On planar polynomial geometric interpolation

In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of approximation theory Ročník 283; s. 105806
Hlavní autor: Kozak, Jernej
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.11.2022
Témata:
ISSN:0021-9045, 1096-0430
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the Höllig–Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2022.105806