49
Gries (10.1016/j.amc.2024.128931_br0210) 1987; 25
Graham (10.1016/j.amc.2024.128931_br0200) 1972; 1
O'Rourke (10.1016/j.amc.2024.128931_br0280) 1998
An (10.1016/j.amc.2024.128931_br0050) 2021; 397
Preparata (10.1016/j.amc.2024.128931_br0360) 1985
Phu (10.1016/j.amc.2024.128931_br0310) 1987; 18
Wenger (10.1016/j.amc.2024.128931_br0390) 1997; 17
Hoang (10.1016/j.amc.2024.128931_br0220) 2015; 43
Phu (10.1016/j.amc.2024.128931_br0320) 1991; 12
Kallay (10.1016/j.amc.2024.128931_br0240) 1984; 19
Andrew (10.1016/j.amc.2024.128931_br0070) 1979; 9
Phu (10.1016/j.amc.2024.128931_br0290) 1987; 18
Eddy (10.1016/j.amc.2024.128931_br0170) 1977; 3
Devroye (10.1016/j.amc.2024.128931_br0130) 1981; 26
Preparata (10.1016/j.amc.2024.128931_br0350) 1977; 20
Silin (10.1016/j.amc.2024.128931_br0370) 1994; 34
Dinh (10.1016/j.amc.2024.128931_br0140) 1992; 25
Mitura (10.1016/j.amc.2024.128931_br0270) 2017
Ferrada (10.1016/j.amc.2024.128931_br0180) 2020; 364
An (10.1016/j.amc.2024.128931_br0020) 2007; 34
Dinh (10.1016/j.amc.2024.128931_br0150) 1992; 17
Gomes (10.1016/j.amc.2024.128931_br0190) 2016; 70
Bykat (10.1016/j.amc.2024.128931_br0090) 1978; 7
An (10.1016/j.amc.2024.128931_br0030) 2010; 59
An (10.1016/j.amc.2024.128931_br0040) 2020; 85
Chand (10.1016/j.amc.2024.128931_br0110) 1970; 17
de Berg (10.1016/j.amc.2024.128931_br0120) 2008
Linh (10.1016/j.amc.2024.128931_br0260) 2019; 363
References_xml – year: 2008
  ident: br0120
  article-title: Computational Geometry – Algorithms and Applications
– volume: 20
  start-page: 87
  year: 1977
  end-page: 93
  ident: br0350
  article-title: Convex hulls of finite sets of points in two and three dimensions
  publication-title: Commun. ACM
– volume: 70
  start-page: 153
  year: 2016
  end-page: 160
  ident: br0190
  article-title: A total order heuristic-based convex hull algorithm for points in the plane
  publication-title: Comput. Aided Des.
– volume: 20
  start-page: 40
  year: 1992
  end-page: 53
  ident: br0160
  article-title: The method of orienting curves and its application to an optimal control problem of hydroelectric power plants
  publication-title: Vietnam J. Math.
– ident: br0400
– volume: 17
  start-page: 115
  year: 1992
  end-page: 134
  ident: br0150
  article-title: Solving a class of optimal control problems which are linear in the control variable by the method of orienting curves
  publication-title: Acta Math. Vietnam.
– volume: 19
  start-page: 197
  year: 1984
  ident: br0240
  article-title: The complexity of incremental convex hull algorithms in
  publication-title: Inf. Process. Lett.
– volume: 18
  start-page: 213
  year: 1997
  end-page: 225
  ident: br0330
  article-title: The method of orienting curves and its application for manipulator trajectory planning
  publication-title: Numer. Funct. Anal. Optim.
– volume: 397
  year: 2021
  ident: br0050
  article-title: A modified Graham's convex hull algorithm for finding the connected orthogonal convex hull of a finite planar point set
  publication-title: Appl. Math. Comput.
– volume: 34
  start-page: 3
  year: 2007
  end-page: 8
  ident: br0020
  article-title: A modification of Graham's algorithm for determining the convex hull of a finite planar set
  publication-title: Ann. Math. Inform.
– volume: 364
  year: 2020
  ident: br0180
  article-title: A filtering technique for fast convex hull construction in
  publication-title: J. Comput. Appl. Math.
– volume: 12
  start-page: 173
  year: 1991
  end-page: 211
  ident: br0320
  article-title: Method of orienting curves for solving optimal control problems with state constraints
  publication-title: Numer. Funct. Anal. Optim.
– volume: 1
  start-page: 132
  year: 1972
  end-page: 133
  ident: br0200
  article-title: An efficient algorithm for determining the convex hull of a finite planar set
  publication-title: Inf. Process. Lett.
– volume: 22
  start-page: 469
  year: 1996
  end-page: 483
  ident: br0080
  article-title: The quickhull algorithm for convex hulls
  publication-title: ACM Trans. Math. Softw.
– volume: 25
  start-page: 323
  year: 1987
  end-page: 327
  ident: br0210
  article-title: A note on Graham's convex hull algorithm
  publication-title: Inf. Process. Lett.
– volume: 3
  start-page: 398
  year: 1977
  end-page: 403
  ident: br0170
  article-title: A new convex hull algorithm for planar sets
  publication-title: ACM Trans. Math. Softw.
– volume: 363
  year: 2019
  ident: br0260
  article-title: QuickhullDisk: a faster convex hull algorithm for disks
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 361
  year: 1996
  end-page: 368
  ident: br0100
  article-title: Optimal output-sensitive convex hull algorithms in two and three dimensions
  publication-title: Discrete Comput. Geom.
– volume: 18
  start-page: 65
  year: 1987
  end-page: 81
  ident: br0290
  article-title: Zur Lösung einer regulären Aufgabenklasse der optimalen Steuerung im Großen mittels Orientierungskurven
  publication-title: Optimization
– volume: 62
  start-page: 975
  year: 2013
  end-page: 988
  ident: br0060
  article-title: An efficient convex hull algorithm for finite point sets in 3D based on the method of orienting curves
  publication-title: Optimization
– volume: 7
  start-page: 296
  year: 1978
  end-page: 298
  ident: br0090
  article-title: Convex hull of a finite set of points in two dimensions
  publication-title: Inf. Process. Lett.
– volume: 49
  start-page: 391
  year: 1994
  end-page: 407
  ident: br0380
  article-title: Robust gift wrapping for the three-dimensional convex hull
  publication-title: J. Comput. Syst. Sci.
– year: 1998
  ident: br0280
  article-title: Computational Geometry in C
– start-page: 105
  year: 2017
  end-page: 112
  ident: br0270
  article-title: Effective construction of convex hull algorithms
  publication-title: 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
– volume: 26
  start-page: 361
  year: 1981
  end-page: 366
  ident: br0130
  article-title: A note on linear expected time algorithms for finding convex hulls
  publication-title: Computing
– volume: 16
  start-page: 755
  year: 1995
  end-page: 763
  ident: br0340
  article-title: Some remarks on the method of orienting curves
  publication-title: Numer. Funct. Anal. Optim.
– volume: 25
  start-page: 231
  year: 1992
  end-page: 247
  ident: br0140
  article-title: Solving a class of regular optimal control problems with state constraints by the method of orienting curves
  publication-title: Optimization
– volume: 18
  start-page: 225
  year: 1987
  end-page: 236
  ident: br0310
  article-title: Zur Lösung eines Zermeloschen Navigationsproblems
  publication-title: Optimization
– volume: 9
  start-page: 216
  year: 1979
  end-page: 219
  ident: br0070
  article-title: Another efficient algorithm for convex hulls in two dimensions
  publication-title: Inf. Process. Lett.
– start-page: 287
  year: 1986
  end-page: 299
  ident: br0250
  article-title: The ultimate planar convex hull algorithm?
  publication-title: SIAM J. Comput.
– volume: 34
  start-page: 545
  year: 1994
  end-page: 548
  ident: br0370
  article-title: A modification of Graham's algorithm for the convexification of a positive-homogeneous function
  publication-title: Comput. Math. Math. Phys.
– volume: 43
  start-page: 57
  year: 2015
  end-page: 70
  ident: br0220
  article-title: Quicker than quickhull
  publication-title: Vietnam J. Math.
– ident: br0420
– volume: 17
  start-page: 78
  year: 1970
  end-page: 86
  ident: br0110
  article-title: An algorithm for convex polytopes
  publication-title: J. Assoc. Comput. Mach.
– volume: 18
  start-page: 349
  year: 1987
  end-page: 359
  ident: br0300
  article-title: Ein konstruktives Lösungsverfahren für das Problem des Inpolygons kleinsten Umfangs von J. Steiner
  publication-title: Optimization
– year: 1985
  ident: br0360
  article-title: Computational Geometry – An Introduction
– volume: 7
  start-page: 219
  year: 1978
  end-page: 222
  ident: br0010
  article-title: A fast convex hull algorithm
  publication-title: Inf. Process. Lett.
– volume: 85
  start-page: 1499
  year: 2020
  end-page: 1518
  ident: br0040
  article-title: An efficient improvement of gift wrapping algorithm for computing the convex hull of a finite set of points in
  publication-title: Numer. Algorithms
– volume: 2
  start-page: 18
  year: 1973
  end-page: 21
  ident: br0230
  article-title: On the identification of the convex hull of a finite set of points in the plane
  publication-title: Inf. Process. Lett.
– volume: 17
  start-page: 322
  year: 1997
  end-page: 329
  ident: br0390
  article-title: Randomized quickhull
  publication-title: Algorithmica
– ident: br0410
– volume: 59
  start-page: 175
  year: 2010
  end-page: 179
  ident: br0030
  article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane
  publication-title: Optimization
– volume: 26
  start-page: 361
  year: 1981
  ident: 10.1016/j.amc.2024.128931_br0130
  article-title: A note on linear expected time algorithms for finding convex hulls
  publication-title: Computing
  doi: 10.1007/BF02237955
– year: 1998
  ident: 10.1016/j.amc.2024.128931_br0280
– volume: 20
  start-page: 87
  year: 1977
  ident: 10.1016/j.amc.2024.128931_br0350
  article-title: Convex hulls of finite sets of points in two and three dimensions
  publication-title: Commun. ACM
  doi: 10.1145/359423.359430
– volume: 22
  start-page: 469
  year: 1996
  ident: 10.1016/j.amc.2024.128931_br0080
  article-title: The quickhull algorithm for convex hulls
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/235815.235821
– volume: 2
  start-page: 18
  year: 1973
  ident: 10.1016/j.amc.2024.128931_br0230
  article-title: On the identification of the convex hull of a finite set of points in the plane
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(73)90020-3
– start-page: 287
  year: 1986
  ident: 10.1016/j.amc.2024.128931_br0250
  article-title: The ultimate planar convex hull algorithm?
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215021
– volume: 16
  start-page: 755
  year: 1995
  ident: 10.1016/j.amc.2024.128931_br0340
  article-title: Some remarks on the method of orienting curves
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569508816643
– volume: 25
  start-page: 323
  year: 1987
  ident: 10.1016/j.amc.2024.128931_br0210
  article-title: A note on Graham's convex hull algorithm
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(87)90207-9
– year: 2008
  ident: 10.1016/j.amc.2024.128931_br0120
– volume: 16
  start-page: 361
  year: 1996
  ident: 10.1016/j.amc.2024.128931_br0100
  article-title: Optimal output-sensitive convex hull algorithms in two and three dimensions
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02712873
– volume: 397
  year: 2021
  ident: 10.1016/j.amc.2024.128931_br0050
  article-title: A modified Graham's convex hull algorithm for finding the connected orthogonal convex hull of a finite planar point set
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 40
  year: 1992
  ident: 10.1016/j.amc.2024.128931_br0160
  article-title: The method of orienting curves and its application to an optimal control problem of hydroelectric power plants
  publication-title: Vietnam J. Math.
– volume: 62
  start-page: 975
  year: 2013
  ident: 10.1016/j.amc.2024.128931_br0060
  article-title: An efficient convex hull algorithm for finite point sets in 3D based on the method of orienting curves
  publication-title: Optimization
  doi: 10.1080/02331934.2011.623163
– year: 1985
  ident: 10.1016/j.amc.2024.128931_br0360
– volume: 49
  start-page: 391
  year: 1994
  ident: 10.1016/j.amc.2024.128931_br0380
  article-title: Robust gift wrapping for the three-dimensional convex hull
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(05)80056-X
– volume: 43
  start-page: 57
  year: 2015
  ident: 10.1016/j.amc.2024.128931_br0220
  article-title: Quicker than quickhull
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-014-0067-1
– volume: 7
  start-page: 219
  year: 1978
  ident: 10.1016/j.amc.2024.128931_br0010
  article-title: A fast convex hull algorithm
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(78)90003-0
– volume: 70
  start-page: 153
  year: 2016
  ident: 10.1016/j.amc.2024.128931_br0190
  article-title: A total order heuristic-based convex hull algorithm for points in the plane
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2015.07.013
– volume: 364
  year: 2020
  ident: 10.1016/j.amc.2024.128931_br0180
  article-title: A filtering technique for fast convex hull construction in R2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.06.014
– volume: 34
  start-page: 3
  year: 2007
  ident: 10.1016/j.amc.2024.128931_br0020
  article-title: A modification of Graham's algorithm for determining the convex hull of a finite planar set
  publication-title: Ann. Math. Inform.
– volume: 19
  start-page: 197
  issue: 4
  year: 1984
  ident: 10.1016/j.amc.2024.128931_br0240
  article-title: The complexity of incremental convex hull algorithms in Rd
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(84)90084-X
– volume: 17
  start-page: 322
  year: 1997
  ident: 10.1016/j.amc.2024.128931_br0390
  article-title: Randomized quickhull
  publication-title: Algorithmica
  doi: 10.1007/BF02523195
– volume: 85
  start-page: 1499
  year: 2020
  ident: 10.1016/j.amc.2024.128931_br0040
  article-title: An efficient improvement of gift wrapping algorithm for computing the convex hull of a finite set of points in Rn
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-020-00873-1
– volume: 59
  start-page: 175
  year: 2010
  ident: 10.1016/j.amc.2024.128931_br0030
  article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane
  publication-title: Optimization
  doi: 10.1080/02331930802434732
– volume: 25
  start-page: 231
  year: 1992
  ident: 10.1016/j.amc.2024.128931_br0140
  article-title: Solving a class of regular optimal control problems with state constraints by the method of orienting curves
  publication-title: Optimization
  doi: 10.1080/02331939208843821
– volume: 18
  start-page: 349
  year: 1987
  ident: 10.1016/j.amc.2024.128931_br0300
  article-title: Ein konstruktives Lösungsverfahren für das Problem des Inpolygons kleinsten Umfangs von J. Steiner
  publication-title: Optimization
  doi: 10.1080/02331938708843244
– volume: 34
  start-page: 545
  year: 1994
  ident: 10.1016/j.amc.2024.128931_br0370
  article-title: A modification of Graham's algorithm for the convexification of a positive-homogeneous function
  publication-title: Comput. Math. Math. Phys.
– volume: 7
  start-page: 296
  year: 1978
  ident: 10.1016/j.amc.2024.128931_br0090
  article-title: Convex hull of a finite set of points in two dimensions
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(78)90021-2
– volume: 18
  start-page: 65
  year: 1987
  ident: 10.1016/j.amc.2024.128931_br0290
  article-title: Zur Lösung einer regulären Aufgabenklasse der optimalen Steuerung im Großen mittels Orientierungskurven
  publication-title: Optimization
  doi: 10.1080/02331938708843217
– volume: 12
  start-page: 173
  year: 1991
  ident: 10.1016/j.amc.2024.128931_br0320
  article-title: Method of orienting curves for solving optimal control problems with state constraints
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569108816423
– volume: 1
  start-page: 132
  year: 1972
  ident: 10.1016/j.amc.2024.128931_br0200
  article-title: An efficient algorithm for determining the convex hull of a finite planar set
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(72)90045-2
– volume: 363
  year: 2019
  ident: 10.1016/j.amc.2024.128931_br0260
  article-title: QuickhullDisk: a faster convex hull algorithm for disks
  publication-title: Appl. Math. Comput.
– volume: 18
  start-page: 225
  year: 1987
  ident: 10.1016/j.amc.2024.128931_br0310
  article-title: Zur Lösung eines Zermeloschen Navigationsproblems
  publication-title: Optimization
  doi: 10.1080/02331938708843234
– volume: 9
  start-page: 216
  year: 1979
  ident: 10.1016/j.amc.2024.128931_br0070
  article-title: Another efficient algorithm for convex hulls in two dimensions
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(79)90072-3
– volume: 17
  start-page: 115
  year: 1992
  ident: 10.1016/j.amc.2024.128931_br0150
  article-title: Solving a class of optimal control problems which are linear in the control variable by the method of orienting curves
  publication-title: Acta Math. Vietnam.
– volume: 18
  start-page: 213
  year: 1997
  ident: 10.1016/j.amc.2024.128931_br0330
  article-title: The method of orienting curves and its application for manipulator trajectory planning
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569708816755
– start-page: 105
  year: 2017
  ident: 10.1016/j.amc.2024.128931_br0270
  article-title: Effective construction of convex hull algorithms
– volume: 17
  start-page: 78
  year: 1970
  ident: 10.1016/j.amc.2024.128931_br0110
  article-title: An algorithm for convex polytopes
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321556.321564
– volume: 3
  start-page: 398
  year: 1977
  ident: 10.1016/j.amc.2024.128931_br0170
  article-title: A new convex hull algorithm for planar sets
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355759.355766
SSID ssj0007614
Score 2.4514358
Snippet This paper is devoted to an octagonal cut algorithm and a hexadecagonal cut algorithm for finding the convex hull of n points in R2, where some octagon and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128931
SubjectTerms Convex hull
Linear time algorithm
Orienting curves
Quickhull algorithm
Title Octagonal and hexadecagonal cut algorithms for finding the convex hull of finite sets with linear time complexity
URI https://dx.doi.org/10.1016/j.amc.2024.128931
Volume 481
WOSCitedRecordID wos001281645800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK7auMkP7IUqUy6OYz9WY2iAKEgMqW-R45ysmWha2mQqP4D_zXFst5SLBEhIVVS5clz5fPL5ztWEPFM8gkolECS6ZAFTmgUyVWkgihI_FWNhVfaXTWTjsZhM5PvB4Kuvhbn6lDWNWK_l4r-KGsdQ2KZ09i_EvXkpDuB3FDo-Uez4_CPBv9Mm0NS4HgBTWKsStBvRnfHwXsyXdTu1nRiGfdDalUz1Kejr4RTNUkMi8SckpMMV-Bo4Q0nVsr-P3uaiw7pud-LCntTONt1gV75ybtHtRv3P5s5VPVaz4MXRSXo0kk6NmgShuukdPuOL7gs0wzc1dNsARtcrTDN_OOkcvJ3nImamhM_Wblp3mi-p2cn4NDZVkIShPfXAnsoiS4KU296m_thm9qqXn1SA9UZcHquZ6VAZs2PUwNJpmt3O2h_MWmYpk0eLPFFcI_txlko8HPdHr04nrzcqPeO2Sbz_bz483icK_rDQrwnOd6Tl_Da55awNOrIouUMG0NwlN99uhXOPfN7ghaKg6A5eKOKFbvFCES_U4YXiK6jFCzV4ofOKWrxQgxdq8EItXqjBC93i5T75-PL0_OQscPdwBBqN8zYoqioRkIaxThINpWY8LdNCKLQUuNZcSYGkMi4Umu5aZzwFLriKyqLgAiIhVPKA7DXzBg4I5aCRIoJmZZQwgKioZCpDCKMK7YwY5CF57jcvX9h2K7nPQ7zMcadzs9O53elDwvz25o4vWh6YIxZ-P-3hv017RG5sQfyY7LXLDp6Q6_qqrVfLpw4x3wACPZMl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Octagonal+and+hexadecagonal+cut+algorithms+for+finding+the+convex+hull+of+finite+sets+with+linear+time+complexity&rft.jtitle=Applied+mathematics+and+computation&rft.au=Hoang%2C+Nam-D%C5%A9ng&rft.au=Linh%2C+Nguyen+Kieu&rft.au=Phu%2C+Hoang+Xuan&rft.date=2024-11-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=481&rft_id=info:doi/10.1016%2Fj.amc.2024.128931&rft.externalDocID=S0096300324003928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon