Randomized distributed online algorithms against adaptive offline adversaries

In the sequential setting, a decades-old fundamental result in online algorithms states that if there is a c-competitive randomized online algorithm against an adaptive, offline adversary, then there is a c-competitive deterministic algorithm. The adaptive, offline adversary is the strongest adversa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 161; s. 105973
Hlavní autoři: Boyar, Joan, Ellen, Faith, Larsen, Kim S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2020
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the sequential setting, a decades-old fundamental result in online algorithms states that if there is a c-competitive randomized online algorithm against an adaptive, offline adversary, then there is a c-competitive deterministic algorithm. The adaptive, offline adversary is the strongest adversary among the ones usually considered, so the result states that if one has to be competitive against such a strong adversary, then randomization does not help. This implies that researchers do not consider randomization against an adaptive, offline adversary. We prove that in a distributed setting, this result does not necessarily hold, so randomization against an adaptive, offline adversary becomes interesting again. •A fundamental online algorithms result does not hold in a distributed setting.•Randomized distributed online against adaptive offline can beat deterministic.•Reviving randomized online against adaptive offline in distributed settings.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2020.105973