Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes

•A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the co...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 479; p. 147486
Main Authors: Li, Zoushuang, Chen, Yuanxiao, Nie, Yufeng, Yang, Fan, Liu, Xiao, Gao, Yuan, Shan, Bin, Chen, Rong
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2024
Subjects:
ISSN:1385-8947, 1873-3212
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the coating efficiency.•With a gradient porosity design, the maximum precursor utilization reaches 78%. The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion–reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion–reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 μm with a precursor utilization of 78 %.
AbstractList •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the coating efficiency.•With a gradient porosity design, the maximum precursor utilization reaches 78%. The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion–reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion–reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 μm with a precursor utilization of 78 %.
ArticleNumber 147486
Author Gao, Yuan
Chen, Rong
Chen, Yuanxiao
Yang, Fan
Shan, Bin
Nie, Yufeng
Liu, Xiao
Li, Zoushuang
Author_xml – sequence: 1
  givenname: Zoushuang
  surname: Li
  fullname: Li, Zoushuang
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 2
  givenname: Yuanxiao
  surname: Chen
  fullname: Chen, Yuanxiao
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 3
  givenname: Yufeng
  surname: Nie
  fullname: Nie, Yufeng
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 4
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 5
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 6
  givenname: Yuan
  orcidid: 0000-0001-6030-9497
  surname: Gao
  fullname: Gao, Yuan
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 7
  givenname: Bin
  orcidid: 0000-0001-7800-0762
  surname: Shan
  fullname: Shan, Bin
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
– sequence: 8
  givenname: Rong
  orcidid: 0000-0001-7371-1338
  surname: Chen
  fullname: Chen, Rong
  email: rongchen@mail.hust.edu.cn
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China
BookMark eNp9kMlOwzAURS1UJErhA9j5BxI8ZRKrqoxSERtYWx5ekCMnruwEqX-Pq7Jm9d7inqurc41WU5gAoTtKSkpofT-UBoaSEcZLKhrR1hdoTduGF5xRtso_b6ui7URzha5TGgghdUe7NbLvi59dMsoDNmE8LLOaXZiUx71fnMX2OKnRmYTHYMF7N33j0ON0yKmc2e4fcZjwIcSwJOxdkVGs1TxDPGLwYOaYsXSDLnvlE9z-3Q36en763L0W-4-Xt912XxgmurnQlTUV55rZRhvdECU4NRaYsZ1grdVCNJYrRrVmSvTQcw2WVI1lnWrrpuv5BtFzr4khpQi9PEQ3qniUlMiTJjnIrEmeNMmzpsw8nBnIw34cRJmMg8mAdTHvlza4f-hfcI10lA
Cites_doi 10.1016/j.est.2021.103348
10.1063/1.866465
10.1016/j.ces.2018.09.037
10.1021/acsaem.8b01905
10.1063/1.5060967
10.1002/aic.17305
10.1016/j.cej.2019.122099
10.1039/C6CC05568K
10.1021/acsaem.0c01541
10.1002/smll.202107054
10.1016/j.cej.2020.126234
10.1002/eem2.12132
10.1016/j.ijheatmasstransfer.2019.118642
10.1016/j.cej.2023.142131
10.1021/acs.chemmater.8b01615
10.1116/1.5006670
10.1016/j.mtchem.2018.11.013
10.1016/j.cej.2015.01.067
10.1016/j.scib.2020.01.016
10.1016/j.cej.2014.07.105
10.1116/1.4892385
10.1016/j.electacta.2010.02.043
10.1002/cvde.200390005
10.1016/j.ijmultiphaseflow.2009.01.008
10.1063/1.4991048
10.3390/batteries7040070
10.1016/j.ijheatmasstransfer.2016.01.034
10.1016/j.cej.2023.144944
10.1016/j.ijheatmasstransfer.2021.121854
10.1016/j.ijheatmasstransfer.2023.124223
10.1016/j.ces.2020.115513
10.3390/coatings9020092
10.1021/acs.chemmater.1c03164
10.1016/j.ijheatmasstransfer.2013.10.032
10.1116/1.4937728
10.1002/aenm.202002655
10.1080/14686996.2019.1599694
10.1016/j.cej.2022.135565
10.1021/cr900056b
10.1116/1.5022077
10.1016/j.electacta.2022.140605
10.1002/cvde.201106938
10.1021/jp210551r
10.1002/aic.17889
10.1016/j.cej.2022.135148
10.1002/adma.201200397
10.1021/acs.chemmater.8b04200
10.1116/1.4932564
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.147486
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_147486
S1385894723062174
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
~HD
ID FETCH-LOGICAL-c249t-b5dc533b2d7bcb70a431cde2cd9428db447d3a21bb2a4fef3bed057d29a8679f3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125970100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:01:34 EST 2025
Sat May 04 15:44:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords CFD
Porous electrodes
Multiscale modelling
Spatial ALD
Dynamic mesh
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-b5dc533b2d7bcb70a431cde2cd9428db447d3a21bb2a4fef3bed057d29a8679f3
ORCID 0000-0001-6030-9497
0000-0001-7800-0762
0000-0001-7371-1338
ParticipantIDs crossref_primary_10_1016_j_cej_2023_147486
elsevier_sciencedirect_doi_10_1016_j_cej_2023_147486
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pan (b0100) 2019; 144
Panda, Patra, Te Hsieh, Huang, Gandomi, Fu, Lin, Juang, Chang (b0120) 2021; 44
George (b0020) 2010; 110
Liang, Zhu, Li, Luo, Deng, Zhao, Sun, Wu, Hu, Li, Sham, Li, Gu, Sun (b0060) 2023; 14
Mousa, Ovental, Brozena, Oldham, Parsons (b0205) 2018; 36
Cussler (b0245) 2009
Zhang, Wu, La Zara, Sun, Quayle, Petersson, Folestad, Chew, van Ommen (b0030) 2023; 462
Cheng, Wang, Chu, Santhanam, Rick, Lo (b0075) 2012; 116
Gakis, Vergnes, Scheid, Vahlas, Boudouvis, Caussat (b0145) 2019; 195
Oladipo, Coetzee, Olubambi, Jen (b0160) 2020; 153
Gao, Cai, Xu, Li, Ren, Meng, Amine, Chen (b0055) 2019; 31
Grillo, Kreutzer, van Ommen (b0255) 2015; 268
Yanguas-gil, Elam (b0185) 2012; 18
Gordon, Hausmann, Kim, Shepard (b0180) 2003; 9
Ramasamy, Sinha, Park, Gong, Aravindan, Heo, Lee (b0035) 2019; 10
Heenan, Wade, Tan, Parker, Matras, Leach, Robinson, Llewellyn, Dimitrijevic, Jervis, Quinn, Brett, Shearing (b0270) 2020; 10
Cremers, Puurunen, Dendooven (b0165) 2019; 6
Pan, Jen, Yuan (b0105) 2016; 96
Cao, Cai, Shan, Chen (b0010) 2020; 65
Zhu, Huang, Liu, Xie, Wang, Tian, Bu, Wang, Gao, Zhao (b0280) 2019; 9
Wang, Li, Lin, Shan, Chen (b0095) 2017; 88
Fang, Tang, Ban, Kang, Qiao, Tao (b0210) 2019; 378
Szmyt, Guerra-Nuñez, Huber, Dransfeld, Utke (b0170) 2022; 34
Muñoz-Rojas, Maindron, Esteve, Piallat, Kools, Decams (b0090) 2019; 12
Cao, Meng, Li (b0065) 2021; 4
Lu, Bertei, Finegan, Tan, Daemi, Weaving, O’Regan, Heenan, Hinds, Kendrick, Brett, Shearing (b0240) 2020; 11
Sharma, Routkevitch, Varaksa, George (b0195) 2016; 34
Xie, Ma, Pan, Yuan (b0155) 2015; 259
Yersak, Sharma, Wallas, Dameron, Li, Yang, Hurst, Ban, Tenent, George (b0275) 2018; 36
Hallot, Nikitin, Lebedev, Retoux, Troadec, De Andrade, Roussel, Lethien (b0050) 2022; 18
Keuter, Menzler, Mauer, Vondahlen, Vaßen, Buchkremer (b0190) 2015; 33
Durlofsky, Brady (b0230) 1987; 30
Wang, Lu, Zhang, Shi, Li (b0250) 2010; 36
Li, Xiang, Liu, Shan, Chen (b0260) 2023; 212
Yang, Zhang, Zou, Yi, Liu (b0045) 2022; 435
H. Gu, D.T. Lee, P. Corkery, Y. Miao, J.S. Kim, Y. Yuan, Z. liang Xu, G. Dai, G.N. Parsons, I.G. Kevrekidis, L. Zhuang, M. Tsapatsis, Modeling of deposit formation in mesoporous substrates via atomic layer deposition: Insights from pore-scale simulation, AIChE J. (2022) 1–13. Doi: 10.1002/aic.17889.
van Ommen, Goulas (b0025) 2019; 14
Yuan, Sundén (b0235) 2014; 69
Te Hsieh, Mallick, Gandomi, Huang, Fu, Juang, Chang (b0115) 2022; 423
Moitzheim, Balder, Ritasalo, Ek, Poodt, Unnikrishnan, De Gendt, Vereecken (b0175) 2019; 2
Cong, Li, Cao, Feng, Chen (b0130) 2020; 217
Chen, Li, Dai, Yang, Wen, Shan, Chen (b0225) 2023; 472
Te Hsieh, Chang, Juang, Chao, Ke, Lin, Liu, Gandomi, Gu, Su, Li, Fu, Mallick (b0125) 2020; 3
Nguyen, Sekkat, Jiménez, Muñoz, Bellet, Muñoz-rojas (b0140) 2021; 403
Deng, He, Duan, Chen, Shan (b0110) 2016; 34
He, Pham, Liang, Park (b0040) 2022; 440
Poodt, Mameli, Schulpen, (Erwin) Kessels, Roozeboom (b0150) 2017; 35
Li, Cao, Li, Chen (b0135) 2021; 181
Bae, Kim, Kim, Park, Shin (b0200) 2018; 30
Beuse, Fingerle, Wagner, Winter, Börner (b0265) 2021; 7
Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (b0085) 2012; 30
Meng, Yang, Sun (b0070) 2012; 24
Lee, Wang, Cheng, Li, Lin (b0080) 2010; 55
Zhuang, Corkery, Lee, Lee, Kooshkbaghi, liang Xu, Dai, Kevrekidis, Tsapatsis (b0215) 2021; 67
Van Bui, Grillo, Van Ommen (b0005) 2017; 53
Oviroh, Akbarzadeh, Pan, Coetzee, Jen (b0015) 2019; 20
Zhuang (10.1016/j.cej.2023.147486_b0215) 2021; 67
Poodt (10.1016/j.cej.2023.147486_b0150) 2017; 35
Pan (10.1016/j.cej.2023.147486_b0105) 2016; 96
Nguyen (10.1016/j.cej.2023.147486_b0140) 2021; 403
Beuse (10.1016/j.cej.2023.147486_b0265) 2021; 7
Yang (10.1016/j.cej.2023.147486_b0045) 2022; 435
Lu (10.1016/j.cej.2023.147486_b0240) 2020; 11
Poodt (10.1016/j.cej.2023.147486_b0085) 2012; 30
Fang (10.1016/j.cej.2023.147486_b0210) 2019; 378
Cong (10.1016/j.cej.2023.147486_b0130) 2020; 217
Deng (10.1016/j.cej.2023.147486_b0110) 2016; 34
Yanguas-gil (10.1016/j.cej.2023.147486_b0185) 2012; 18
Cao (10.1016/j.cej.2023.147486_b0065) 2021; 4
van Ommen (10.1016/j.cej.2023.147486_b0025) 2019; 14
Durlofsky (10.1016/j.cej.2023.147486_b0230) 1987; 30
Yuan (10.1016/j.cej.2023.147486_b0235) 2014; 69
Cremers (10.1016/j.cej.2023.147486_b0165) 2019; 6
Keuter (10.1016/j.cej.2023.147486_b0190) 2015; 33
10.1016/j.cej.2023.147486_b0220
Sharma (10.1016/j.cej.2023.147486_b0195) 2016; 34
Meng (10.1016/j.cej.2023.147486_b0070) 2012; 24
Mousa (10.1016/j.cej.2023.147486_b0205) 2018; 36
Zhang (10.1016/j.cej.2023.147486_b0030) 2023; 462
Li (10.1016/j.cej.2023.147486_b0260) 2023; 212
Lee (10.1016/j.cej.2023.147486_b0080) 2010; 55
Yersak (10.1016/j.cej.2023.147486_b0275) 2018; 36
Cheng (10.1016/j.cej.2023.147486_b0075) 2012; 116
Oladipo (10.1016/j.cej.2023.147486_b0160) 2020; 153
Moitzheim (10.1016/j.cej.2023.147486_b0175) 2019; 2
Muñoz-Rojas (10.1016/j.cej.2023.147486_b0090) 2019; 12
Panda (10.1016/j.cej.2023.147486_b0120) 2021; 44
Grillo (10.1016/j.cej.2023.147486_b0255) 2015; 268
Ramasamy (10.1016/j.cej.2023.147486_b0035) 2019; 10
Te Hsieh (10.1016/j.cej.2023.147486_b0115) 2022; 423
Te Hsieh (10.1016/j.cej.2023.147486_b0125) 2020; 3
Oviroh (10.1016/j.cej.2023.147486_b0015) 2019; 20
Hallot (10.1016/j.cej.2023.147486_b0050) 2022; 18
Li (10.1016/j.cej.2023.147486_b0135) 2021; 181
George (10.1016/j.cej.2023.147486_b0020) 2010; 110
Cao (10.1016/j.cej.2023.147486_b0010) 2020; 65
Pan (10.1016/j.cej.2023.147486_b0100) 2019; 144
Cussler (10.1016/j.cej.2023.147486_b0245) 2009
Zhu (10.1016/j.cej.2023.147486_b0280) 2019; 9
Liang (10.1016/j.cej.2023.147486_b0060) 2023; 14
Van Bui (10.1016/j.cej.2023.147486_b0005) 2017; 53
Wang (10.1016/j.cej.2023.147486_b0250) 2010; 36
Szmyt (10.1016/j.cej.2023.147486_b0170) 2022; 34
Heenan (10.1016/j.cej.2023.147486_b0270) 2020; 10
Chen (10.1016/j.cej.2023.147486_b0225) 2023; 472
Gordon (10.1016/j.cej.2023.147486_b0180) 2003; 9
Bae (10.1016/j.cej.2023.147486_b0200) 2018; 30
Wang (10.1016/j.cej.2023.147486_b0095) 2017; 88
Xie (10.1016/j.cej.2023.147486_b0155) 2015; 259
He (10.1016/j.cej.2023.147486_b0040) 2022; 440
Gao (10.1016/j.cej.2023.147486_b0055) 2019; 31
Gakis (10.1016/j.cej.2023.147486_b0145) 2019; 195
References_xml – volume: 3
  start-page: 10619
  year: 2020
  end-page: 10631
  ident: b0125
  article-title: Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries
  publication-title: ACS Appl. Energy Mater.
– volume: 110
  start-page: 111
  year: 2010
  end-page: 131
  ident: b0020
  article-title: Atomic layer deposition: an overview
  publication-title: Chem. Rev.
– volume: 12
  start-page: 96
  year: 2019
  end-page: 120
  ident: b0090
  article-title: Speeding up the unique assets of atomic layer deposition
  publication-title: Mater. Today Chem.
– volume: 34
  start-page: 203
  year: 2022
  end-page: 216
  ident: b0170
  article-title: Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws
  publication-title: Chem. Mater.
– volume: 440
  year: 2022
  ident: b0040
  article-title: Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1774
  year: 2019
  end-page: 1783
  ident: b0175
  article-title: Toward 3D Thin-Film Batteries: Optimal Current-Collector Design and Scalable Fabrication of TiO2 Thin-Film Electrodes
  publication-title: ACS Appl. Energy Mater.
– volume: 472
  year: 2023
  ident: b0225
  article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 4748
  year: 2018
  end-page: 4754
  ident: b0200
  article-title: Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity?
  publication-title: Chem. Mater.
– volume: 36
  start-page: 01A123
  year: 2018
  ident: b0275
  article-title: Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 34
  start-page: 01A146
  year: 2016
  ident: b0195
  article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 20
  start-page: 465
  year: 2019
  end-page: 496
  ident: b0015
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
– volume: 35
  year: 2017
  ident: b0150
  article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0240
  article-title: 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling
  publication-title: Nat. Commun.
– volume: 4
  start-page: 363
  year: 2021
  end-page: 391
  ident: b0065
  article-title: Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond
  publication-title: Energy Environ. Mater.
– volume: 217
  year: 2020
  ident: b0130
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
– volume: 10
  year: 2020
  ident: b0270
  article-title: Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries
  publication-title: Adv. Energy Mater.
– volume: 462
  year: 2023
  ident: b0030
  article-title: Tailoring the flow properties of inhaled micronized drug powders by atomic and molecular layer deposition
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 196
  year: 2019
  end-page: 205
  ident: b0035
  article-title: Enhancement of electrochemical activity of ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition
  publication-title: J. Electrochem Sci. Technol.
– volume: 181
  year: 2021
  ident: b0135
  article-title: Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates
  publication-title: Int. J. Heat Mass Transf.
– volume: 153
  year: 2020
  ident: b0160
  article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 96
  start-page: 189
  year: 2016
  end-page: 198
  ident: b0105
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  year: 2021
  ident: b0120
  article-title: Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries
  publication-title: J. Energy Storage.
– volume: 9
  start-page: 73
  year: 2003
  end-page: 78
  ident: b0180
  article-title: A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches
  publication-title: Chem. Vap. Depos.
– volume: 144
  year: 2019
  ident: b0100
  article-title: Numerical study on the effectiveness of precursor isolation using N 2 as gas barrier in spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 65
  start-page: 678
  year: 2020
  end-page: 688
  ident: b0010
  article-title: Surface functionalization on nanoparticles via atomic layer deposition
  publication-title: Sci. Bull.
– volume: 34
  start-page: 01A108
  year: 2016
  ident: b0110
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 378
  year: 2019
  ident: b0210
  article-title: Atomic layer deposition in porous electrodes: A pore-scale modeling study
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0050
  article-title: 3D LiMn2O4 Thin Film Deposited by ALD: A Road toward High-Capacity Electrode for 3D Li-Ion Microbatteries
  publication-title: Small.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0280
  article-title: Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges
  publication-title: Coatings.
– volume: 88
  year: 2017
  ident: b0095
  article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition
  publication-title: Rev. Sci. Instrum.
– volume: 53
  start-page: 45
  year: 2017
  end-page: 71
  ident: b0005
  article-title: Atomic and molecular layer deposition : off the beaten track
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0025
  article-title: Atomic layer deposition on particulate materials
  publication-title: Mater. Today Chem.
– volume: 31
  start-page: 2723
  year: 2019
  end-page: 2730
  ident: b0055
  article-title: Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode
  publication-title: Chem. Mater.
– volume: 24
  start-page: 3589
  year: 2012
  end-page: 3615
  ident: b0070
  article-title: Emerging applications of atomic layer deposition for lithium-ion battery studies
  publication-title: Adv. Mater.
– volume: 33
  start-page: 01A104
  year: 2015
  ident: b0190
  article-title: Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 195
  start-page: 399
  year: 2019
  end-page: 412
  ident: b0145
  article-title: Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water
  publication-title: Chem. Eng. Sci.
– volume: 116
  start-page: 7629
  year: 2012
  end-page: 7637
  ident: b0075
  article-title: Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al 2O 3 or TiO 2 on LiCoO 2 electrodes
  publication-title: J. Phys. Chem. c.
– volume: 67
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0215
  article-title: Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate
  publication-title: AIChE J.
– volume: 268
  start-page: 384
  year: 2015
  end-page: 398
  ident: b0255
  article-title: Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors
  publication-title: Chem. Eng. J.
– volume: 212
  year: 2023
  ident: b0260
  article-title: Study of ultrasonic vibration-assisted particle atomic layer deposition process via the CFD-DDPM simulation
  publication-title: Int. J. Heat Mass Transf.
– volume: 14
  start-page: 1
  year: 2023
  end-page: 12
  ident: b0060
  article-title: A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries
  publication-title: Nat. Commun.
– year: 2009
  ident: b0245
  article-title: Diffusion: mass transfer in fluid systems
– volume: 30
  year: 2012
  ident: b0085
  article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 403
  start-page: 1
  year: 2021
  end-page: 8
  ident: b0140
  article-title: Impact of Precursor Exposure in Spatial Atomic Layer Deposition on Process Efficiency and Film Properties
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2019
  ident: b0165
  article-title: Conformality in atomic layer deposition: Current status overview of analysis and modelling
  publication-title: Appl. Phys. Rev.
– volume: 259
  start-page: 213
  year: 2015
  end-page: 220
  ident: b0155
  article-title: Mechanistic modeling of atomic layer deposition of alumina process with detailed surface chemical kinetics
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 3329
  year: 1987
  end-page: 3341
  ident: b0230
  article-title: Analysis of the Brinkman equation as a model for flow in porous media
  publication-title: Phys. Fluids.
– volume: 18
  start-page: 46
  year: 2012
  end-page: 52
  ident: b0185
  article-title: Self-Limited Reaction-Diffusion in Nanostructured Substrates : Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times **
  publication-title: Chem. Vap. Depos.
– volume: 36
  start-page: 109
  year: 2010
  end-page: 118
  ident: b0250
  article-title: A review of multiscale CFD for gas-solid CFB modeling
  publication-title: Int. J. Multiph. Flow.
– volume: 55
  start-page: 4002
  year: 2010
  end-page: 4006
  ident: b0080
  article-title: Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries
  publication-title: Electrochim. Acta.
– volume: 69
  start-page: 358
  year: 2014
  end-page: 374
  ident: b0235
  article-title: On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  year: 2018
  ident: b0205
  article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al 2 O 3 coatings on textiles at atmospheric pressure
  publication-title: J. Vac. Sci. Technol. a.
– volume: 423
  year: 2022
  ident: b0115
  article-title: Improvement on high-temperature electrochemical performance of lithium-ion pouch cells by spatial atomic layer deposition
  publication-title: Electrochim. Acta.
– reference: H. Gu, D.T. Lee, P. Corkery, Y. Miao, J.S. Kim, Y. Yuan, Z. liang Xu, G. Dai, G.N. Parsons, I.G. Kevrekidis, L. Zhuang, M. Tsapatsis, Modeling of deposit formation in mesoporous substrates via atomic layer deposition: Insights from pore-scale simulation, AIChE J. (2022) 1–13. Doi: 10.1002/aic.17889.
– volume: 7
  year: 2021
  ident: b0265
  article-title: Comprehensive insights into the porosity of lithium-ion battery electrodes: A comparative study on positive electrodes based on lini0.6mn0.2co0.2o2 (nmc622)
  publication-title: Batteries.
– volume: 435
  year: 2022
  ident: b0045
  article-title: Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery
  publication-title: Chem. Eng. J.
– volume: 44
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0120
  article-title: Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.103348
– volume: 30
  start-page: 3329
  year: 1987
  ident: 10.1016/j.cej.2023.147486_b0230
  article-title: Analysis of the Brinkman equation as a model for flow in porous media
  publication-title: Phys. Fluids.
  doi: 10.1063/1.866465
– volume: 195
  start-page: 399
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0145
  article-title: Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.09.037
– volume: 2
  start-page: 1774
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0175
  article-title: Toward 3D Thin-Film Batteries: Optimal Current-Collector Design and Scalable Fabrication of TiO2 Thin-Film Electrodes
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01905
– volume: 6
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0165
  article-title: Conformality in atomic layer deposition: Current status overview of analysis and modelling
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5060967
– volume: 10
  start-page: 196
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0035
  article-title: Enhancement of electrochemical activity of ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition
  publication-title: J. Electrochem Sci. Technol.
– volume: 67
  start-page: 1
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0215
  article-title: Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate
  publication-title: AIChE J.
  doi: 10.1002/aic.17305
– volume: 378
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0210
  article-title: Atomic layer deposition in porous electrodes: A pore-scale modeling study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122099
– volume: 53
  start-page: 45
  year: 2017
  ident: 10.1016/j.cej.2023.147486_b0005
  article-title: Atomic and molecular layer deposition : off the beaten track
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05568K
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0025
  article-title: Atomic layer deposition on particulate materials
  publication-title: Mater. Today Chem.
– volume: 3
  start-page: 10619
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0125
  article-title: Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01541
– volume: 18
  start-page: 1
  year: 2022
  ident: 10.1016/j.cej.2023.147486_b0050
  article-title: 3D LiMn2O4 Thin Film Deposited by ALD: A Road toward High-Capacity Electrode for 3D Li-Ion Microbatteries
  publication-title: Small.
  doi: 10.1002/smll.202107054
– volume: 14
  start-page: 1
  year: 2023
  ident: 10.1016/j.cej.2023.147486_b0060
  article-title: A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries
  publication-title: Nat. Commun.
– volume: 403
  start-page: 1
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0140
  article-title: Impact of Precursor Exposure in Spatial Atomic Layer Deposition on Process Efficiency and Film Properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126234
– volume: 4
  start-page: 363
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0065
  article-title: Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12132
– volume: 144
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0100
  article-title: Numerical study on the effectiveness of precursor isolation using N 2 as gas barrier in spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118642
– volume: 462
  year: 2023
  ident: 10.1016/j.cej.2023.147486_b0030
  article-title: Tailoring the flow properties of inhaled micronized drug powders by atomic and molecular layer deposition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142131
– year: 2009
  ident: 10.1016/j.cej.2023.147486_b0245
– volume: 30
  start-page: 4748
  year: 2018
  ident: 10.1016/j.cej.2023.147486_b0200
  article-title: Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity?
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01615
– volume: 36
  start-page: 01A123
  year: 2018
  ident: 10.1016/j.cej.2023.147486_b0275
  article-title: Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
  doi: 10.1116/1.5006670
– volume: 12
  start-page: 96
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0090
  article-title: Speeding up the unique assets of atomic layer deposition
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.11.013
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0240
  article-title: 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling
  publication-title: Nat. Commun.
– volume: 30
  year: 2012
  ident: 10.1016/j.cej.2023.147486_b0085
  article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 268
  start-page: 384
  year: 2015
  ident: 10.1016/j.cej.2023.147486_b0255
  article-title: Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.01.067
– volume: 65
  start-page: 678
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0010
  article-title: Surface functionalization on nanoparticles via atomic layer deposition
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.016
– volume: 259
  start-page: 213
  year: 2015
  ident: 10.1016/j.cej.2023.147486_b0155
  article-title: Mechanistic modeling of atomic layer deposition of alumina process with detailed surface chemical kinetics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.07.105
– volume: 33
  start-page: 01A104
  year: 2015
  ident: 10.1016/j.cej.2023.147486_b0190
  article-title: Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
  doi: 10.1116/1.4892385
– volume: 55
  start-page: 4002
  year: 2010
  ident: 10.1016/j.cej.2023.147486_b0080
  article-title: Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2010.02.043
– volume: 9
  start-page: 73
  year: 2003
  ident: 10.1016/j.cej.2023.147486_b0180
  article-title: A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches
  publication-title: Chem. Vap. Depos.
  doi: 10.1002/cvde.200390005
– volume: 36
  start-page: 109
  year: 2010
  ident: 10.1016/j.cej.2023.147486_b0250
  article-title: A review of multiscale CFD for gas-solid CFB modeling
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/j.ijmultiphaseflow.2009.01.008
– volume: 88
  year: 2017
  ident: 10.1016/j.cej.2023.147486_b0095
  article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4991048
– volume: 35
  year: 2017
  ident: 10.1016/j.cej.2023.147486_b0150
  article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 7
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0265
  article-title: Comprehensive insights into the porosity of lithium-ion battery electrodes: A comparative study on positive electrodes based on lini0.6mn0.2co0.2o2 (nmc622)
  publication-title: Batteries.
  doi: 10.3390/batteries7040070
– volume: 96
  start-page: 189
  year: 2016
  ident: 10.1016/j.cej.2023.147486_b0105
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.034
– volume: 472
  year: 2023
  ident: 10.1016/j.cej.2023.147486_b0225
  article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144944
– volume: 181
  year: 2021
  ident: 10.1016/j.cej.2023.147486_b0135
  article-title: Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121854
– volume: 153
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0160
  article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition
  publication-title: Int. J. Heat Mass Transf.
– volume: 212
  year: 2023
  ident: 10.1016/j.cej.2023.147486_b0260
  article-title: Study of ultrasonic vibration-assisted particle atomic layer deposition process via the CFD-DDPM simulation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124223
– volume: 217
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0130
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115513
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0280
  article-title: Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges
  publication-title: Coatings.
  doi: 10.3390/coatings9020092
– volume: 34
  start-page: 203
  year: 2022
  ident: 10.1016/j.cej.2023.147486_b0170
  article-title: Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c03164
– volume: 69
  start-page: 358
  year: 2014
  ident: 10.1016/j.cej.2023.147486_b0235
  article-title: On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.10.032
– volume: 34
  start-page: 01A146
  year: 2016
  ident: 10.1016/j.cej.2023.147486_b0195
  article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
  doi: 10.1116/1.4937728
– volume: 10
  year: 2020
  ident: 10.1016/j.cej.2023.147486_b0270
  article-title: Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002655
– volume: 20
  start-page: 465
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0015
  article-title: New development of atomic layer deposition: processes, methods and applications
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1599694
– volume: 440
  year: 2022
  ident: 10.1016/j.cej.2023.147486_b0040
  article-title: Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135565
– volume: 110
  start-page: 111
  year: 2010
  ident: 10.1016/j.cej.2023.147486_b0020
  article-title: Atomic layer deposition: an overview
  publication-title: Chem. Rev.
  doi: 10.1021/cr900056b
– volume: 36
  year: 2018
  ident: 10.1016/j.cej.2023.147486_b0205
  article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al 2 O 3 coatings on textiles at atmospheric pressure
  publication-title: J. Vac. Sci. Technol. a.
  doi: 10.1116/1.5022077
– volume: 423
  year: 2022
  ident: 10.1016/j.cej.2023.147486_b0115
  article-title: Improvement on high-temperature electrochemical performance of lithium-ion pouch cells by spatial atomic layer deposition
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2022.140605
– volume: 18
  start-page: 46
  year: 2012
  ident: 10.1016/j.cej.2023.147486_b0185
  article-title: Self-Limited Reaction-Diffusion in Nanostructured Substrates : Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times **
  publication-title: Chem. Vap. Depos.
  doi: 10.1002/cvde.201106938
– volume: 116
  start-page: 7629
  year: 2012
  ident: 10.1016/j.cej.2023.147486_b0075
  article-title: Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al 2O 3 or TiO 2 on LiCoO 2 electrodes
  publication-title: J. Phys. Chem. c.
  doi: 10.1021/jp210551r
– ident: 10.1016/j.cej.2023.147486_b0220
  doi: 10.1002/aic.17889
– volume: 435
  year: 2022
  ident: 10.1016/j.cej.2023.147486_b0045
  article-title: Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135148
– volume: 24
  start-page: 3589
  year: 2012
  ident: 10.1016/j.cej.2023.147486_b0070
  article-title: Emerging applications of atomic layer deposition for lithium-ion battery studies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200397
– volume: 31
  start-page: 2723
  year: 2019
  ident: 10.1016/j.cej.2023.147486_b0055
  article-title: Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04200
– volume: 34
  start-page: 01A108
  year: 2016
  ident: 10.1016/j.cej.2023.147486_b0110
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
  doi: 10.1116/1.4932564
SSID ssj0006919
Score 2.4492638
Snippet •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 147486
SubjectTerms CFD
Dynamic mesh
Multiscale modelling
Porous electrodes
Spatial ALD
Title Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes
URI https://dx.doi.org/10.1016/j.cej.2023.147486
Volume 479
WOSCitedRecordID wos001125970100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxtBFB7S2If6UGptUXthHvpU2ZDszmZ2HqVVVEQKWoi-LHOlCWEjmmj0v_hfe-a2G2MFW-jLsgy7O8s538y5zLkg9IV2eU8rmiWCcJ0QaWBJSQqboWB92lUpo13jmk3Q4-NiMGA_Wq37mAtzPaZVVczn7OK_shrGgNk2dfYv2F1_FAbgHpgOV2A7XJ_FeJdSewWk1y5efDaN7j4zng3VtvIt6EMPnHEIer6ygdWWW0ff7fEBKOU2NHY8TCw6hKvBebsdWuaoEHYY6xvEkgO6KW1YF6SwDUO4DfzxjtOTm-H0zucXB18E6y_4Io5caME5TP1rxoNIdaEHfm88g8H5kE-asxTth41uHj4LDvC9APvg0UjJkkfjcaqN25mzIk8K5stzdrQfKwBkWdp7sJ0T35zmkWjwXopRR-pRx_aMBxlByXIZbifYT-xcdiprnlmT7QVaSWnOijZa2TnYHRzWor7PXOeY-t_isbkLIFya6M-Kz4Iyc_oGvQ5WCN7x6FlDLV29RasLtSnXkWpwhB_gCDsc4YgjXOMITwwOOMKAIzypsMcR9jjCAUe4wdE79HNv9_TbfhJaciQS7PRpInIlwUAQqaJCCljooH9KpVOpGNixShBCVcbTnhApJ0abTGgFFgGseW4rO5rsPWpXk0pvIJxT3hUgL1UPPm1yIfJM8D43UuZSEZVtoq-RXuWFr7xSxpDEUQnELS1xS0_cTUQiRcugOnqVsAT2P_3a1r-99gG9anD7EbWnlzP9Cb2U18CWy88BJL8B3kqVgA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+computational+fluid+dynamics+modelling+of+spatial+ALD+on+porous+li-ion+battery+electrodes&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Zoushuang&rft.au=Chen%2C+Yuanxiao&rft.au=Nie%2C+Yufeng&rft.au=Yang%2C+Fan&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=479&rft_id=info:doi/10.1016%2Fj.cej.2023.147486&rft.externalDocID=S1385894723062174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon