Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes
•A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the co...
Saved in:
| Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 479; p. 147486 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2024
|
| Subjects: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the coating efficiency.•With a gradient porosity design, the maximum precursor utilization reaches 78%.
The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion–reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion–reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 μm with a precursor utilization of 78 %. |
|---|---|
| AbstractList | •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A lower pressure increases the coating depth but also causes precursor intermixing.•Various process conditions are optimized to improve the coating efficiency.•With a gradient porosity design, the maximum precursor utilization reaches 78%.
The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion–reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion–reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 μm with a precursor utilization of 78 %. |
| ArticleNumber | 147486 |
| Author | Gao, Yuan Chen, Rong Chen, Yuanxiao Yang, Fan Shan, Bin Nie, Yufeng Liu, Xiao Li, Zoushuang |
| Author_xml | – sequence: 1 givenname: Zoushuang surname: Li fullname: Li, Zoushuang organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 2 givenname: Yuanxiao surname: Chen fullname: Chen, Yuanxiao organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 3 givenname: Yufeng surname: Nie fullname: Nie, Yufeng organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 4 givenname: Fan surname: Yang fullname: Yang, Fan organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 5 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 6 givenname: Yuan orcidid: 0000-0001-6030-9497 surname: Gao fullname: Gao, Yuan organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China – sequence: 7 givenname: Bin orcidid: 0000-0001-7800-0762 surname: Shan fullname: Shan, Bin organization: State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China – sequence: 8 givenname: Rong orcidid: 0000-0001-7371-1338 surname: Chen fullname: Chen, Rong email: rongchen@mail.hust.edu.cn organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People’s Republic of China |
| BookMark | eNp9kMlOwzAURS1UJErhA9j5BxI8ZRKrqoxSERtYWx5ekCMnruwEqX-Pq7Jm9d7inqurc41WU5gAoTtKSkpofT-UBoaSEcZLKhrR1hdoTduGF5xRtso_b6ui7URzha5TGgghdUe7NbLvi59dMsoDNmE8LLOaXZiUx71fnMX2OKnRmYTHYMF7N33j0ON0yKmc2e4fcZjwIcSwJOxdkVGs1TxDPGLwYOaYsXSDLnvlE9z-3Q36en763L0W-4-Xt912XxgmurnQlTUV55rZRhvdECU4NRaYsZ1grdVCNJYrRrVmSvTQcw2WVI1lnWrrpuv5BtFzr4khpQi9PEQ3qniUlMiTJjnIrEmeNMmzpsw8nBnIw34cRJmMg8mAdTHvlza4f-hfcI10lA |
| Cites_doi | 10.1016/j.est.2021.103348 10.1063/1.866465 10.1016/j.ces.2018.09.037 10.1021/acsaem.8b01905 10.1063/1.5060967 10.1002/aic.17305 10.1016/j.cej.2019.122099 10.1039/C6CC05568K 10.1021/acsaem.0c01541 10.1002/smll.202107054 10.1016/j.cej.2020.126234 10.1002/eem2.12132 10.1016/j.ijheatmasstransfer.2019.118642 10.1016/j.cej.2023.142131 10.1021/acs.chemmater.8b01615 10.1116/1.5006670 10.1016/j.mtchem.2018.11.013 10.1016/j.cej.2015.01.067 10.1016/j.scib.2020.01.016 10.1016/j.cej.2014.07.105 10.1116/1.4892385 10.1016/j.electacta.2010.02.043 10.1002/cvde.200390005 10.1016/j.ijmultiphaseflow.2009.01.008 10.1063/1.4991048 10.3390/batteries7040070 10.1016/j.ijheatmasstransfer.2016.01.034 10.1016/j.cej.2023.144944 10.1016/j.ijheatmasstransfer.2021.121854 10.1016/j.ijheatmasstransfer.2023.124223 10.1016/j.ces.2020.115513 10.3390/coatings9020092 10.1021/acs.chemmater.1c03164 10.1016/j.ijheatmasstransfer.2013.10.032 10.1116/1.4937728 10.1002/aenm.202002655 10.1080/14686996.2019.1599694 10.1016/j.cej.2022.135565 10.1021/cr900056b 10.1116/1.5022077 10.1016/j.electacta.2022.140605 10.1002/cvde.201106938 10.1021/jp210551r 10.1002/aic.17889 10.1016/j.cej.2022.135148 10.1002/adma.201200397 10.1021/acs.chemmater.8b04200 10.1116/1.4932564 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2023.147486 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2023_147486 S1385894723062174 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 ~HD |
| ID | FETCH-LOGICAL-c249t-b5dc533b2d7bcb70a431cde2cd9428db447d3a21bb2a4fef3bed057d29a8679f3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001125970100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:01:34 EST 2025 Sat May 04 15:44:38 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CFD Porous electrodes Multiscale modelling Spatial ALD Dynamic mesh |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-b5dc533b2d7bcb70a431cde2cd9428db447d3a21bb2a4fef3bed057d29a8679f3 |
| ORCID | 0000-0001-6030-9497 0000-0001-7800-0762 0000-0001-7371-1338 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2023_147486 elsevier_sciencedirect_doi_10_1016_j_cej_2023_147486 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pan (b0100) 2019; 144 Panda, Patra, Te Hsieh, Huang, Gandomi, Fu, Lin, Juang, Chang (b0120) 2021; 44 George (b0020) 2010; 110 Liang, Zhu, Li, Luo, Deng, Zhao, Sun, Wu, Hu, Li, Sham, Li, Gu, Sun (b0060) 2023; 14 Mousa, Ovental, Brozena, Oldham, Parsons (b0205) 2018; 36 Cussler (b0245) 2009 Zhang, Wu, La Zara, Sun, Quayle, Petersson, Folestad, Chew, van Ommen (b0030) 2023; 462 Cheng, Wang, Chu, Santhanam, Rick, Lo (b0075) 2012; 116 Gakis, Vergnes, Scheid, Vahlas, Boudouvis, Caussat (b0145) 2019; 195 Oladipo, Coetzee, Olubambi, Jen (b0160) 2020; 153 Gao, Cai, Xu, Li, Ren, Meng, Amine, Chen (b0055) 2019; 31 Grillo, Kreutzer, van Ommen (b0255) 2015; 268 Yanguas-gil, Elam (b0185) 2012; 18 Gordon, Hausmann, Kim, Shepard (b0180) 2003; 9 Ramasamy, Sinha, Park, Gong, Aravindan, Heo, Lee (b0035) 2019; 10 Heenan, Wade, Tan, Parker, Matras, Leach, Robinson, Llewellyn, Dimitrijevic, Jervis, Quinn, Brett, Shearing (b0270) 2020; 10 Cremers, Puurunen, Dendooven (b0165) 2019; 6 Pan, Jen, Yuan (b0105) 2016; 96 Cao, Cai, Shan, Chen (b0010) 2020; 65 Zhu, Huang, Liu, Xie, Wang, Tian, Bu, Wang, Gao, Zhao (b0280) 2019; 9 Wang, Li, Lin, Shan, Chen (b0095) 2017; 88 Fang, Tang, Ban, Kang, Qiao, Tao (b0210) 2019; 378 Szmyt, Guerra-Nuñez, Huber, Dransfeld, Utke (b0170) 2022; 34 Muñoz-Rojas, Maindron, Esteve, Piallat, Kools, Decams (b0090) 2019; 12 Cao, Meng, Li (b0065) 2021; 4 Lu, Bertei, Finegan, Tan, Daemi, Weaving, O’Regan, Heenan, Hinds, Kendrick, Brett, Shearing (b0240) 2020; 11 Sharma, Routkevitch, Varaksa, George (b0195) 2016; 34 Xie, Ma, Pan, Yuan (b0155) 2015; 259 Yersak, Sharma, Wallas, Dameron, Li, Yang, Hurst, Ban, Tenent, George (b0275) 2018; 36 Hallot, Nikitin, Lebedev, Retoux, Troadec, De Andrade, Roussel, Lethien (b0050) 2022; 18 Keuter, Menzler, Mauer, Vondahlen, Vaßen, Buchkremer (b0190) 2015; 33 Durlofsky, Brady (b0230) 1987; 30 Wang, Lu, Zhang, Shi, Li (b0250) 2010; 36 Li, Xiang, Liu, Shan, Chen (b0260) 2023; 212 Yang, Zhang, Zou, Yi, Liu (b0045) 2022; 435 H. Gu, D.T. Lee, P. Corkery, Y. Miao, J.S. Kim, Y. Yuan, Z. liang Xu, G. Dai, G.N. Parsons, I.G. Kevrekidis, L. Zhuang, M. Tsapatsis, Modeling of deposit formation in mesoporous substrates via atomic layer deposition: Insights from pore-scale simulation, AIChE J. (2022) 1–13. Doi: 10.1002/aic.17889. van Ommen, Goulas (b0025) 2019; 14 Yuan, Sundén (b0235) 2014; 69 Te Hsieh, Mallick, Gandomi, Huang, Fu, Juang, Chang (b0115) 2022; 423 Moitzheim, Balder, Ritasalo, Ek, Poodt, Unnikrishnan, De Gendt, Vereecken (b0175) 2019; 2 Cong, Li, Cao, Feng, Chen (b0130) 2020; 217 Chen, Li, Dai, Yang, Wen, Shan, Chen (b0225) 2023; 472 Te Hsieh, Chang, Juang, Chao, Ke, Lin, Liu, Gandomi, Gu, Su, Li, Fu, Mallick (b0125) 2020; 3 Nguyen, Sekkat, Jiménez, Muñoz, Bellet, Muñoz-rojas (b0140) 2021; 403 Deng, He, Duan, Chen, Shan (b0110) 2016; 34 He, Pham, Liang, Park (b0040) 2022; 440 Poodt, Mameli, Schulpen, (Erwin) Kessels, Roozeboom (b0150) 2017; 35 Li, Cao, Li, Chen (b0135) 2021; 181 Bae, Kim, Kim, Park, Shin (b0200) 2018; 30 Beuse, Fingerle, Wagner, Winter, Börner (b0265) 2021; 7 Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (b0085) 2012; 30 Meng, Yang, Sun (b0070) 2012; 24 Lee, Wang, Cheng, Li, Lin (b0080) 2010; 55 Zhuang, Corkery, Lee, Lee, Kooshkbaghi, liang Xu, Dai, Kevrekidis, Tsapatsis (b0215) 2021; 67 Van Bui, Grillo, Van Ommen (b0005) 2017; 53 Oviroh, Akbarzadeh, Pan, Coetzee, Jen (b0015) 2019; 20 Zhuang (10.1016/j.cej.2023.147486_b0215) 2021; 67 Poodt (10.1016/j.cej.2023.147486_b0150) 2017; 35 Pan (10.1016/j.cej.2023.147486_b0105) 2016; 96 Nguyen (10.1016/j.cej.2023.147486_b0140) 2021; 403 Beuse (10.1016/j.cej.2023.147486_b0265) 2021; 7 Yang (10.1016/j.cej.2023.147486_b0045) 2022; 435 Lu (10.1016/j.cej.2023.147486_b0240) 2020; 11 Poodt (10.1016/j.cej.2023.147486_b0085) 2012; 30 Fang (10.1016/j.cej.2023.147486_b0210) 2019; 378 Cong (10.1016/j.cej.2023.147486_b0130) 2020; 217 Deng (10.1016/j.cej.2023.147486_b0110) 2016; 34 Yanguas-gil (10.1016/j.cej.2023.147486_b0185) 2012; 18 Cao (10.1016/j.cej.2023.147486_b0065) 2021; 4 van Ommen (10.1016/j.cej.2023.147486_b0025) 2019; 14 Durlofsky (10.1016/j.cej.2023.147486_b0230) 1987; 30 Yuan (10.1016/j.cej.2023.147486_b0235) 2014; 69 Cremers (10.1016/j.cej.2023.147486_b0165) 2019; 6 Keuter (10.1016/j.cej.2023.147486_b0190) 2015; 33 10.1016/j.cej.2023.147486_b0220 Sharma (10.1016/j.cej.2023.147486_b0195) 2016; 34 Meng (10.1016/j.cej.2023.147486_b0070) 2012; 24 Mousa (10.1016/j.cej.2023.147486_b0205) 2018; 36 Zhang (10.1016/j.cej.2023.147486_b0030) 2023; 462 Li (10.1016/j.cej.2023.147486_b0260) 2023; 212 Lee (10.1016/j.cej.2023.147486_b0080) 2010; 55 Yersak (10.1016/j.cej.2023.147486_b0275) 2018; 36 Cheng (10.1016/j.cej.2023.147486_b0075) 2012; 116 Oladipo (10.1016/j.cej.2023.147486_b0160) 2020; 153 Moitzheim (10.1016/j.cej.2023.147486_b0175) 2019; 2 Muñoz-Rojas (10.1016/j.cej.2023.147486_b0090) 2019; 12 Panda (10.1016/j.cej.2023.147486_b0120) 2021; 44 Grillo (10.1016/j.cej.2023.147486_b0255) 2015; 268 Ramasamy (10.1016/j.cej.2023.147486_b0035) 2019; 10 Te Hsieh (10.1016/j.cej.2023.147486_b0115) 2022; 423 Te Hsieh (10.1016/j.cej.2023.147486_b0125) 2020; 3 Oviroh (10.1016/j.cej.2023.147486_b0015) 2019; 20 Hallot (10.1016/j.cej.2023.147486_b0050) 2022; 18 Li (10.1016/j.cej.2023.147486_b0135) 2021; 181 George (10.1016/j.cej.2023.147486_b0020) 2010; 110 Cao (10.1016/j.cej.2023.147486_b0010) 2020; 65 Pan (10.1016/j.cej.2023.147486_b0100) 2019; 144 Cussler (10.1016/j.cej.2023.147486_b0245) 2009 Zhu (10.1016/j.cej.2023.147486_b0280) 2019; 9 Liang (10.1016/j.cej.2023.147486_b0060) 2023; 14 Van Bui (10.1016/j.cej.2023.147486_b0005) 2017; 53 Wang (10.1016/j.cej.2023.147486_b0250) 2010; 36 Szmyt (10.1016/j.cej.2023.147486_b0170) 2022; 34 Heenan (10.1016/j.cej.2023.147486_b0270) 2020; 10 Chen (10.1016/j.cej.2023.147486_b0225) 2023; 472 Gordon (10.1016/j.cej.2023.147486_b0180) 2003; 9 Bae (10.1016/j.cej.2023.147486_b0200) 2018; 30 Wang (10.1016/j.cej.2023.147486_b0095) 2017; 88 Xie (10.1016/j.cej.2023.147486_b0155) 2015; 259 He (10.1016/j.cej.2023.147486_b0040) 2022; 440 Gao (10.1016/j.cej.2023.147486_b0055) 2019; 31 Gakis (10.1016/j.cej.2023.147486_b0145) 2019; 195 |
| References_xml | – volume: 3 start-page: 10619 year: 2020 end-page: 10631 ident: b0125 article-title: Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries publication-title: ACS Appl. Energy Mater. – volume: 110 start-page: 111 year: 2010 end-page: 131 ident: b0020 article-title: Atomic layer deposition: an overview publication-title: Chem. Rev. – volume: 12 start-page: 96 year: 2019 end-page: 120 ident: b0090 article-title: Speeding up the unique assets of atomic layer deposition publication-title: Mater. Today Chem. – volume: 34 start-page: 203 year: 2022 end-page: 216 ident: b0170 article-title: Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws publication-title: Chem. Mater. – volume: 440 year: 2022 ident: b0040 article-title: Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries publication-title: Chem. Eng. J. – volume: 2 start-page: 1774 year: 2019 end-page: 1783 ident: b0175 article-title: Toward 3D Thin-Film Batteries: Optimal Current-Collector Design and Scalable Fabrication of TiO2 Thin-Film Electrodes publication-title: ACS Appl. Energy Mater. – volume: 472 year: 2023 ident: b0225 article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures publication-title: Chem. Eng. J. – volume: 30 start-page: 4748 year: 2018 end-page: 4754 ident: b0200 article-title: Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity? publication-title: Chem. Mater. – volume: 36 start-page: 01A123 year: 2018 ident: b0275 article-title: Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 34 start-page: 01A146 year: 2016 ident: b0195 article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 20 start-page: 465 year: 2019 end-page: 496 ident: b0015 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. – volume: 35 year: 2017 ident: b0150 article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: b0240 article-title: 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling publication-title: Nat. Commun. – volume: 4 start-page: 363 year: 2021 end-page: 391 ident: b0065 article-title: Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond publication-title: Energy Environ. Mater. – volume: 217 year: 2020 ident: b0130 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. – volume: 10 year: 2020 ident: b0270 article-title: Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries publication-title: Adv. Energy Mater. – volume: 462 year: 2023 ident: b0030 article-title: Tailoring the flow properties of inhaled micronized drug powders by atomic and molecular layer deposition publication-title: Chem. Eng. J. – volume: 10 start-page: 196 year: 2019 end-page: 205 ident: b0035 article-title: Enhancement of electrochemical activity of ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition publication-title: J. Electrochem Sci. Technol. – volume: 181 year: 2021 ident: b0135 article-title: Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates publication-title: Int. J. Heat Mass Transf. – volume: 153 year: 2020 ident: b0160 article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 96 start-page: 189 year: 2016 end-page: 198 ident: b0105 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 44 year: 2021 ident: b0120 article-title: Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries publication-title: J. Energy Storage. – volume: 9 start-page: 73 year: 2003 end-page: 78 ident: b0180 article-title: A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches publication-title: Chem. Vap. Depos. – volume: 144 year: 2019 ident: b0100 article-title: Numerical study on the effectiveness of precursor isolation using N 2 as gas barrier in spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 65 start-page: 678 year: 2020 end-page: 688 ident: b0010 article-title: Surface functionalization on nanoparticles via atomic layer deposition publication-title: Sci. Bull. – volume: 34 start-page: 01A108 year: 2016 ident: b0110 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 378 year: 2019 ident: b0210 article-title: Atomic layer deposition in porous electrodes: A pore-scale modeling study publication-title: Chem. Eng. J. – volume: 18 start-page: 1 year: 2022 end-page: 12 ident: b0050 article-title: 3D LiMn2O4 Thin Film Deposited by ALD: A Road toward High-Capacity Electrode for 3D Li-Ion Microbatteries publication-title: Small. – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: b0280 article-title: Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges publication-title: Coatings. – volume: 88 year: 2017 ident: b0095 article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition publication-title: Rev. Sci. Instrum. – volume: 53 start-page: 45 year: 2017 end-page: 71 ident: b0005 article-title: Atomic and molecular layer deposition : off the beaten track publication-title: Chem. Commun. – volume: 14 start-page: 1 year: 2019 end-page: 9 ident: b0025 article-title: Atomic layer deposition on particulate materials publication-title: Mater. Today Chem. – volume: 31 start-page: 2723 year: 2019 end-page: 2730 ident: b0055 article-title: Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode publication-title: Chem. Mater. – volume: 24 start-page: 3589 year: 2012 end-page: 3615 ident: b0070 article-title: Emerging applications of atomic layer deposition for lithium-ion battery studies publication-title: Adv. Mater. – volume: 33 start-page: 01A104 year: 2015 ident: b0190 article-title: Modeling precursor diffusion and reaction of atomic layer deposition in porous structures publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 195 start-page: 399 year: 2019 end-page: 412 ident: b0145 article-title: Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water publication-title: Chem. Eng. Sci. – volume: 116 start-page: 7629 year: 2012 end-page: 7637 ident: b0075 article-title: Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al 2O 3 or TiO 2 on LiCoO 2 electrodes publication-title: J. Phys. Chem. c. – volume: 67 start-page: 1 year: 2021 end-page: 12 ident: b0215 article-title: Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate publication-title: AIChE J. – volume: 268 start-page: 384 year: 2015 end-page: 398 ident: b0255 article-title: Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors publication-title: Chem. Eng. J. – volume: 212 year: 2023 ident: b0260 article-title: Study of ultrasonic vibration-assisted particle atomic layer deposition process via the CFD-DDPM simulation publication-title: Int. J. Heat Mass Transf. – volume: 14 start-page: 1 year: 2023 end-page: 12 ident: b0060 article-title: A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries publication-title: Nat. Commun. – year: 2009 ident: b0245 article-title: Diffusion: mass transfer in fluid systems – volume: 30 year: 2012 ident: b0085 article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 403 start-page: 1 year: 2021 end-page: 8 ident: b0140 article-title: Impact of Precursor Exposure in Spatial Atomic Layer Deposition on Process Efficiency and Film Properties publication-title: Chem. Eng. J. – volume: 6 year: 2019 ident: b0165 article-title: Conformality in atomic layer deposition: Current status overview of analysis and modelling publication-title: Appl. Phys. Rev. – volume: 259 start-page: 213 year: 2015 end-page: 220 ident: b0155 article-title: Mechanistic modeling of atomic layer deposition of alumina process with detailed surface chemical kinetics publication-title: Chem. Eng. J. – volume: 30 start-page: 3329 year: 1987 end-page: 3341 ident: b0230 article-title: Analysis of the Brinkman equation as a model for flow in porous media publication-title: Phys. Fluids. – volume: 18 start-page: 46 year: 2012 end-page: 52 ident: b0185 article-title: Self-Limited Reaction-Diffusion in Nanostructured Substrates : Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times ** publication-title: Chem. Vap. Depos. – volume: 36 start-page: 109 year: 2010 end-page: 118 ident: b0250 article-title: A review of multiscale CFD for gas-solid CFB modeling publication-title: Int. J. Multiph. Flow. – volume: 55 start-page: 4002 year: 2010 end-page: 4006 ident: b0080 article-title: Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries publication-title: Electrochim. Acta. – volume: 69 start-page: 358 year: 2014 end-page: 374 ident: b0235 article-title: On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes publication-title: Int. J. Heat Mass Transf. – volume: 36 year: 2018 ident: b0205 article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al 2 O 3 coatings on textiles at atmospheric pressure publication-title: J. Vac. Sci. Technol. a. – volume: 423 year: 2022 ident: b0115 article-title: Improvement on high-temperature electrochemical performance of lithium-ion pouch cells by spatial atomic layer deposition publication-title: Electrochim. Acta. – reference: H. Gu, D.T. Lee, P. Corkery, Y. Miao, J.S. Kim, Y. Yuan, Z. liang Xu, G. Dai, G.N. Parsons, I.G. Kevrekidis, L. Zhuang, M. Tsapatsis, Modeling of deposit formation in mesoporous substrates via atomic layer deposition: Insights from pore-scale simulation, AIChE J. (2022) 1–13. Doi: 10.1002/aic.17889. – volume: 7 year: 2021 ident: b0265 article-title: Comprehensive insights into the porosity of lithium-ion battery electrodes: A comparative study on positive electrodes based on lini0.6mn0.2co0.2o2 (nmc622) publication-title: Batteries. – volume: 435 year: 2022 ident: b0045 article-title: Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery publication-title: Chem. Eng. J. – volume: 44 year: 2021 ident: 10.1016/j.cej.2023.147486_b0120 article-title: Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries publication-title: J. Energy Storage. doi: 10.1016/j.est.2021.103348 – volume: 30 start-page: 3329 year: 1987 ident: 10.1016/j.cej.2023.147486_b0230 article-title: Analysis of the Brinkman equation as a model for flow in porous media publication-title: Phys. Fluids. doi: 10.1063/1.866465 – volume: 195 start-page: 399 year: 2019 ident: 10.1016/j.cej.2023.147486_b0145 article-title: Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.09.037 – volume: 2 start-page: 1774 year: 2019 ident: 10.1016/j.cej.2023.147486_b0175 article-title: Toward 3D Thin-Film Batteries: Optimal Current-Collector Design and Scalable Fabrication of TiO2 Thin-Film Electrodes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01905 – volume: 6 year: 2019 ident: 10.1016/j.cej.2023.147486_b0165 article-title: Conformality in atomic layer deposition: Current status overview of analysis and modelling publication-title: Appl. Phys. Rev. doi: 10.1063/1.5060967 – volume: 10 start-page: 196 year: 2019 ident: 10.1016/j.cej.2023.147486_b0035 article-title: Enhancement of electrochemical activity of ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition publication-title: J. Electrochem Sci. Technol. – volume: 67 start-page: 1 year: 2021 ident: 10.1016/j.cej.2023.147486_b0215 article-title: Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate publication-title: AIChE J. doi: 10.1002/aic.17305 – volume: 378 year: 2019 ident: 10.1016/j.cej.2023.147486_b0210 article-title: Atomic layer deposition in porous electrodes: A pore-scale modeling study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122099 – volume: 53 start-page: 45 year: 2017 ident: 10.1016/j.cej.2023.147486_b0005 article-title: Atomic and molecular layer deposition : off the beaten track publication-title: Chem. Commun. doi: 10.1039/C6CC05568K – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.cej.2023.147486_b0025 article-title: Atomic layer deposition on particulate materials publication-title: Mater. Today Chem. – volume: 3 start-page: 10619 year: 2020 ident: 10.1016/j.cej.2023.147486_b0125 article-title: Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01541 – volume: 18 start-page: 1 year: 2022 ident: 10.1016/j.cej.2023.147486_b0050 article-title: 3D LiMn2O4 Thin Film Deposited by ALD: A Road toward High-Capacity Electrode for 3D Li-Ion Microbatteries publication-title: Small. doi: 10.1002/smll.202107054 – volume: 14 start-page: 1 year: 2023 ident: 10.1016/j.cej.2023.147486_b0060 article-title: A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries publication-title: Nat. Commun. – volume: 403 start-page: 1 year: 2021 ident: 10.1016/j.cej.2023.147486_b0140 article-title: Impact of Precursor Exposure in Spatial Atomic Layer Deposition on Process Efficiency and Film Properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126234 – volume: 4 start-page: 363 year: 2021 ident: 10.1016/j.cej.2023.147486_b0065 article-title: Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12132 – volume: 144 year: 2019 ident: 10.1016/j.cej.2023.147486_b0100 article-title: Numerical study on the effectiveness of precursor isolation using N 2 as gas barrier in spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118642 – volume: 462 year: 2023 ident: 10.1016/j.cej.2023.147486_b0030 article-title: Tailoring the flow properties of inhaled micronized drug powders by atomic and molecular layer deposition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142131 – year: 2009 ident: 10.1016/j.cej.2023.147486_b0245 – volume: 30 start-page: 4748 year: 2018 ident: 10.1016/j.cej.2023.147486_b0200 article-title: Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity? publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01615 – volume: 36 start-page: 01A123 year: 2018 ident: 10.1016/j.cej.2023.147486_b0275 article-title: Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. doi: 10.1116/1.5006670 – volume: 12 start-page: 96 year: 2019 ident: 10.1016/j.cej.2023.147486_b0090 article-title: Speeding up the unique assets of atomic layer deposition publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.11.013 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.cej.2023.147486_b0240 article-title: 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling publication-title: Nat. Commun. – volume: 30 year: 2012 ident: 10.1016/j.cej.2023.147486_b0085 article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 268 start-page: 384 year: 2015 ident: 10.1016/j.cej.2023.147486_b0255 article-title: Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.067 – volume: 65 start-page: 678 year: 2020 ident: 10.1016/j.cej.2023.147486_b0010 article-title: Surface functionalization on nanoparticles via atomic layer deposition publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.016 – volume: 259 start-page: 213 year: 2015 ident: 10.1016/j.cej.2023.147486_b0155 article-title: Mechanistic modeling of atomic layer deposition of alumina process with detailed surface chemical kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.105 – volume: 33 start-page: 01A104 year: 2015 ident: 10.1016/j.cej.2023.147486_b0190 article-title: Modeling precursor diffusion and reaction of atomic layer deposition in porous structures publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. doi: 10.1116/1.4892385 – volume: 55 start-page: 4002 year: 2010 ident: 10.1016/j.cej.2023.147486_b0080 article-title: Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2010.02.043 – volume: 9 start-page: 73 year: 2003 ident: 10.1016/j.cej.2023.147486_b0180 article-title: A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches publication-title: Chem. Vap. Depos. doi: 10.1002/cvde.200390005 – volume: 36 start-page: 109 year: 2010 ident: 10.1016/j.cej.2023.147486_b0250 article-title: A review of multiscale CFD for gas-solid CFB modeling publication-title: Int. J. Multiph. Flow. doi: 10.1016/j.ijmultiphaseflow.2009.01.008 – volume: 88 year: 2017 ident: 10.1016/j.cej.2023.147486_b0095 article-title: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4991048 – volume: 35 year: 2017 ident: 10.1016/j.cej.2023.147486_b0150 article-title: Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. – volume: 7 year: 2021 ident: 10.1016/j.cej.2023.147486_b0265 article-title: Comprehensive insights into the porosity of lithium-ion battery electrodes: A comparative study on positive electrodes based on lini0.6mn0.2co0.2o2 (nmc622) publication-title: Batteries. doi: 10.3390/batteries7040070 – volume: 96 start-page: 189 year: 2016 ident: 10.1016/j.cej.2023.147486_b0105 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.034 – volume: 472 year: 2023 ident: 10.1016/j.cej.2023.147486_b0225 article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144944 – volume: 181 year: 2021 ident: 10.1016/j.cej.2023.147486_b0135 article-title: Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121854 – volume: 153 year: 2020 ident: 10.1016/j.cej.2023.147486_b0160 article-title: Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition publication-title: Int. J. Heat Mass Transf. – volume: 212 year: 2023 ident: 10.1016/j.cej.2023.147486_b0260 article-title: Study of ultrasonic vibration-assisted particle atomic layer deposition process via the CFD-DDPM simulation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124223 – volume: 217 year: 2020 ident: 10.1016/j.cej.2023.147486_b0130 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115513 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.cej.2023.147486_b0280 article-title: Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges publication-title: Coatings. doi: 10.3390/coatings9020092 – volume: 34 start-page: 203 year: 2022 ident: 10.1016/j.cej.2023.147486_b0170 article-title: Atomic Layer Deposition on Porous Substrates: From General Formulation to Fibrous Substrates and Scaling Laws publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c03164 – volume: 69 start-page: 358 year: 2014 ident: 10.1016/j.cej.2023.147486_b0235 article-title: On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.10.032 – volume: 34 start-page: 01A146 year: 2016 ident: 10.1016/j.cej.2023.147486_b0195 article-title: Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. doi: 10.1116/1.4937728 – volume: 10 year: 2020 ident: 10.1016/j.cej.2023.147486_b0270 article-title: Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002655 – volume: 20 start-page: 465 year: 2019 ident: 10.1016/j.cej.2023.147486_b0015 article-title: New development of atomic layer deposition: processes, methods and applications publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1599694 – volume: 440 year: 2022 ident: 10.1016/j.cej.2023.147486_b0040 article-title: Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135565 – volume: 110 start-page: 111 year: 2010 ident: 10.1016/j.cej.2023.147486_b0020 article-title: Atomic layer deposition: an overview publication-title: Chem. Rev. doi: 10.1021/cr900056b – volume: 36 year: 2018 ident: 10.1016/j.cej.2023.147486_b0205 article-title: Modeling and experimental demonstration of high-throughput flow-through spatial atomic layer deposition of Al 2 O 3 coatings on textiles at atmospheric pressure publication-title: J. Vac. Sci. Technol. a. doi: 10.1116/1.5022077 – volume: 423 year: 2022 ident: 10.1016/j.cej.2023.147486_b0115 article-title: Improvement on high-temperature electrochemical performance of lithium-ion pouch cells by spatial atomic layer deposition publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2022.140605 – volume: 18 start-page: 46 year: 2012 ident: 10.1016/j.cej.2023.147486_b0185 article-title: Self-Limited Reaction-Diffusion in Nanostructured Substrates : Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times ** publication-title: Chem. Vap. Depos. doi: 10.1002/cvde.201106938 – volume: 116 start-page: 7629 year: 2012 ident: 10.1016/j.cej.2023.147486_b0075 article-title: Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al 2O 3 or TiO 2 on LiCoO 2 electrodes publication-title: J. Phys. Chem. c. doi: 10.1021/jp210551r – ident: 10.1016/j.cej.2023.147486_b0220 doi: 10.1002/aic.17889 – volume: 435 year: 2022 ident: 10.1016/j.cej.2023.147486_b0045 article-title: Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135148 – volume: 24 start-page: 3589 year: 2012 ident: 10.1016/j.cej.2023.147486_b0070 article-title: Emerging applications of atomic layer deposition for lithium-ion battery studies publication-title: Adv. Mater. doi: 10.1002/adma.201200397 – volume: 31 start-page: 2723 year: 2019 ident: 10.1016/j.cej.2023.147486_b0055 article-title: Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04200 – volume: 34 start-page: 01A108 year: 2016 ident: 10.1016/j.cej.2023.147486_b0110 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. doi: 10.1116/1.4932564 |
| SSID | ssj0006919 |
| Score | 2.4492638 |
| Snippet | •A multiscale model is established to study the spatial ALD on porous electrodes.•The macro-scale CFD and pore-scale diffusion–reaction kinetics are coupled.•A... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 147486 |
| SubjectTerms | CFD Dynamic mesh Multiscale modelling Porous electrodes Spatial ALD |
| Title | Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes |
| URI | https://dx.doi.org/10.1016/j.cej.2023.147486 |
| Volume | 479 |
| WOSCitedRecordID | wos001125970100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxtBFB7S2If6UGptUXthHvpU2ZDszmZ2HqVVVEQKWoi-LHOlCWEjmmj0v_hfe-a2G2MFW-jLsgy7O8s538y5zLkg9IV2eU8rmiWCcJ0QaWBJSQqboWB92lUpo13jmk3Q4-NiMGA_Wq37mAtzPaZVVczn7OK_shrGgNk2dfYv2F1_FAbgHpgOV2A7XJ_FeJdSewWk1y5efDaN7j4zng3VtvIt6EMPnHEIer6ygdWWW0ff7fEBKOU2NHY8TCw6hKvBebsdWuaoEHYY6xvEkgO6KW1YF6SwDUO4DfzxjtOTm-H0zucXB18E6y_4Io5caME5TP1rxoNIdaEHfm88g8H5kE-asxTth41uHj4LDvC9APvg0UjJkkfjcaqN25mzIk8K5stzdrQfKwBkWdp7sJ0T35zmkWjwXopRR-pRx_aMBxlByXIZbifYT-xcdiprnlmT7QVaSWnOijZa2TnYHRzWor7PXOeY-t_isbkLIFya6M-Kz4Iyc_oGvQ5WCN7x6FlDLV29RasLtSnXkWpwhB_gCDsc4YgjXOMITwwOOMKAIzypsMcR9jjCAUe4wdE79HNv9_TbfhJaciQS7PRpInIlwUAQqaJCCljooH9KpVOpGNixShBCVcbTnhApJ0abTGgFFgGseW4rO5rsPWpXk0pvIJxT3hUgL1UPPm1yIfJM8D43UuZSEZVtoq-RXuWFr7xSxpDEUQnELS1xS0_cTUQiRcugOnqVsAT2P_3a1r-99gG9anD7EbWnlzP9Cb2U18CWy88BJL8B3kqVgA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+computational+fluid+dynamics+modelling+of+spatial+ALD+on+porous+li-ion+battery+electrodes&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Zoushuang&rft.au=Chen%2C+Yuanxiao&rft.au=Nie%2C+Yufeng&rft.au=Yang%2C+Fan&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=479&rft_id=info:doi/10.1016%2Fj.cej.2023.147486&rft.externalDocID=S1385894723062174 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |