An accelerated inexact Newton-type regularizing algorithm for ill-posed operator equations
We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 451; s. 116052 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2024
|
| Témata: | |
| ISSN: | 0377-0427 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle and consists of an inexact Newton regularization method, while the inner iteration is performed by a sequential subspace optimization method based on the two-point gradient iteration. The key idea behind IN-SETPG is that, unlike the standard Landweber method, it uses multiple search directions per iteration in combination with an adaptive step size in order to reduce the total number of iterations. The regularization property of IN-SETPG has been established, i.e., the iterate converges to a solution of the nonlinear problem with exact data when the noise level tends to zero. Various numerical experiments are presented to demonstrate that, compared with the original inexact Newton iteration, IN-SETPG can achieve better reconstruction results and remarkable acceleration. |
|---|---|
| AbstractList | We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle and consists of an inexact Newton regularization method, while the inner iteration is performed by a sequential subspace optimization method based on the two-point gradient iteration. The key idea behind IN-SETPG is that, unlike the standard Landweber method, it uses multiple search directions per iteration in combination with an adaptive step size in order to reduce the total number of iterations. The regularization property of IN-SETPG has been established, i.e., the iterate converges to a solution of the nonlinear problem with exact data when the noise level tends to zero. Various numerical experiments are presented to demonstrate that, compared with the original inexact Newton iteration, IN-SETPG can achieve better reconstruction results and remarkable acceleration. |
| ArticleNumber | 116052 |
| Author | Long, Haie Zhang, Ye Gao, Guangyu |
| Author_xml | – sequence: 1 givenname: Haie surname: Long fullname: Long, Haie email: haie_long@smbu.edu.cn organization: MSU-BIT-SMBU Joint Research Center of Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, 518172, PR China – sequence: 2 givenname: Ye surname: Zhang fullname: Zhang, Ye email: ye.zhang@smbu.edu.cn organization: MSU-BIT-SMBU Joint Research Center of Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, 518172, PR China – sequence: 3 givenname: Guangyu surname: Gao fullname: Gao, Guangyu email: guangyugao60@163.com organization: Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, PR China |
| BookMark | eNp9kMtOwzAURL0oEm3hA9jlBxKunYeJWFUVL6mCDWzYWI59XVyldrBdoHx9U5U1q5FGOqPRmZGJ8w4JuaJQUKDN9aZQclswYFVBaQM1m5AplJznUDF-TmYxbgCgaWk1Je8Ll0mlsMcgE-rMOvyRKmXP-J28y9N-wCzgetfLYH-tW2eyX_tg08c2Mz5ktu_zwccR9MNxYazwcyeT9S5ekDMj-4iXfzknb_d3r8vHfPXy8LRcrHLFqjblXWu0xhYYhRY7pF3JywprQ2uNddlJ6HjNJa0UNVC1pgE0GroabxgaxoGWc0JPuyr4GAMaMQS7lWEvKIijELERoxBxFCJOQkbm9sTgeOzLYhBRWXQKtQ2oktDe_kMfAFBZbqc |
| Cites_doi | 10.1016/j.apnum.2021.06.008 10.1515/jiip.2002.10.3.261 10.1515/jiip-2016-0014 10.1088/1361-6420/abfe4f 10.1137/040604029 10.1080/00036811.2018.1517412 10.1007/s10092-022-00501-5 10.1088/1361-6420/aa7ac7 10.1088/1361-6420/abc270 10.1088/0266-5611/13/1/007 10.1088/0266-5611/25/1/015013 10.1007/s10589-020-00254-3 10.1515/9783110218190 10.1515/jiip-2017-0090 10.1088/1361-6420/aac8f3 10.1137/S1064827596313310 10.1088/0266-5611/15/1/028 10.1515/fca-2019-0039 10.1002/nla.766 10.1088/1361-6420/aca70f 10.1016/j.cam.2018.05.049 10.1515/JIIP.2008.026 10.1088/1361-6420/ab730b 10.1093/imanum/drac003 10.1007/s002110050158 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cam.2024.116052 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_cam_2024_116052 S0377042724003029 |
| GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AAOAW AAQFI AAXKI AAXUO ABAOU ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS 9DU AAFWJ AALRI AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HZ~ NHB R2- SSZ WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c249t-b9fdde902109ebe1b3734e5f15de53ba0b757a14c1f049f60efd0b5e82ef27013 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001257906900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 |
| IngestDate | Sat Nov 29 06:39:25 EST 2025 Sat Oct 19 15:55:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear inverse problems Inexact Newton regularization Two-point gradient method Iterative regularization Sequential subspace optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-b9fdde902109ebe1b3734e5f15de53ba0b757a14c1f049f60efd0b5e82ef27013 |
| ParticipantIDs | crossref_primary_10_1016_j_cam_2024_116052 elsevier_sciencedirect_doi_10_1016_j_cam_2024_116052 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hanke, Neubauer, Scherzer (b32) 1995; 72 Schster, Kaltenbacher, Pöschl, Kazimierski (b4) 2012 Andreas, Peter (b17) 1999; 20 Wald (b12) 2018; 34 Rieder (b13) 1999; 15 Hofmann, Plato (b1) 2018; 26 Fan, Xu (b16) 2021; 37 Gao, Han, Tong (b29) 2021; 37 Ito, Jin (b7) 2015 Hanke (b22) 1997; 13 Gong, Hofmann, Zhang (b9) 2020; 36 Heber, Schöpfer, Schuster (b26) 2019; 345 Zhang, Hofmann (b19) 2019; 22 Li, Huang, Wei (b18) 2015; 18 Bakushinsky, Kokurin (b3) 2004 Tong, Wang, Han (b15) 2021; 169 Zhang, Chen (b21) 2023; 39 Kaltenbacher, Neubauer, Scherzer (b6) 2008 Kaltenbacher, Neubauer, Ramm (b23) 2002; 10 Fu, Wang, Han, Chen (b28) 2023; 43 Vasin, Eremin (b30) 2009 Engl, Hanke, Neubauer (b5) 1996 Fliege, Tin, Zemkoho (b24) 2021; 78 Hubmer, Ramlau (b27) 2017; 33 Zhang (b10) 2023; 60 Nesterov (b33) 1983; 27 Wald, Schuster (b25) 2017; 25 Schöpfer, Schuster, Louis (b31) 2008; 16 Tikhonov, Leonov, Yagola (b2) 1998 Cheng, Hofmann (b8) 2011 Rieder (b14) 2005; 43 Schöpfer, Schuster (b11) 2009; 25 Zhang, Hofmann (b20) 2020; 99 Gong (10.1016/j.cam.2024.116052_b9) 2020; 36 Bakushinsky (10.1016/j.cam.2024.116052_b3) 2004 Zhang (10.1016/j.cam.2024.116052_b10) 2023; 60 Fliege (10.1016/j.cam.2024.116052_b24) 2021; 78 Engl (10.1016/j.cam.2024.116052_b5) 1996 Andreas (10.1016/j.cam.2024.116052_b17) 1999; 20 Cheng (10.1016/j.cam.2024.116052_b8) 2011 Hofmann (10.1016/j.cam.2024.116052_b1) 2018; 26 Tong (10.1016/j.cam.2024.116052_b15) 2021; 169 Fan (10.1016/j.cam.2024.116052_b16) 2021; 37 Ito (10.1016/j.cam.2024.116052_b7) 2015 Zhang (10.1016/j.cam.2024.116052_b19) 2019; 22 Nesterov (10.1016/j.cam.2024.116052_b33) 1983; 27 Rieder (10.1016/j.cam.2024.116052_b13) 1999; 15 Wald (10.1016/j.cam.2024.116052_b25) 2017; 25 Hubmer (10.1016/j.cam.2024.116052_b27) 2017; 33 Schöpfer (10.1016/j.cam.2024.116052_b31) 2008; 16 Schöpfer (10.1016/j.cam.2024.116052_b11) 2009; 25 Zhang (10.1016/j.cam.2024.116052_b20) 2020; 99 Tikhonov (10.1016/j.cam.2024.116052_b2) 1998 Vasin (10.1016/j.cam.2024.116052_b30) 2009 Schster (10.1016/j.cam.2024.116052_b4) 2012 Kaltenbacher (10.1016/j.cam.2024.116052_b23) 2002; 10 Kaltenbacher (10.1016/j.cam.2024.116052_b6) 2008 Hanke (10.1016/j.cam.2024.116052_b32) 1995; 72 Zhang (10.1016/j.cam.2024.116052_b21) 2023; 39 Fu (10.1016/j.cam.2024.116052_b28) 2023; 43 Li (10.1016/j.cam.2024.116052_b18) 2015; 18 Gao (10.1016/j.cam.2024.116052_b29) 2021; 37 Hanke (10.1016/j.cam.2024.116052_b22) 1997; 13 Heber (10.1016/j.cam.2024.116052_b26) 2019; 345 Wald (10.1016/j.cam.2024.116052_b12) 2018; 34 Rieder (10.1016/j.cam.2024.116052_b14) 2005; 43 |
| References_xml | – year: 2008 ident: b6 article-title: Iterative Regularization Methods for Nonlinear Ill-Posed Problems – year: 2012 ident: b4 article-title: Regularization Methods in Banach Spaces publication-title: Radon Series on Computational and Applied Mathematics – year: 2011 ident: b8 article-title: Regularization Methods for Ill-Posed Problems – volume: 37 year: 2021 ident: b29 article-title: A projective two-point gradient Kaczmarz iteration for nonlinear ill-posed problems publication-title: Inverse Problems – volume: 15 start-page: 309 year: 1999 end-page: 327 ident: b13 article-title: On the regularization of nonlinear ill-posed problems via inexact Newton iterations publication-title: Inverse Problems – volume: 34 year: 2018 ident: b12 article-title: A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification publication-title: Inverse Problems – volume: 25 start-page: 99 year: 2017 end-page: 117 ident: b25 article-title: Sequential subspace optimization for nonlinear inverse problems publication-title: J. Inverse Ill-Posed Probl. – volume: 60 start-page: 6 year: 2023 ident: b10 article-title: On the acceleration of optimal regularization algorithms for linear ill-posed inverse problems publication-title: Calcolo – volume: 27 start-page: 372 year: 1983 end-page: 376 ident: b33 article-title: A method of solving a convex programming problem with convergence rate o( publication-title: Sov. Math. Doklady – volume: 20 start-page: 1831 year: 1999 end-page: 1850 ident: b17 article-title: Fast CG-based methods for Tikhonov–Phillips regularization publication-title: SIAM J. Sci. Comput. – volume: 13 start-page: 79 year: 1997 end-page: 95 ident: b22 article-title: A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems publication-title: Inverse Problems – volume: 37 year: 2021 ident: b16 article-title: Inexact Newton regularization combined with two-point gradient methods for nonlinear ill-posed problems publication-title: Inverse Problems – year: 1998 ident: b2 article-title: Nonlinear Ill-Posed Problems. Vols. I and II – volume: 78 start-page: 193 year: 2021 end-page: 824 ident: b24 article-title: Gauss–Newton-type methods for bilevel optimization publication-title: Comput. Optim. Appl. – volume: 345 start-page: 1 year: 2019 end-page: 22 ident: b26 article-title: Acceleration of sequential subspace optimization in Banach spaces by orthogonal search directions publication-title: J. Comput. Appl. Math. – volume: 43 start-page: 1115 year: 2023 end-page: 1148 ident: b28 article-title: Two-point Landweber-type method with convex penalty terms for nonsmooth nonlinear inverse problems publication-title: IMA J. Numer. Anal. – year: 2009 ident: b30 article-title: Operators and iterative processes of Fejér type: theory and applications publication-title: Inverse and Ill-Posed Problems Series – volume: 33 year: 2017 ident: b27 article-title: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems publication-title: Inverse Problems – year: 2004 ident: b3 article-title: Iterative Methods for Approximate Solution of Inverse Problems – volume: 43 start-page: 604 year: 2005 end-page: 622 ident: b14 article-title: Inexact Newton regularization using conjugate gradients as inner iteration publication-title: SIAM J. Numer. Anal. – volume: 39 year: 2023 ident: b21 article-title: Stochastic asymptotical regularization for linear inverse problems publication-title: Inverse Problems – volume: 72 start-page: 21 year: 1995 end-page: 37 ident: b32 article-title: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems publication-title: Numer. Math. – volume: 16 start-page: 479 year: 2008 end-page: 506 ident: b31 article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods publication-title: J. Inverse Ill-Posed Probl. – year: 1996 ident: b5 article-title: Regularization of Inverse Problems – volume: 10 start-page: 261 year: 2002 end-page: 280 ident: b23 article-title: Convergence rates of the continuous regularized Gauss–Newton method publication-title: J. Inverse Ill-Posed Probl. – volume: 26 start-page: 287 year: 2018 end-page: 297 ident: b1 article-title: On ill-posedness concepts, stable solvability and saturation publication-title: J. Inverse Ill-Posed Probl. – year: 2015 ident: b7 article-title: Inverse Problems: Tikhonov Theory and Algorithms – volume: 25 year: 2009 ident: b11 article-title: Fast regularizing sequential subspace optimization in Banach spaces publication-title: Inverse Problems – volume: 18 start-page: 205 year: 2015 end-page: 221 ident: b18 article-title: Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations publication-title: Numer. Linear Algebra Appl. – volume: 99 start-page: 1000 year: 2020 end-page: 1025 ident: b20 article-title: On the second-order asymptotical regularization of linear ill-posed inverse problems publication-title: Appl. Anal. – volume: 36 year: 2020 ident: b9 article-title: A new class of accelerated regularization methods, with application to bioluminescence tomography publication-title: Inverse Problems – volume: 169 start-page: 122 year: 2021 end-page: 145 ident: b15 article-title: Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem publication-title: Appl. Numer. Math. – volume: 22 start-page: 699 year: 2019 end-page: 721 ident: b19 article-title: On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces publication-title: Fract. Calc. Appl. Anal. – year: 1996 ident: 10.1016/j.cam.2024.116052_b5 – volume: 169 start-page: 122 year: 2021 ident: 10.1016/j.cam.2024.116052_b15 article-title: Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2021.06.008 – year: 2011 ident: 10.1016/j.cam.2024.116052_b8 – volume: 27 start-page: 372 year: 1983 ident: 10.1016/j.cam.2024.116052_b33 article-title: A method of solving a convex programming problem with convergence rate o(1/k2) publication-title: Sov. Math. Doklady – volume: 10 start-page: 261 year: 2002 ident: 10.1016/j.cam.2024.116052_b23 article-title: Convergence rates of the continuous regularized Gauss–Newton method publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip.2002.10.3.261 – volume: 25 start-page: 99 issue: 1 year: 2017 ident: 10.1016/j.cam.2024.116052_b25 article-title: Sequential subspace optimization for nonlinear inverse problems publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2016-0014 – volume: 37 issue: 7 year: 2021 ident: 10.1016/j.cam.2024.116052_b29 article-title: A projective two-point gradient Kaczmarz iteration for nonlinear ill-posed problems publication-title: Inverse Problems doi: 10.1088/1361-6420/abfe4f – volume: 43 start-page: 604 year: 2005 ident: 10.1016/j.cam.2024.116052_b14 article-title: Inexact Newton regularization using conjugate gradients as inner iteration publication-title: SIAM J. Numer. Anal. doi: 10.1137/040604029 – volume: 99 start-page: 1000 year: 2020 ident: 10.1016/j.cam.2024.116052_b20 article-title: On the second-order asymptotical regularization of linear ill-posed inverse problems publication-title: Appl. Anal. doi: 10.1080/00036811.2018.1517412 – volume: 60 start-page: 6 year: 2023 ident: 10.1016/j.cam.2024.116052_b10 article-title: On the acceleration of optimal regularization algorithms for linear ill-posed inverse problems publication-title: Calcolo doi: 10.1007/s10092-022-00501-5 – volume: 33 year: 2017 ident: 10.1016/j.cam.2024.116052_b27 article-title: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems publication-title: Inverse Problems doi: 10.1088/1361-6420/aa7ac7 – volume: 37 year: 2021 ident: 10.1016/j.cam.2024.116052_b16 article-title: Inexact Newton regularization combined with two-point gradient methods for nonlinear ill-posed problems publication-title: Inverse Problems doi: 10.1088/1361-6420/abc270 – volume: 13 start-page: 79 year: 1997 ident: 10.1016/j.cam.2024.116052_b22 article-title: A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems publication-title: Inverse Problems doi: 10.1088/0266-5611/13/1/007 – volume: 25 issue: 1 year: 2009 ident: 10.1016/j.cam.2024.116052_b11 article-title: Fast regularizing sequential subspace optimization in Banach spaces publication-title: Inverse Problems doi: 10.1088/0266-5611/25/1/015013 – volume: 78 start-page: 193 issue: 3 year: 2021 ident: 10.1016/j.cam.2024.116052_b24 article-title: Gauss–Newton-type methods for bilevel optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00254-3 – year: 2009 ident: 10.1016/j.cam.2024.116052_b30 article-title: Operators and iterative processes of Fejér type: theory and applications doi: 10.1515/9783110218190 – volume: 26 start-page: 287 year: 2018 ident: 10.1016/j.cam.2024.116052_b1 article-title: On ill-posedness concepts, stable solvability and saturation publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2017-0090 – volume: 34 issue: 8 year: 2018 ident: 10.1016/j.cam.2024.116052_b12 article-title: A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification publication-title: Inverse Problems doi: 10.1088/1361-6420/aac8f3 – volume: 20 start-page: 1831 issue: 5 year: 1999 ident: 10.1016/j.cam.2024.116052_b17 article-title: Fast CG-based methods for Tikhonov–Phillips regularization publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596313310 – volume: 15 start-page: 309 year: 1999 ident: 10.1016/j.cam.2024.116052_b13 article-title: On the regularization of nonlinear ill-posed problems via inexact Newton iterations publication-title: Inverse Problems doi: 10.1088/0266-5611/15/1/028 – volume: 22 start-page: 699 year: 2019 ident: 10.1016/j.cam.2024.116052_b19 article-title: On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0039 – year: 2012 ident: 10.1016/j.cam.2024.116052_b4 article-title: Regularization Methods in Banach Spaces – volume: 18 start-page: 205 issue: 2 year: 2015 ident: 10.1016/j.cam.2024.116052_b18 article-title: Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.766 – year: 1998 ident: 10.1016/j.cam.2024.116052_b2 – volume: 39 year: 2023 ident: 10.1016/j.cam.2024.116052_b21 article-title: Stochastic asymptotical regularization for linear inverse problems publication-title: Inverse Problems doi: 10.1088/1361-6420/aca70f – volume: 345 start-page: 1 year: 2019 ident: 10.1016/j.cam.2024.116052_b26 article-title: Acceleration of sequential subspace optimization in Banach spaces by orthogonal search directions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.05.049 – year: 2015 ident: 10.1016/j.cam.2024.116052_b7 – year: 2008 ident: 10.1016/j.cam.2024.116052_b6 – volume: 16 start-page: 479 issue: 5 year: 2008 ident: 10.1016/j.cam.2024.116052_b31 article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/JIIP.2008.026 – volume: 36 year: 2020 ident: 10.1016/j.cam.2024.116052_b9 article-title: A new class of accelerated regularization methods, with application to bioluminescence tomography publication-title: Inverse Problems doi: 10.1088/1361-6420/ab730b – volume: 43 start-page: 1115 issue: 2 year: 2023 ident: 10.1016/j.cam.2024.116052_b28 article-title: Two-point Landweber-type method with convex penalty terms for nonsmooth nonlinear inverse problems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drac003 – volume: 72 start-page: 21 year: 1995 ident: 10.1016/j.cam.2024.116052_b32 article-title: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems publication-title: Numer. Math. doi: 10.1007/s002110050158 – year: 2004 ident: 10.1016/j.cam.2024.116052_b3 |
| SSID | ssj0006914 |
| Score | 2.427993 |
| Snippet | We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 116052 |
| SubjectTerms | Inexact Newton regularization Iterative regularization Nonlinear inverse problems Sequential subspace optimization Two-point gradient method |
| Title | An accelerated inexact Newton-type regularizing algorithm for ill-posed operator equations |
| URI | https://dx.doi.org/10.1016/j.cam.2024.116052 |
| Volume | 451 |
| WOSCitedRecordID | wos001257906900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-0427 databaseCode: AIEXJ dateStart: 20211213 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006914 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9FAOFdBW0ALyoaciV3HixPFxhXgKUA8gbXuJ8rAhaMlus7to4dczdhxvykMqBy5RZCWO5fkynhmPv0HoO_WkiDOmSBQUGWFxkRIRckW8XFKARwr_mGHXP-FnZ3G_L37ZrZixKSfAqyqezcToTUUNbSBsfXT2FeJ2nUID3IPQ4Qpih-t_Cb5X7aR5DquJJoHQzEpyps9BgjbT1YJNyLU2Bejr8t6cUBxcDutycnVjMg7LwYCMhmN4cTiSZgt-R_6ddsJ6Tw3Z3BSGaIOKhvzVmrY3jhPWWe4nNgX4MC0dpFzQ-rdrOkhNCBcAXF3eTbuhCZ910jzskSzOiS7m0VW3zBLMNgqTUvCn_Gd1eRNWuAY_XTMG-Ozn_Nl_ebMfrWcuy7BNYLtOoItEd5E0XbxDSz4PBejxpd7RXv_YLd2RaMjg23G32-AmIfDROJ43ZDrGyfkK-miFgXsNGlbRgqzW0PLpfPo_oT-9CndwgS0ucAcXuIsL7HCBARfY4QK3uMAOF5_Rxf7e-e4hsYU1SA7e9oRkQsGqJrS7L-AnplnAAyZDRcNChkGWehkPeUpZThU4kCrypCq8LJSxL5XPwWn4gharYSXXEVa50pSaijIlWByBtxqASyxZEaRSZhHfQD_aWUpGDX9K8qJcNhBr5zGxBmBj2CWAiZdf-_qab3xDH-ZQ3USLk3oqt9D7_HZSjuttC4gH7T9-SQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+inexact+Newton-type+regularizing+algorithm+for+ill-posed+operator+equations&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Long%2C+Haie&rft.au=Zhang%2C+Ye&rft.au=Gao%2C+Guangyu&rft.date=2024-12-01&rft.issn=0377-0427&rft.volume=451&rft.spage=116052&rft_id=info:doi/10.1016%2Fj.cam.2024.116052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |