A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing
In this paper, based on the three-term conjugate gradient projection method and the inertial technique, we propose a modified inertial three-term conjugate gradient projection method for solving nonlinear monotone equations with convex constraints. Embedding the inertial extrapolation step in the de...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 92; číslo 3; s. 1621 - 1653 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, based on the three-term conjugate gradient projection method and the inertial technique, we propose a modified inertial three-term conjugate gradient projection method for solving nonlinear monotone equations with convex constraints. Embedding the inertial extrapolation step in the design for the search direction, the resulting direction satisfies the sufficient descent property which is independent of any line search rules. The global convergence and Q-linear convergence rate of the proposed algorithm are established under standard conditions. Numerical comparisons with three existing methods demonstrate that the proposed algorithm possesses superior numerical performance and good robustness for solving large-scale equations. Finally, the proposed method is applied to solve the sparse signal problems and image restoration in compressed sensing. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-022-01356-1 |