Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm
Saved in:
| Published in: | Chaos, solitons and fractals Vol. 177; p. 114222 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.12.2023
|
| ISSN: | 0960-0779 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| ArticleNumber | 114222 |
|---|---|
| Author | Wang, Weiqing Ai, Chunyu He, Shan Fan, Xiaochao Hu, Heng |
| Author_xml | – sequence: 1 givenname: Chunyu surname: Ai fullname: Ai, Chunyu – sequence: 2 givenname: Shan surname: He fullname: He, Shan – sequence: 3 givenname: Heng surname: Hu fullname: Hu, Heng – sequence: 4 givenname: Xiaochao surname: Fan fullname: Fan, Xiaochao – sequence: 5 givenname: Weiqing surname: Wang fullname: Wang, Weiqing |
| BookMark | eNp9kMtOwzAQRb0oEm3hC9j4BxL8SBO8RBUvqRIbWFsTe9K6SuJgGyr69SQtKxasZqS550pzFmTW-x4JueEs54yXt_vc7MDHXDAhc84LIcSMzJkqWcaqSl2SRYx7xhhnpZiT43oMJ2doch3SiMFhpAfXWzr4Awbq-oThC1o6BLTOJOd7WkNES8fl4xNsgIm2aHw3-OhOARjxCWxbt8U-UT-M7e4I52O79cGlXXdFLhpoI17_ziV5f3x4Wz9nm9enl_X9JjOiUCkD4FihkrWBSq4aJcuCswaMrJpSYFNUBRQcOSosBauFlYClrdnKSHG3qoWRSyLPvSb4GAM2egiug_CtOdOTMr3XJ2V6UqbPykZK_aGMS6cPUgDX_sv-AB0gfF4 |
| CitedBy_id | crossref_primary_10_32604_ee_2025_059515 crossref_primary_10_3390_pr13010107 crossref_primary_10_1063_5_0233770 crossref_primary_10_1371_journal_pone_0323718 crossref_primary_10_1109_ACCESS_2024_3373798 crossref_primary_10_1016_j_chaos_2025_116975 crossref_primary_10_3390_jmse12071173 crossref_primary_10_1002_apxr_202400035 crossref_primary_10_1016_j_enconman_2024_119292 |
| Cites_doi | 10.1016/j.energy.2021.119848 10.1016/j.energy.2022.124935 10.1016/j.renene.2011.05.033 10.1016/j.asoc.2020.106463 10.1016/j.energy.2021.122367 10.1016/j.engappai.2023.105987 10.1016/j.enconman.2020.113346 10.1016/j.advengsoft.2013.12.007 10.1007/s11356-021-14315-5 10.5937/fme2004855R 10.1016/j.apenergy.2019.03.097 10.1016/j.energy.2021.121981 10.1016/j.epsr.2023.109159 10.1007/s11356-022-19885-6 10.1016/j.renene.2020.10.126 10.1016/j.chaos.2020.110366 10.1016/j.apenergy.2010.10.031 10.1109/TII.2019.2910606 10.1016/j.renene.2022.12.124 10.1016/j.apenergy.2022.118796 10.1016/j.energy.2023.126738 10.1016/j.energy.2022.123807 10.1016/j.asoc.2019.105587 10.1103/PhysRevE.70.046217 10.1016/j.chaos.2022.111982 10.1016/j.apenergy.2019.114137 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1016/j.renene.2008.09.006 10.1109/TSG.2013.2283269 10.1016/j.eswa.2022.116516 10.1016/j.asoc.2022.109945 10.1109/TNNLS.2013.2276053 10.1016/j.renene.2021.03.030 10.1109/TII.2021.3130237 10.1016/j.asoc.2021.107894 10.1016/j.apenergy.2021.116951 10.3934/jimo.2012.8.1039 10.1016/j.renene.2022.03.120 10.1016/j.renene.2022.08.044 10.1016/j.advengsoft.2016.01.008 10.1016/j.energy.2020.119361 10.1016/j.rser.2022.112700 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2023.114222 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| ExternalDocumentID | 10_1016_j_chaos_2023_114222 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- ~HD |
| ID | FETCH-LOGICAL-c249t-aa1e7e93bca735f936410fac37f62ef474a41e1e9e620b2d3ae6db05c3285b2c3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 07:11:35 EST 2025 Tue Nov 18 22:28:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-aa1e7e93bca735f936410fac37f62ef474a41e1e9e620b2d3ae6db05c3285b2c3 |
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2023_114222 crossref_citationtrail_10_1016_j_chaos_2023_114222 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2023 |
| References | Dudukcu (10.1016/j.chaos.2023.114222_bb0015) 2023; 133 Yang (10.1016/j.chaos.2023.114222_bb0205) 2010 Foley (10.1016/j.chaos.2023.114222_bb0025) 2012; 37 Eusuff (10.1016/j.chaos.2023.114222_bb0200) 2003; 129 Wang (10.1016/j.chaos.2023.114222_bb0040) 2022; 259 Moreno (10.1016/j.chaos.2023.114222_bb0130) 2021; 164 Liu (10.1016/j.chaos.2023.114222_bb0090) 2022; 251 Quan (10.1016/j.chaos.2023.114222_bb0005) 2013; 25 Kavasseri (10.1016/j.chaos.2023.114222_bb0035) 2009; 34 Farah (10.1016/j.chaos.2023.114222_bb0170) 2022; 167 Rehman (10.1016/j.chaos.2023.114222_bb0080) 2021 Shi (10.1016/j.chaos.2023.114222_bb0070) 2014; 5 Zhang (10.1016/j.chaos.2023.114222_bb0065) 2022; 52 Jiang (10.1016/j.chaos.2023.114222_bb0155) 2019; 82 Ti (10.1016/j.chaos.2023.114222_bb0060) 2021; 172 Sun (10.1016/j.chaos.2023.114222_bb0120) 2021; 113 Zhou (10.1016/j.chaos.2023.114222_bb0140) 2022; 157 Wang (10.1016/j.chaos.2023.114222_bb0105) 2023; 121 Wang (10.1016/j.chaos.2023.114222_bb0220) 2022; 313 Lv (10.1016/j.chaos.2023.114222_bb0175) 2021; 18 Zou (10.1016/j.chaos.2023.114222_bb0225) 2019; 15 Hu (10.1016/j.chaos.2023.114222_bb0050) 2021; 293 Liu (10.1016/j.chaos.2023.114222_bb0075) 2020; 259 Aly (10.1016/j.chaos.2023.114222_bb0045) 2022; 239 Mirjalili (10.1016/j.chaos.2023.114222_bb0210) 2014; 69 Zhao (10.1016/j.chaos.2023.114222_bb0160) 2022; 29 Jiang (10.1016/j.chaos.2023.114222_bb0145) 2021; 217 Rehman (10.1016/j.chaos.2023.114222_bb0010) 2020; 48 Erdem (10.1016/j.chaos.2023.114222_bb0030) 2011; 88 Zhang (10.1016/j.chaos.2023.114222_bb0110) 2020; 224 Jiang (10.1016/j.chaos.2023.114222_bb0125) 2023; 203 Ghimire (10.1016/j.chaos.2023.114222_bb0180) 2022; 190 Cao (10.1016/j.chaos.2023.114222_bb0185) 2004; 70 Niu (10.1016/j.chaos.2023.114222_bb0150) 2019; 241 Ahmadianfar (10.1016/j.chaos.2023.114222_bb0195) 2022; 195 Tang (10.1016/j.chaos.2023.114222_bb0020) 2020; 141 Zhou (10.1016/j.chaos.2023.114222_bb0135) 2020; 94 Yu (10.1016/j.chaos.2023.114222_bb0095) 2023; 269 Zhou (10.1016/j.chaos.2023.114222_bb0190) 2012; 8 Han (10.1016/j.chaos.2023.114222_bb0100) 2023; 217 Mirjalili (10.1016/j.chaos.2023.114222_bb0215) 2016; 95 Sun (10.1016/j.chaos.2023.114222_bb0115) 2021; 221 Li (10.1016/j.chaos.2023.114222_bb0165) 2022; 238 Wen (10.1016/j.chaos.2023.114222_bb0055) 2022; 198 Natarajan (10.1016/j.chaos.2023.114222_bb0085) 2022; 29 |
| References_xml | – volume: 221 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0115 article-title: Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales publication-title: Energy doi: 10.1016/j.energy.2021.119848 – volume: 259 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0040 article-title: Forecasting China’s energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model publication-title: Energy doi: 10.1016/j.energy.2022.124935 – volume: 37 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.chaos.2023.114222_bb0025 article-title: Current methods and advances inforecasting of wind power generation publication-title: Renew Energy doi: 10.1016/j.renene.2011.05.033 – volume: 94 year: 2020 ident: 10.1016/j.chaos.2023.114222_bb0135 article-title: A combined forecasting system based on modified multi-objective optimization and sub-model selection strategy for short-term wind speed publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106463 – volume: 239 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0045 article-title: A hybrid optimized model of adaptive neuro-fuzzy inference system, recurrent Kalman filter and neuro-wavelet for wind power forecasting driven by DFIG publication-title: Energy doi: 10.1016/j.energy.2021.122367 – volume: 121 year: 2023 ident: 10.1016/j.chaos.2023.114222_bb0105 article-title: Wind speed interval prediction based on multidimensional time series of convolutional neural networks publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2023.105987 – volume: 224 year: 2020 ident: 10.1016/j.chaos.2023.114222_bb0110 article-title: Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2020.113346 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.chaos.2023.114222_bb0210 article-title: Grey wolf optimizer[J] publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 52 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0065 article-title: Short term wind energy prediction model based on data decomposition and optimized LSSVM publication-title: Sustain Energy Technol Assess – volume: 29 start-page: 85855 issue: 57 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0085 article-title: Evaluation of suitability of wind speed probability distribution models: a case study from Tamil Nadu, India publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14315-5 – volume: 48 start-page: 855 issue: 4 year: 2020 ident: 10.1016/j.chaos.2023.114222_bb0010 article-title: GIS-based multi-criteria wind farm site selection methodology publication-title: FME Trans doi: 10.5937/fme2004855R – volume: 241 start-page: 519 year: 2019 ident: 10.1016/j.chaos.2023.114222_bb0150 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.097 – volume: 238 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0165 article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks publication-title: Energy doi: 10.1016/j.energy.2021.121981 – volume: 217 year: 2023 ident: 10.1016/j.chaos.2023.114222_bb0100 article-title: Ultra-short-term wind power interval prediction based on hybrid temporal inception convolutional network model publication-title: Electr Pow Syst Res doi: 10.1016/j.epsr.2023.109159 – volume: 29 start-page: 58097 issue: 38 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0160 article-title: Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-19885-6 – volume: 164 start-page: 1508 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0130 article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast publication-title: Renew Energy doi: 10.1016/j.renene.2020.10.126 – volume: 141 year: 2020 ident: 10.1016/j.chaos.2023.114222_bb0020 article-title: A hybrid prediction method based on empirical mode decomposition and multiple model fusion for chaotic time series publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110366 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.chaos.2023.114222_bb0030 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 15 start-page: 4934 issue: 9 year: 2019 ident: 10.1016/j.chaos.2023.114222_bb0225 article-title: An inter type-2 FCR algorithm based T–S fuzzy model for short-term wind power interval prediction publication-title: IEEE T Ind Inform doi: 10.1109/TII.2019.2910606 – volume: 203 start-page: 802 year: 2023 ident: 10.1016/j.chaos.2023.114222_bb0125 article-title: A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition publication-title: Renew Energy doi: 10.1016/j.renene.2022.12.124 – year: 2010 ident: 10.1016/j.chaos.2023.114222_bb0205 – volume: 313 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0220 article-title: A novel ensemble probabilistic forecasting system for uncertainty in wind speed publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118796 – volume: 269 year: 2023 ident: 10.1016/j.chaos.2023.114222_bb0095 article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism publication-title: Energy doi: 10.1016/j.energy.2023.126738 – volume: 251 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0090 article-title: Short-term wind power interval prediction method using VMD-RFG and Att-GRU publication-title: Energy doi: 10.1016/j.energy.2022.123807 – volume: 82 year: 2019 ident: 10.1016/j.chaos.2023.114222_bb0155 article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105587 – volume: 70 start-page: 174 issue: 4 year: 2004 ident: 10.1016/j.chaos.2023.114222_bb0185 article-title: Detecting dynamical changes in time series using the permutation entropy publication-title: Phys Rev E Stat Nonlin Soft Matter Phys doi: 10.1103/PhysRevE.70.046217 – volume: 157 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0140 article-title: Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.111982 – volume: 259 year: 2020 ident: 10.1016/j.chaos.2023.114222_bb0075 article-title: A combined forecasting model for time series: application to short-term wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114137 – volume: 129 start-page: 210 issue: 3 year: 2003 ident: 10.1016/j.chaos.2023.114222_bb0200 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – volume: 34 start-page: 1388 issue: 5 year: 2009 ident: 10.1016/j.chaos.2023.114222_bb0035 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy doi: 10.1016/j.renene.2008.09.006 – volume: 5 start-page: 521 year: 2014 ident: 10.1016/j.chaos.2023.114222_bb0070 article-title: Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2283269 – volume: 195 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0195 article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116516 – volume: 133 year: 2023 ident: 10.1016/j.chaos.2023.114222_bb0015 article-title: Temporal convolutional networks with RNN approach for chaotic time series prediction publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109945 – volume: 25 start-page: 303 issue: 2 year: 2013 ident: 10.1016/j.chaos.2023.114222_bb0005 article-title: Short-term load and wind power forecasting using neural network-based prediction intervals publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2276053 – volume: 172 start-page: 618 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0060 article-title: Artificial neural networks based wake model for power prediction of wind farm publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.030 – volume: 18 start-page: 6474 issue: 9 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0175 article-title: A VMD and LSTM based hybrid model of load forecasting for power grid security publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2021.3130237 – volume: 113 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0120 article-title: Multi-step wind speed forecasting based on secondary decomposition algorithm and optimized back propagation neural network publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107894 – volume: 293 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0050 article-title: Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116951 – volume: 8 start-page: 1039 issue: 4 year: 2012 ident: 10.1016/j.chaos.2023.114222_bb0190 article-title: State transition algorithm publication-title: J Ind Manag Optim doi: 10.3934/jimo.2012.8.1039 – volume: 190 start-page: 408 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0180 article-title: Improved complete ensemble empirical mode decomposition with adaptive noise deep residual model for short-term multi-step solar radiation prediction[J] publication-title: Renew Energy doi: 10.1016/j.renene.2022.03.120 – volume: 198 start-page: 155 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0055 article-title: A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations publication-title: Renew Energy doi: 10.1016/j.renene.2022.08.044 – volume: 95 year: 2016 ident: 10.1016/j.chaos.2023.114222_bb0215 article-title: The whale optimization algorithm[J] publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 217 year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0145 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2020.119361 – volume: 167 year: 2022 ident: 10.1016/j.chaos.2023.114222_bb0170 article-title: Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112700 – year: 2021 ident: 10.1016/j.chaos.2023.114222_bb0080 article-title: Wind and wind power characteristics of the eastern and southern coastal and northern inland regions, South Africa publication-title: Environ Sci Pollut Res Int |
| SSID | ssj0001062 |
| Score | 2.4528668 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 114222 |
| Title | Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm |
| Volume | 177 |
| WOSCitedRecordID | wos001146947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001062 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLQd6QLSAaAvIBw6gJVViZ-P4uKqKChIVhyLtLXJsh91qm5Rssmr7L_qP8TjORwFV9MAliiLHtjIvM2N75g1C7zjlNIgI94Rg3AtTQbyURrGXqdh4G5mSsS9ssQl2ehrP5_zbaHTb5sJsVizP46srfvlfRW2eGWFD6uwDxN11ah6YeyN0czViN9d_EvzRQhTAwgpV4ycwooYMNqADgIJolh-i3ED-VQlnNFb8YMoUHBv8rIUqLYer0hBs7iK6HEVTS95ZTQqjaC5cBudErH4U5bJaXAwdXZiFhcgaAuwgHgf6yCAnS6w6P362bI786_y67ndl7Y7sooftSd0YSGdkLXWkVZbzpSikGWi4dUHoIAzE7UFGvuezpppMp45dWZdGodpUX_JXXd9sO5wfwjhAvE7oYd_6LrP2bxavi0NsQ9zOE9tJAp0kTSeP0BZhUx6P0dbs8_H8S2fezRraHk21c2-prGzQ4B9zGbg7A7_l7Bl66hYceNYAZQeNdL6Ltr92bL3rXbTjFPwav3cs5B-eoxuHIww4wg2OMOAIWxzhFke4xxG2OMLmpsMRvoMjbDCABzjCQxzhDkcv0PdPx2dHJ54r1OFJs3qvzH8eaKY5TaVgdJpxGoWBnwlJWRYRnYUsFGGgA811RPyUKCp0pFJ_KimJpymR9CUa50WuXyGcRTFTKSFBJFTop6mABbXkXAhtGgZiD5H2eybSsdhDMZVVco8s99DH7qXLhsTlvub7D2t-gJ704H6NxlVZ6zfosdxUy3X51sHnF_CxnTU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+time+series+wind+power+interval+prediction+based+on+quadratic+decomposition+and+intelligent+optimization+algorithm&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Ai%2C+Chunyu&rft.au=He%2C+Shan&rft.au=Hu%2C+Heng&rft.au=Fan%2C+Xiaochao&rft.date=2023-12-01&rft.issn=0960-0779&rft.volume=177&rft.spage=114222&rft_id=info:doi/10.1016%2Fj.chaos.2023.114222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2023_114222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |