An accelerated inexact Newton-type regularizing algorithm for ill-posed operator equations

We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 451; s. 116052
Hlavní autoři: Long, Haie, Zhang, Ye, Gao, Guangyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2024
Témata:
ISSN:0377-0427
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle and consists of an inexact Newton regularization method, while the inner iteration is performed by a sequential subspace optimization method based on the two-point gradient iteration. The key idea behind IN-SETPG is that, unlike the standard Landweber method, it uses multiple search directions per iteration in combination with an adaptive step size in order to reduce the total number of iterations. The regularization property of IN-SETPG has been established, i.e., the iterate converges to a solution of the nonlinear problem with exact data when the noise level tends to zero. Various numerical experiments are presented to demonstrate that, compared with the original inexact Newton iteration, IN-SETPG can achieve better reconstruction results and remarkable acceleration.
AbstractList We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the Hilbert-space setting. IN-SETPG consists of an outer iteration and an inner iteration. The outer iteration is terminated by the discrepancy principle and consists of an inexact Newton regularization method, while the inner iteration is performed by a sequential subspace optimization method based on the two-point gradient iteration. The key idea behind IN-SETPG is that, unlike the standard Landweber method, it uses multiple search directions per iteration in combination with an adaptive step size in order to reduce the total number of iterations. The regularization property of IN-SETPG has been established, i.e., the iterate converges to a solution of the nonlinear problem with exact data when the noise level tends to zero. Various numerical experiments are presented to demonstrate that, compared with the original inexact Newton iteration, IN-SETPG can achieve better reconstruction results and remarkable acceleration.
ArticleNumber 116052
Author Long, Haie
Zhang, Ye
Gao, Guangyu
Author_xml – sequence: 1
  givenname: Haie
  surname: Long
  fullname: Long, Haie
  email: haie_long@smbu.edu.cn
  organization: MSU-BIT-SMBU Joint Research Center of Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, 518172, PR China
– sequence: 2
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  email: ye.zhang@smbu.edu.cn
  organization: MSU-BIT-SMBU Joint Research Center of Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, 518172, PR China
– sequence: 3
  givenname: Guangyu
  surname: Gao
  fullname: Gao, Guangyu
  email: guangyugao60@163.com
  organization: Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, PR China
BookMark eNp9kMtOwzAURL0oEm3hA9jlBxKunYeJWFUVL6mCDWzYWI59XVyldrBdoHx9U5U1q5FGOqPRmZGJ8w4JuaJQUKDN9aZQclswYFVBaQM1m5AplJznUDF-TmYxbgCgaWk1Je8Ll0mlsMcgE-rMOvyRKmXP-J28y9N-wCzgetfLYH-tW2eyX_tg08c2Mz5ktu_zwccR9MNxYazwcyeT9S5ekDMj-4iXfzknb_d3r8vHfPXy8LRcrHLFqjblXWu0xhYYhRY7pF3JywprQ2uNddlJ6HjNJa0UNVC1pgE0GroabxgaxoGWc0JPuyr4GAMaMQS7lWEvKIijELERoxBxFCJOQkbm9sTgeOzLYhBRWXQKtQ2oktDe_kMfAFBZbqc
Cites_doi 10.1016/j.apnum.2021.06.008
10.1515/jiip.2002.10.3.261
10.1515/jiip-2016-0014
10.1088/1361-6420/abfe4f
10.1137/040604029
10.1080/00036811.2018.1517412
10.1007/s10092-022-00501-5
10.1088/1361-6420/aa7ac7
10.1088/1361-6420/abc270
10.1088/0266-5611/13/1/007
10.1088/0266-5611/25/1/015013
10.1007/s10589-020-00254-3
10.1515/9783110218190
10.1515/jiip-2017-0090
10.1088/1361-6420/aac8f3
10.1137/S1064827596313310
10.1088/0266-5611/15/1/028
10.1515/fca-2019-0039
10.1002/nla.766
10.1088/1361-6420/aca70f
10.1016/j.cam.2018.05.049
10.1515/JIIP.2008.026
10.1088/1361-6420/ab730b
10.1093/imanum/drac003
10.1007/s002110050158
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2024.116052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2024_116052
S0377042724003029
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c249t-b9fdde902109ebe1b3734e5f15de53ba0b757a14c1f049f60efd0b5e82ef27013
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001257906900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 06:39:25 EST 2025
Sat Oct 19 15:55:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear inverse problems
Inexact Newton regularization
Two-point gradient method
Iterative regularization
Sequential subspace optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-b9fdde902109ebe1b3734e5f15de53ba0b757a14c1f049f60efd0b5e82ef27013
ParticipantIDs crossref_primary_10_1016_j_cam_2024_116052
elsevier_sciencedirect_doi_10_1016_j_cam_2024_116052
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hanke, Neubauer, Scherzer (b32) 1995; 72
Schster, Kaltenbacher, Pöschl, Kazimierski (b4) 2012
Andreas, Peter (b17) 1999; 20
Wald (b12) 2018; 34
Rieder (b13) 1999; 15
Hofmann, Plato (b1) 2018; 26
Fan, Xu (b16) 2021; 37
Gao, Han, Tong (b29) 2021; 37
Ito, Jin (b7) 2015
Hanke (b22) 1997; 13
Gong, Hofmann, Zhang (b9) 2020; 36
Heber, Schöpfer, Schuster (b26) 2019; 345
Zhang, Hofmann (b19) 2019; 22
Li, Huang, Wei (b18) 2015; 18
Bakushinsky, Kokurin (b3) 2004
Tong, Wang, Han (b15) 2021; 169
Zhang, Chen (b21) 2023; 39
Kaltenbacher, Neubauer, Scherzer (b6) 2008
Kaltenbacher, Neubauer, Ramm (b23) 2002; 10
Fu, Wang, Han, Chen (b28) 2023; 43
Vasin, Eremin (b30) 2009
Engl, Hanke, Neubauer (b5) 1996
Fliege, Tin, Zemkoho (b24) 2021; 78
Hubmer, Ramlau (b27) 2017; 33
Zhang (b10) 2023; 60
Nesterov (b33) 1983; 27
Wald, Schuster (b25) 2017; 25
Schöpfer, Schuster, Louis (b31) 2008; 16
Tikhonov, Leonov, Yagola (b2) 1998
Cheng, Hofmann (b8) 2011
Rieder (b14) 2005; 43
Schöpfer, Schuster (b11) 2009; 25
Zhang, Hofmann (b20) 2020; 99
Gong (10.1016/j.cam.2024.116052_b9) 2020; 36
Bakushinsky (10.1016/j.cam.2024.116052_b3) 2004
Zhang (10.1016/j.cam.2024.116052_b10) 2023; 60
Fliege (10.1016/j.cam.2024.116052_b24) 2021; 78
Engl (10.1016/j.cam.2024.116052_b5) 1996
Andreas (10.1016/j.cam.2024.116052_b17) 1999; 20
Cheng (10.1016/j.cam.2024.116052_b8) 2011
Hofmann (10.1016/j.cam.2024.116052_b1) 2018; 26
Tong (10.1016/j.cam.2024.116052_b15) 2021; 169
Fan (10.1016/j.cam.2024.116052_b16) 2021; 37
Ito (10.1016/j.cam.2024.116052_b7) 2015
Zhang (10.1016/j.cam.2024.116052_b19) 2019; 22
Nesterov (10.1016/j.cam.2024.116052_b33) 1983; 27
Rieder (10.1016/j.cam.2024.116052_b13) 1999; 15
Wald (10.1016/j.cam.2024.116052_b25) 2017; 25
Hubmer (10.1016/j.cam.2024.116052_b27) 2017; 33
Schöpfer (10.1016/j.cam.2024.116052_b31) 2008; 16
Schöpfer (10.1016/j.cam.2024.116052_b11) 2009; 25
Zhang (10.1016/j.cam.2024.116052_b20) 2020; 99
Tikhonov (10.1016/j.cam.2024.116052_b2) 1998
Vasin (10.1016/j.cam.2024.116052_b30) 2009
Schster (10.1016/j.cam.2024.116052_b4) 2012
Kaltenbacher (10.1016/j.cam.2024.116052_b23) 2002; 10
Kaltenbacher (10.1016/j.cam.2024.116052_b6) 2008
Hanke (10.1016/j.cam.2024.116052_b32) 1995; 72
Zhang (10.1016/j.cam.2024.116052_b21) 2023; 39
Fu (10.1016/j.cam.2024.116052_b28) 2023; 43
Li (10.1016/j.cam.2024.116052_b18) 2015; 18
Gao (10.1016/j.cam.2024.116052_b29) 2021; 37
Hanke (10.1016/j.cam.2024.116052_b22) 1997; 13
Heber (10.1016/j.cam.2024.116052_b26) 2019; 345
Wald (10.1016/j.cam.2024.116052_b12) 2018; 34
Rieder (10.1016/j.cam.2024.116052_b14) 2005; 43
References_xml – year: 2008
  ident: b6
  article-title: Iterative Regularization Methods for Nonlinear Ill-Posed Problems
– year: 2012
  ident: b4
  article-title: Regularization Methods in Banach Spaces
  publication-title: Radon Series on Computational and Applied Mathematics
– year: 2011
  ident: b8
  article-title: Regularization Methods for Ill-Posed Problems
– volume: 37
  year: 2021
  ident: b29
  article-title: A projective two-point gradient Kaczmarz iteration for nonlinear ill-posed problems
  publication-title: Inverse Problems
– volume: 15
  start-page: 309
  year: 1999
  end-page: 327
  ident: b13
  article-title: On the regularization of nonlinear ill-posed problems via inexact Newton iterations
  publication-title: Inverse Problems
– volume: 34
  year: 2018
  ident: b12
  article-title: A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification
  publication-title: Inverse Problems
– volume: 25
  start-page: 99
  year: 2017
  end-page: 117
  ident: b25
  article-title: Sequential subspace optimization for nonlinear inverse problems
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 60
  start-page: 6
  year: 2023
  ident: b10
  article-title: On the acceleration of optimal regularization algorithms for linear ill-posed inverse problems
  publication-title: Calcolo
– volume: 27
  start-page: 372
  year: 1983
  end-page: 376
  ident: b33
  article-title: A method of solving a convex programming problem with convergence rate o(
  publication-title: Sov. Math. Doklady
– volume: 20
  start-page: 1831
  year: 1999
  end-page: 1850
  ident: b17
  article-title: Fast CG-based methods for Tikhonov–Phillips regularization
  publication-title: SIAM J. Sci. Comput.
– volume: 13
  start-page: 79
  year: 1997
  end-page: 95
  ident: b22
  article-title: A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems
  publication-title: Inverse Problems
– volume: 37
  year: 2021
  ident: b16
  article-title: Inexact Newton regularization combined with two-point gradient methods for nonlinear ill-posed problems
  publication-title: Inverse Problems
– year: 1998
  ident: b2
  article-title: Nonlinear Ill-Posed Problems. Vols. I and II
– volume: 78
  start-page: 193
  year: 2021
  end-page: 824
  ident: b24
  article-title: Gauss–Newton-type methods for bilevel optimization
  publication-title: Comput. Optim. Appl.
– volume: 345
  start-page: 1
  year: 2019
  end-page: 22
  ident: b26
  article-title: Acceleration of sequential subspace optimization in Banach spaces by orthogonal search directions
  publication-title: J. Comput. Appl. Math.
– volume: 43
  start-page: 1115
  year: 2023
  end-page: 1148
  ident: b28
  article-title: Two-point Landweber-type method with convex penalty terms for nonsmooth nonlinear inverse problems
  publication-title: IMA J. Numer. Anal.
– year: 2009
  ident: b30
  article-title: Operators and iterative processes of Fejér type: theory and applications
  publication-title: Inverse and Ill-Posed Problems Series
– volume: 33
  year: 2017
  ident: b27
  article-title: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems
  publication-title: Inverse Problems
– year: 2004
  ident: b3
  article-title: Iterative Methods for Approximate Solution of Inverse Problems
– volume: 43
  start-page: 604
  year: 2005
  end-page: 622
  ident: b14
  article-title: Inexact Newton regularization using conjugate gradients as inner iteration
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  year: 2023
  ident: b21
  article-title: Stochastic asymptotical regularization for linear inverse problems
  publication-title: Inverse Problems
– volume: 72
  start-page: 21
  year: 1995
  end-page: 37
  ident: b32
  article-title: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
  publication-title: Numer. Math.
– volume: 16
  start-page: 479
  year: 2008
  end-page: 506
  ident: b31
  article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods
  publication-title: J. Inverse Ill-Posed Probl.
– year: 1996
  ident: b5
  article-title: Regularization of Inverse Problems
– volume: 10
  start-page: 261
  year: 2002
  end-page: 280
  ident: b23
  article-title: Convergence rates of the continuous regularized Gauss–Newton method
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 26
  start-page: 287
  year: 2018
  end-page: 297
  ident: b1
  article-title: On ill-posedness concepts, stable solvability and saturation
  publication-title: J. Inverse Ill-Posed Probl.
– year: 2015
  ident: b7
  article-title: Inverse Problems: Tikhonov Theory and Algorithms
– volume: 25
  year: 2009
  ident: b11
  article-title: Fast regularizing sequential subspace optimization in Banach spaces
  publication-title: Inverse Problems
– volume: 18
  start-page: 205
  year: 2015
  end-page: 221
  ident: b18
  article-title: Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations
  publication-title: Numer. Linear Algebra Appl.
– volume: 99
  start-page: 1000
  year: 2020
  end-page: 1025
  ident: b20
  article-title: On the second-order asymptotical regularization of linear ill-posed inverse problems
  publication-title: Appl. Anal.
– volume: 36
  year: 2020
  ident: b9
  article-title: A new class of accelerated regularization methods, with application to bioluminescence tomography
  publication-title: Inverse Problems
– volume: 169
  start-page: 122
  year: 2021
  end-page: 145
  ident: b15
  article-title: Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem
  publication-title: Appl. Numer. Math.
– volume: 22
  start-page: 699
  year: 2019
  end-page: 721
  ident: b19
  article-title: On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces
  publication-title: Fract. Calc. Appl. Anal.
– year: 1996
  ident: 10.1016/j.cam.2024.116052_b5
– volume: 169
  start-page: 122
  year: 2021
  ident: 10.1016/j.cam.2024.116052_b15
  article-title: Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2021.06.008
– year: 2011
  ident: 10.1016/j.cam.2024.116052_b8
– volume: 27
  start-page: 372
  year: 1983
  ident: 10.1016/j.cam.2024.116052_b33
  article-title: A method of solving a convex programming problem with convergence rate o(1/k2)
  publication-title: Sov. Math. Doklady
– volume: 10
  start-page: 261
  year: 2002
  ident: 10.1016/j.cam.2024.116052_b23
  article-title: Convergence rates of the continuous regularized Gauss–Newton method
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip.2002.10.3.261
– volume: 25
  start-page: 99
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2024.116052_b25
  article-title: Sequential subspace optimization for nonlinear inverse problems
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2016-0014
– volume: 37
  issue: 7
  year: 2021
  ident: 10.1016/j.cam.2024.116052_b29
  article-title: A projective two-point gradient Kaczmarz iteration for nonlinear ill-posed problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/abfe4f
– volume: 43
  start-page: 604
  year: 2005
  ident: 10.1016/j.cam.2024.116052_b14
  article-title: Inexact Newton regularization using conjugate gradients as inner iteration
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040604029
– volume: 99
  start-page: 1000
  year: 2020
  ident: 10.1016/j.cam.2024.116052_b20
  article-title: On the second-order asymptotical regularization of linear ill-posed inverse problems
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2018.1517412
– volume: 60
  start-page: 6
  year: 2023
  ident: 10.1016/j.cam.2024.116052_b10
  article-title: On the acceleration of optimal regularization algorithms for linear ill-posed inverse problems
  publication-title: Calcolo
  doi: 10.1007/s10092-022-00501-5
– volume: 33
  year: 2017
  ident: 10.1016/j.cam.2024.116052_b27
  article-title: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aa7ac7
– volume: 37
  year: 2021
  ident: 10.1016/j.cam.2024.116052_b16
  article-title: Inexact Newton regularization combined with two-point gradient methods for nonlinear ill-posed problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/abc270
– volume: 13
  start-page: 79
  year: 1997
  ident: 10.1016/j.cam.2024.116052_b22
  article-title: A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/13/1/007
– volume: 25
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2024.116052_b11
  article-title: Fast regularizing sequential subspace optimization in Banach spaces
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/25/1/015013
– volume: 78
  start-page: 193
  issue: 3
  year: 2021
  ident: 10.1016/j.cam.2024.116052_b24
  article-title: Gauss–Newton-type methods for bilevel optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00254-3
– year: 2009
  ident: 10.1016/j.cam.2024.116052_b30
  article-title: Operators and iterative processes of Fejér type: theory and applications
  doi: 10.1515/9783110218190
– volume: 26
  start-page: 287
  year: 2018
  ident: 10.1016/j.cam.2024.116052_b1
  article-title: On ill-posedness concepts, stable solvability and saturation
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2017-0090
– volume: 34
  issue: 8
  year: 2018
  ident: 10.1016/j.cam.2024.116052_b12
  article-title: A fast subspace optimization method for nonlinear inverse problems in Banach spaces with an application in parameter identification
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aac8f3
– volume: 20
  start-page: 1831
  issue: 5
  year: 1999
  ident: 10.1016/j.cam.2024.116052_b17
  article-title: Fast CG-based methods for Tikhonov–Phillips regularization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596313310
– volume: 15
  start-page: 309
  year: 1999
  ident: 10.1016/j.cam.2024.116052_b13
  article-title: On the regularization of nonlinear ill-posed problems via inexact Newton iterations
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/15/1/028
– volume: 22
  start-page: 699
  year: 2019
  ident: 10.1016/j.cam.2024.116052_b19
  article-title: On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0039
– year: 2012
  ident: 10.1016/j.cam.2024.116052_b4
  article-title: Regularization Methods in Banach Spaces
– volume: 18
  start-page: 205
  issue: 2
  year: 2015
  ident: 10.1016/j.cam.2024.116052_b18
  article-title: Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.766
– year: 1998
  ident: 10.1016/j.cam.2024.116052_b2
– volume: 39
  year: 2023
  ident: 10.1016/j.cam.2024.116052_b21
  article-title: Stochastic asymptotical regularization for linear inverse problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aca70f
– volume: 345
  start-page: 1
  year: 2019
  ident: 10.1016/j.cam.2024.116052_b26
  article-title: Acceleration of sequential subspace optimization in Banach spaces by orthogonal search directions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.05.049
– year: 2015
  ident: 10.1016/j.cam.2024.116052_b7
– year: 2008
  ident: 10.1016/j.cam.2024.116052_b6
– volume: 16
  start-page: 479
  issue: 5
  year: 2008
  ident: 10.1016/j.cam.2024.116052_b31
  article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/JIIP.2008.026
– volume: 36
  year: 2020
  ident: 10.1016/j.cam.2024.116052_b9
  article-title: A new class of accelerated regularization methods, with application to bioluminescence tomography
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ab730b
– volume: 43
  start-page: 1115
  issue: 2
  year: 2023
  ident: 10.1016/j.cam.2024.116052_b28
  article-title: Two-point Landweber-type method with convex penalty terms for nonsmooth nonlinear inverse problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drac003
– volume: 72
  start-page: 21
  year: 1995
  ident: 10.1016/j.cam.2024.116052_b32
  article-title: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110050158
– year: 2004
  ident: 10.1016/j.cam.2024.116052_b3
SSID ssj0006914
Score 2.427993
Snippet We propose and analyze a new iterative regularization approach, called IN-SETPG, for efficiently solving nonlinear ill-posed operator equations in the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116052
SubjectTerms Inexact Newton regularization
Iterative regularization
Nonlinear inverse problems
Sequential subspace optimization
Two-point gradient method
Title An accelerated inexact Newton-type regularizing algorithm for ill-posed operator equations
URI https://dx.doi.org/10.1016/j.cam.2024.116052
Volume 451
WOSCitedRecordID wos001257906900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211213
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9FAOFdBW0ALyoaciV3HixPFxhXgKUA8gbXuJ8rAhaMlus7to4dczdhxvykMqBy5RZCWO5fkynhmPv0HoO_WkiDOmSBQUGWFxkRIRckW8XFKARwr_mGHXP-FnZ3G_L37ZrZixKSfAqyqezcToTUUNbSBsfXT2FeJ2nUID3IPQ4Qpih-t_Cb5X7aR5DquJJoHQzEpyps9BgjbT1YJNyLU2Bejr8t6cUBxcDutycnVjMg7LwYCMhmN4cTiSZgt-R_6ddsJ6Tw3Z3BSGaIOKhvzVmrY3jhPWWe4nNgX4MC0dpFzQ-rdrOkhNCBcAXF3eTbuhCZ910jzskSzOiS7m0VW3zBLMNgqTUvCn_Gd1eRNWuAY_XTMG-Ozn_Nl_ebMfrWcuy7BNYLtOoItEd5E0XbxDSz4PBejxpd7RXv_YLd2RaMjg23G32-AmIfDROJ43ZDrGyfkK-miFgXsNGlbRgqzW0PLpfPo_oT-9CndwgS0ucAcXuIsL7HCBARfY4QK3uMAOF5_Rxf7e-e4hsYU1SA7e9oRkQsGqJrS7L-AnplnAAyZDRcNChkGWehkPeUpZThU4kCrypCq8LJSxL5XPwWn4gharYSXXEVa50pSaijIlWByBtxqASyxZEaRSZhHfQD_aWUpGDX9K8qJcNhBr5zGxBmBj2CWAiZdf-_qab3xDH-ZQ3USLk3oqt9D7_HZSjuttC4gH7T9-SQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+inexact+Newton-type+regularizing+algorithm+for+ill-posed+operator+equations&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Long%2C+Haie&rft.au=Zhang%2C+Ye&rft.au=Gao%2C+Guangyu&rft.date=2024-12-01&rft.issn=0377-0427&rft.volume=451&rft.spage=116052&rft_id=info:doi/10.1016%2Fj.cam.2024.116052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2024_116052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon