Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 177; p. 114222
Main Authors: Ai, Chunyu, He, Shan, Hu, Heng, Fan, Xiaochao, Wang, Weiqing
Format: Journal Article
Language:English
Published: 01.12.2023
ISSN:0960-0779
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
ArticleNumber 114222
Author Wang, Weiqing
Ai, Chunyu
He, Shan
Fan, Xiaochao
Hu, Heng
Author_xml – sequence: 1
  givenname: Chunyu
  surname: Ai
  fullname: Ai, Chunyu
– sequence: 2
  givenname: Shan
  surname: He
  fullname: He, Shan
– sequence: 3
  givenname: Heng
  surname: Hu
  fullname: Hu, Heng
– sequence: 4
  givenname: Xiaochao
  surname: Fan
  fullname: Fan, Xiaochao
– sequence: 5
  givenname: Weiqing
  surname: Wang
  fullname: Wang, Weiqing
BookMark eNp9kMtOwzAQRb0oEm3hC9j4BxL8SBO8RBUvqRIbWFsTe9K6SuJgGyr69SQtKxasZqS550pzFmTW-x4JueEs54yXt_vc7MDHXDAhc84LIcSMzJkqWcaqSl2SRYx7xhhnpZiT43oMJ2doch3SiMFhpAfXWzr4Awbq-oThC1o6BLTOJOd7WkNES8fl4xNsgIm2aHw3-OhOARjxCWxbt8U-UT-M7e4I52O79cGlXXdFLhpoI17_ziV5f3x4Wz9nm9enl_X9JjOiUCkD4FihkrWBSq4aJcuCswaMrJpSYFNUBRQcOSosBauFlYClrdnKSHG3qoWRSyLPvSb4GAM2egiug_CtOdOTMr3XJ2V6UqbPykZK_aGMS6cPUgDX_sv-AB0gfF4
CitedBy_id crossref_primary_10_32604_ee_2025_059515
crossref_primary_10_3390_pr13010107
crossref_primary_10_1063_5_0233770
crossref_primary_10_1371_journal_pone_0323718
crossref_primary_10_1109_ACCESS_2024_3373798
crossref_primary_10_1016_j_chaos_2025_116975
crossref_primary_10_3390_jmse12071173
crossref_primary_10_1002_apxr_202400035
crossref_primary_10_1016_j_enconman_2024_119292
Cites_doi 10.1016/j.energy.2021.119848
10.1016/j.energy.2022.124935
10.1016/j.renene.2011.05.033
10.1016/j.asoc.2020.106463
10.1016/j.energy.2021.122367
10.1016/j.engappai.2023.105987
10.1016/j.enconman.2020.113346
10.1016/j.advengsoft.2013.12.007
10.1007/s11356-021-14315-5
10.5937/fme2004855R
10.1016/j.apenergy.2019.03.097
10.1016/j.energy.2021.121981
10.1016/j.epsr.2023.109159
10.1007/s11356-022-19885-6
10.1016/j.renene.2020.10.126
10.1016/j.chaos.2020.110366
10.1016/j.apenergy.2010.10.031
10.1109/TII.2019.2910606
10.1016/j.renene.2022.12.124
10.1016/j.apenergy.2022.118796
10.1016/j.energy.2023.126738
10.1016/j.energy.2022.123807
10.1016/j.asoc.2019.105587
10.1103/PhysRevE.70.046217
10.1016/j.chaos.2022.111982
10.1016/j.apenergy.2019.114137
10.1061/(ASCE)0733-9496(2003)129:3(210)
10.1016/j.renene.2008.09.006
10.1109/TSG.2013.2283269
10.1016/j.eswa.2022.116516
10.1016/j.asoc.2022.109945
10.1109/TNNLS.2013.2276053
10.1016/j.renene.2021.03.030
10.1109/TII.2021.3130237
10.1016/j.asoc.2021.107894
10.1016/j.apenergy.2021.116951
10.3934/jimo.2012.8.1039
10.1016/j.renene.2022.03.120
10.1016/j.renene.2022.08.044
10.1016/j.advengsoft.2016.01.008
10.1016/j.energy.2020.119361
10.1016/j.rser.2022.112700
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.114222
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2023_114222
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
~HD
ID FETCH-LOGICAL-c249t-aa1e7e93bca735f936410fac37f62ef474a41e1e9e620b2d3ae6db05c3285b2c3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:11:35 EST 2025
Tue Nov 18 22:28:09 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-aa1e7e93bca735f936410fac37f62ef474a41e1e9e620b2d3ae6db05c3285b2c3
ParticipantIDs crossref_primary_10_1016_j_chaos_2023_114222
crossref_citationtrail_10_1016_j_chaos_2023_114222
PublicationCentury 2000
PublicationDate 2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
References Dudukcu (10.1016/j.chaos.2023.114222_bb0015) 2023; 133
Yang (10.1016/j.chaos.2023.114222_bb0205) 2010
Foley (10.1016/j.chaos.2023.114222_bb0025) 2012; 37
Eusuff (10.1016/j.chaos.2023.114222_bb0200) 2003; 129
Wang (10.1016/j.chaos.2023.114222_bb0040) 2022; 259
Moreno (10.1016/j.chaos.2023.114222_bb0130) 2021; 164
Liu (10.1016/j.chaos.2023.114222_bb0090) 2022; 251
Quan (10.1016/j.chaos.2023.114222_bb0005) 2013; 25
Kavasseri (10.1016/j.chaos.2023.114222_bb0035) 2009; 34
Farah (10.1016/j.chaos.2023.114222_bb0170) 2022; 167
Rehman (10.1016/j.chaos.2023.114222_bb0080) 2021
Shi (10.1016/j.chaos.2023.114222_bb0070) 2014; 5
Zhang (10.1016/j.chaos.2023.114222_bb0065) 2022; 52
Jiang (10.1016/j.chaos.2023.114222_bb0155) 2019; 82
Ti (10.1016/j.chaos.2023.114222_bb0060) 2021; 172
Sun (10.1016/j.chaos.2023.114222_bb0120) 2021; 113
Zhou (10.1016/j.chaos.2023.114222_bb0140) 2022; 157
Wang (10.1016/j.chaos.2023.114222_bb0105) 2023; 121
Wang (10.1016/j.chaos.2023.114222_bb0220) 2022; 313
Lv (10.1016/j.chaos.2023.114222_bb0175) 2021; 18
Zou (10.1016/j.chaos.2023.114222_bb0225) 2019; 15
Hu (10.1016/j.chaos.2023.114222_bb0050) 2021; 293
Liu (10.1016/j.chaos.2023.114222_bb0075) 2020; 259
Aly (10.1016/j.chaos.2023.114222_bb0045) 2022; 239
Mirjalili (10.1016/j.chaos.2023.114222_bb0210) 2014; 69
Zhao (10.1016/j.chaos.2023.114222_bb0160) 2022; 29
Jiang (10.1016/j.chaos.2023.114222_bb0145) 2021; 217
Rehman (10.1016/j.chaos.2023.114222_bb0010) 2020; 48
Erdem (10.1016/j.chaos.2023.114222_bb0030) 2011; 88
Zhang (10.1016/j.chaos.2023.114222_bb0110) 2020; 224
Jiang (10.1016/j.chaos.2023.114222_bb0125) 2023; 203
Ghimire (10.1016/j.chaos.2023.114222_bb0180) 2022; 190
Cao (10.1016/j.chaos.2023.114222_bb0185) 2004; 70
Niu (10.1016/j.chaos.2023.114222_bb0150) 2019; 241
Ahmadianfar (10.1016/j.chaos.2023.114222_bb0195) 2022; 195
Tang (10.1016/j.chaos.2023.114222_bb0020) 2020; 141
Zhou (10.1016/j.chaos.2023.114222_bb0135) 2020; 94
Yu (10.1016/j.chaos.2023.114222_bb0095) 2023; 269
Zhou (10.1016/j.chaos.2023.114222_bb0190) 2012; 8
Han (10.1016/j.chaos.2023.114222_bb0100) 2023; 217
Mirjalili (10.1016/j.chaos.2023.114222_bb0215) 2016; 95
Sun (10.1016/j.chaos.2023.114222_bb0115) 2021; 221
Li (10.1016/j.chaos.2023.114222_bb0165) 2022; 238
Wen (10.1016/j.chaos.2023.114222_bb0055) 2022; 198
Natarajan (10.1016/j.chaos.2023.114222_bb0085) 2022; 29
References_xml – volume: 221
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0115
  article-title: Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119848
– volume: 259
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0040
  article-title: Forecasting China’s energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124935
– volume: 37
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.chaos.2023.114222_bb0025
  article-title: Current methods and advances inforecasting of wind power generation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.05.033
– volume: 94
  year: 2020
  ident: 10.1016/j.chaos.2023.114222_bb0135
  article-title: A combined forecasting system based on modified multi-objective optimization and sub-model selection strategy for short-term wind speed
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106463
– volume: 239
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0045
  article-title: A hybrid optimized model of adaptive neuro-fuzzy inference system, recurrent Kalman filter and neuro-wavelet for wind power forecasting driven by DFIG
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122367
– volume: 121
  year: 2023
  ident: 10.1016/j.chaos.2023.114222_bb0105
  article-title: Wind speed interval prediction based on multidimensional time series of convolutional neural networks
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.105987
– volume: 224
  year: 2020
  ident: 10.1016/j.chaos.2023.114222_bb0110
  article-title: Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2020.113346
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.chaos.2023.114222_bb0210
  article-title: Grey wolf optimizer[J]
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 52
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0065
  article-title: Short term wind energy prediction model based on data decomposition and optimized LSSVM
  publication-title: Sustain Energy Technol Assess
– volume: 29
  start-page: 85855
  issue: 57
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0085
  article-title: Evaluation of suitability of wind speed probability distribution models: a case study from Tamil Nadu, India
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-14315-5
– volume: 48
  start-page: 855
  issue: 4
  year: 2020
  ident: 10.1016/j.chaos.2023.114222_bb0010
  article-title: GIS-based multi-criteria wind farm site selection methodology
  publication-title: FME Trans
  doi: 10.5937/fme2004855R
– volume: 241
  start-page: 519
  year: 2019
  ident: 10.1016/j.chaos.2023.114222_bb0150
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.097
– volume: 238
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0165
  article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121981
– volume: 217
  year: 2023
  ident: 10.1016/j.chaos.2023.114222_bb0100
  article-title: Ultra-short-term wind power interval prediction based on hybrid temporal inception convolutional network model
  publication-title: Electr Pow Syst Res
  doi: 10.1016/j.epsr.2023.109159
– volume: 29
  start-page: 58097
  issue: 38
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0160
  article-title: Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19885-6
– volume: 164
  start-page: 1508
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0130
  article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.10.126
– volume: 141
  year: 2020
  ident: 10.1016/j.chaos.2023.114222_bb0020
  article-title: A hybrid prediction method based on empirical mode decomposition and multiple model fusion for chaotic time series
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110366
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.chaos.2023.114222_bb0030
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 15
  start-page: 4934
  issue: 9
  year: 2019
  ident: 10.1016/j.chaos.2023.114222_bb0225
  article-title: An inter type-2 FCR algorithm based T–S fuzzy model for short-term wind power interval prediction
  publication-title: IEEE T Ind Inform
  doi: 10.1109/TII.2019.2910606
– volume: 203
  start-page: 802
  year: 2023
  ident: 10.1016/j.chaos.2023.114222_bb0125
  article-title: A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.12.124
– year: 2010
  ident: 10.1016/j.chaos.2023.114222_bb0205
– volume: 313
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0220
  article-title: A novel ensemble probabilistic forecasting system for uncertainty in wind speed
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118796
– volume: 269
  year: 2023
  ident: 10.1016/j.chaos.2023.114222_bb0095
  article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126738
– volume: 251
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0090
  article-title: Short-term wind power interval prediction method using VMD-RFG and Att-GRU
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123807
– volume: 82
  year: 2019
  ident: 10.1016/j.chaos.2023.114222_bb0155
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105587
– volume: 70
  start-page: 174
  issue: 4
  year: 2004
  ident: 10.1016/j.chaos.2023.114222_bb0185
  article-title: Detecting dynamical changes in time series using the permutation entropy
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.70.046217
– volume: 157
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0140
  article-title: Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.111982
– volume: 259
  year: 2020
  ident: 10.1016/j.chaos.2023.114222_bb0075
  article-title: A combined forecasting model for time series: application to short-term wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114137
– volume: 129
  start-page: 210
  issue: 3
  year: 2003
  ident: 10.1016/j.chaos.2023.114222_bb0200
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.chaos.2023.114222_bb0035
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 5
  start-page: 521
  year: 2014
  ident: 10.1016/j.chaos.2023.114222_bb0070
  article-title: Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2283269
– volume: 195
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0195
  article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116516
– volume: 133
  year: 2023
  ident: 10.1016/j.chaos.2023.114222_bb0015
  article-title: Temporal convolutional networks with RNN approach for chaotic time series prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109945
– volume: 25
  start-page: 303
  issue: 2
  year: 2013
  ident: 10.1016/j.chaos.2023.114222_bb0005
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2276053
– volume: 172
  start-page: 618
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0060
  article-title: Artificial neural networks based wake model for power prediction of wind farm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.030
– volume: 18
  start-page: 6474
  issue: 9
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0175
  article-title: A VMD and LSTM based hybrid model of load forecasting for power grid security
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2021.3130237
– volume: 113
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0120
  article-title: Multi-step wind speed forecasting based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107894
– volume: 293
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0050
  article-title: Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116951
– volume: 8
  start-page: 1039
  issue: 4
  year: 2012
  ident: 10.1016/j.chaos.2023.114222_bb0190
  article-title: State transition algorithm
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2012.8.1039
– volume: 190
  start-page: 408
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0180
  article-title: Improved complete ensemble empirical mode decomposition with adaptive noise deep residual model for short-term multi-step solar radiation prediction[J]
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.03.120
– volume: 198
  start-page: 155
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0055
  article-title: A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.08.044
– volume: 95
  year: 2016
  ident: 10.1016/j.chaos.2023.114222_bb0215
  article-title: The whale optimization algorithm[J]
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 217
  year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0145
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119361
– volume: 167
  year: 2022
  ident: 10.1016/j.chaos.2023.114222_bb0170
  article-title: Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112700
– year: 2021
  ident: 10.1016/j.chaos.2023.114222_bb0080
  article-title: Wind and wind power characteristics of the eastern and southern coastal and northern inland regions, South Africa
  publication-title: Environ Sci Pollut Res Int
SSID ssj0001062
Score 2.4528668
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 114222
Title Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm
Volume 177
WOSCitedRecordID wos001146947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLQd6QLSAaAvIBw6gJVViZ-P4uKqKChIVhyLtLXJsh91qm5Rssmr7L_qP8TjORwFV9MAliiLHtjIvM2N75g1C7zjlNIgI94Rg3AtTQbyURrGXqdh4G5mSsS9ssQl2ehrP5_zbaHTb5sJsVizP46srfvlfRW2eGWFD6uwDxN11ah6YeyN0czViN9d_EvzRQhTAwgpV4ycwooYMNqADgIJolh-i3ED-VQlnNFb8YMoUHBv8rIUqLYer0hBs7iK6HEVTS95ZTQqjaC5cBudErH4U5bJaXAwdXZiFhcgaAuwgHgf6yCAnS6w6P362bI786_y67ndl7Y7sooftSd0YSGdkLXWkVZbzpSikGWi4dUHoIAzE7UFGvuezpppMp45dWZdGodpUX_JXXd9sO5wfwjhAvE7oYd_6LrP2bxavi0NsQ9zOE9tJAp0kTSeP0BZhUx6P0dbs8_H8S2fezRraHk21c2-prGzQ4B9zGbg7A7_l7Bl66hYceNYAZQeNdL6Ltr92bL3rXbTjFPwav3cs5B-eoxuHIww4wg2OMOAIWxzhFke4xxG2OMLmpsMRvoMjbDCABzjCQxzhDkcv0PdPx2dHJ54r1OFJs3qvzH8eaKY5TaVgdJpxGoWBnwlJWRYRnYUsFGGgA811RPyUKCp0pFJ_KimJpymR9CUa50WuXyGcRTFTKSFBJFTop6mABbXkXAhtGgZiD5H2eybSsdhDMZVVco8s99DH7qXLhsTlvub7D2t-gJ704H6NxlVZ6zfosdxUy3X51sHnF_CxnTU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+time+series+wind+power+interval+prediction+based+on+quadratic+decomposition+and+intelligent+optimization+algorithm&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Ai%2C+Chunyu&rft.au=He%2C+Shan&rft.au=Hu%2C+Heng&rft.au=Fan%2C+Xiaochao&rft.date=2023-12-01&rft.issn=0960-0779&rft.volume=177&rft.spage=114222&rft_id=info:doi/10.1016%2Fj.chaos.2023.114222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2023_114222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon