Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems
Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in...
Saved in:
| Published in: | Engineering with computers Vol. 38; no. Suppl 4; pp. 3025 - 3056 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.10.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0177-0667, 1435-5663 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from:
https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer
. |
|---|---|
| AbstractList | Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from:
https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer
. Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer. |
| Author | Keynia, Farshid Naruei, Iraj |
| Author_xml | – sequence: 1 givenname: Iraj surname: Naruei fullname: Naruei, Iraj organization: Department Engineering, Kerman Branch, Islamic Azad University – sequence: 2 givenname: Farshid orcidid: 0000-0002-9027-7315 surname: Keynia fullname: Keynia, Farshid email: f.keynia@kgut.ac.ir organization: Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9Fks0l2vUnxCwpeFI8hm51tU3Y3NUkV--vdtoLgoaeZwzzzvjwTNOp9DwhdMnrNKFU3kVIuJaEZI5TlvCDbEzQeFkGElHyExpQpRaiU6gxNYlxRyjil5RhV766t8dKHCNivk-vcFsItNriHL9xBMmQJm-BichabduGDS8sONz7g6NtP1y8w9AvXA4Td_vvBJOd7vA6-aqGL5-i0MW2Ei985RW8P96-zJzJ_eXye3c2JzfIyEcNyVlnJWM3qDGxRlkYK3giuFK95ZUvJOBdFXVbQSAElVU1dF1ZQZUUtbcWn6Orwdwj-2EBMeuU3oR8idaa4ymQhcjZcFYcrG3yMARptXdoXTsG4VjOqd0b1wagejOq9Ub0d0Owfug6uM-H7OMQPUFzvFEH4a3WE-gEse42N |
| CitedBy_id | crossref_primary_10_1016_j_ast_2023_108541 crossref_primary_10_3390_biomimetics10050255 crossref_primary_10_1007_s13198_021_01388_1 crossref_primary_10_1016_j_enconman_2021_114847 crossref_primary_10_3390_math13182985 crossref_primary_10_1002_ett_70116 crossref_primary_10_1371_journal_pone_0267041 crossref_primary_10_3390_su15021524 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_3390_axioms12070693 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1016_j_isatra_2024_03_026 crossref_primary_10_1109_JSEN_2024_3365469 crossref_primary_10_1007_s00500_023_08205_w crossref_primary_10_1007_s11709_024_1062_6 crossref_primary_10_7717_peerj_cs_2121 crossref_primary_10_3233_JAE_210206 crossref_primary_10_1007_s11600_025_01598_2 crossref_primary_10_1016_j_measurement_2024_115302 crossref_primary_10_1088_1402_4896_adbfd6 crossref_primary_10_1016_j_epsr_2025_111488 crossref_primary_10_3390_s25144421 crossref_primary_10_1088_1402_4896_ad91ef crossref_primary_10_3390_su15065111 crossref_primary_10_3390_electronics13071254 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s13042_023_01897_4 crossref_primary_10_1016_j_procs_2025_04_541 crossref_primary_10_1080_02286203_2022_2139128 crossref_primary_10_1007_s13198_025_02813_5 crossref_primary_10_3390_math10081311 crossref_primary_10_1016_j_ijcce_2025_09_003 crossref_primary_10_1016_j_seta_2023_103551 crossref_primary_10_1177_00375497241253620 crossref_primary_10_33484_sinopfbd_1511204 crossref_primary_10_1007_s10586_025_05134_1 crossref_primary_10_1016_j_suscom_2024_101076 crossref_primary_10_1007_s13177_025_00504_w crossref_primary_10_1038_s41598_025_96263_5 crossref_primary_10_1016_j_jwpe_2025_108013 crossref_primary_10_1016_j_rineng_2025_105519 crossref_primary_10_1080_03081079_2025_2525253 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1149_2162_8777_ad5588 crossref_primary_10_1007_s00366_021_01554_w crossref_primary_10_1016_j_suscom_2023_100949 crossref_primary_10_3390_w16040545 crossref_primary_10_1007_s00500_021_06522_6 crossref_primary_10_1109_ACCESS_2022_3227510 crossref_primary_10_1051_meca_2022022 crossref_primary_10_1007_s10586_024_04922_5 crossref_primary_10_1007_s12530_024_09597_2 crossref_primary_10_1080_09540091_2023_2231171 crossref_primary_10_3390_s23229154 crossref_primary_10_1007_s10586_024_04730_x crossref_primary_10_1007_s10586_024_04968_5 crossref_primary_10_3390_math10091584 crossref_primary_10_32604_cmc_2023_037433 crossref_primary_10_1016_j_apenergy_2023_121007 crossref_primary_10_1093_jcde_qwad017 crossref_primary_10_3233_JIFS_236043 crossref_primary_10_1007_s10462_024_10951_8 crossref_primary_10_3390_biomimetics9010021 crossref_primary_10_1007_s11227_025_07511_4 crossref_primary_10_1109_TII_2023_3334284 crossref_primary_10_1049_rpg2_12600 crossref_primary_10_1007_s10462_023_10653_7 crossref_primary_10_1016_j_rineng_2025_104603 crossref_primary_10_3390_e24111640 crossref_primary_10_1080_0954898X_2023_2293895 crossref_primary_10_1049_gtd2_12900 crossref_primary_10_3390_math10132329 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1016_j_eswa_2025_129357 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_3390_electronics13101930 crossref_primary_10_1016_j_cma_2024_116964 crossref_primary_10_1007_s10586_025_05328_7 crossref_primary_10_1016_j_aei_2024_103088 crossref_primary_10_1038_s41598_025_08894_3 crossref_primary_10_3390_fuels6020030 crossref_primary_10_1155_int_5054424 crossref_primary_10_1007_s10462_024_10723_4 crossref_primary_10_1080_02533839_2025_2517807 crossref_primary_10_7717_peerj_cs_2278 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_3390_electronics10182308 crossref_primary_10_1093_jcde_qwad110 crossref_primary_10_32604_cmes_2023_045170 crossref_primary_10_1007_s11227_024_06651_3 crossref_primary_10_1007_s42044_023_00163_8 crossref_primary_10_1002_cpe_70116 crossref_primary_10_1007_s12065_024_00962_3 crossref_primary_10_1007_s00521_025_11371_7 crossref_primary_10_1016_j_epsr_2024_111273 crossref_primary_10_1016_j_est_2025_115653 crossref_primary_10_1007_s00521_024_09681_3 crossref_primary_10_1371_journal_pone_0304971 crossref_primary_10_3103_S0146411625700129 crossref_primary_10_1007_s00202_024_02314_x crossref_primary_10_1093_jcde_qwac135 crossref_primary_10_3390_biomimetics8020162 crossref_primary_10_1093_jcde_qwac133 crossref_primary_10_1177_0958305X231153933 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_3390_bdcc9080206 crossref_primary_10_1007_s00202_022_01636_y crossref_primary_10_3390_lubricants13050221 crossref_primary_10_1109_ACCESS_2022_3211263 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_3390_buildings13061551 crossref_primary_10_1016_j_knosys_2024_112194 crossref_primary_10_1177_18724981251338136 crossref_primary_10_1007_s10586_024_04761_4 crossref_primary_10_1007_s10115_022_01825_y crossref_primary_10_1049_rpg2_12640 crossref_primary_10_1109_ACCESS_2024_3491978 crossref_primary_10_3390_su16010094 crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_3390_app142311116 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1007_s11071_023_08728_9 crossref_primary_10_7717_peerj_cs_2646 crossref_primary_10_1007_s12652_022_03765_5 crossref_primary_10_1109_ACCESS_2024_3367446 crossref_primary_10_3390_app15010396 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_1016_j_renene_2023_119379 crossref_primary_10_1109_TIM_2023_3291000 crossref_primary_10_1007_s00530_024_01305_z crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1109_JIOT_2023_3322197 crossref_primary_10_1007_s12065_025_01026_w crossref_primary_10_1007_s10586_024_04625_x crossref_primary_10_1016_j_cma_2024_116915 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_asoc_2024_111518 crossref_primary_10_1016_j_jksuci_2024_102068 crossref_primary_10_1080_0952813X_2023_2217831 crossref_primary_10_3390_electronics12132820 crossref_primary_10_1016_j_engappai_2023_107072 crossref_primary_10_3390_math11051231 crossref_primary_10_1016_j_compbiomed_2024_109011 crossref_primary_10_1016_j_measurement_2023_113032 crossref_primary_10_1177_17483026251315392 crossref_primary_10_1515_mt_2023_0015 crossref_primary_10_1016_j_eswa_2023_121413 crossref_primary_10_1007_s10489_021_03155_y crossref_primary_10_1186_s42162_025_00519_3 crossref_primary_10_1007_s12597_025_00972_4 crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_21595_jme_2025_24915 crossref_primary_10_1016_j_oceaneng_2023_115977 crossref_primary_10_3390_agriculture13122176 crossref_primary_10_1088_1402_4896_adb706 crossref_primary_10_3390_app13031497 crossref_primary_10_32604_cmc_2023_042183 crossref_primary_10_3390_su132313053 crossref_primary_10_1016_j_apenergy_2024_124497 crossref_primary_10_1109_ACCESS_2023_3258970 crossref_primary_10_1038_s41598_025_07534_0 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1007_s11760_025_04556_z crossref_primary_10_1007_s10723_024_09787_x crossref_primary_10_1007_s13369_025_10072_6 crossref_primary_10_3390_electronics10172057 crossref_primary_10_1007_s00500_024_10197_0 crossref_primary_10_1109_ACCESS_2023_3338160 crossref_primary_10_1038_s41598_023_37824_4 crossref_primary_10_3390_s22155659 crossref_primary_10_1002_est2_70127 crossref_primary_10_1007_s13198_024_02356_1 crossref_primary_10_1002_oca_3131 crossref_primary_10_1080_15325008_2024_2322669 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_3390_en18164280 crossref_primary_10_3390_math10142527 crossref_primary_10_3390_en17194833 crossref_primary_10_3390_su14138223 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_3390_biomimetics9120732 crossref_primary_10_1007_s00500_021_06401_0 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_1109_ACCESS_2022_3176370 crossref_primary_10_3390_biomimetics8050395 crossref_primary_10_1016_j_ijhydene_2024_06_424 crossref_primary_10_1007_s10462_022_10201_9 crossref_primary_10_1177_09576509251318175 crossref_primary_10_1007_s10489_021_03037_3 crossref_primary_10_1016_j_ijepes_2023_109719 crossref_primary_10_3390_math11132891 crossref_primary_10_1007_s10586_024_04908_3 crossref_primary_10_1007_s43069_025_00524_y crossref_primary_10_1002_ett_4708 crossref_primary_10_3390_pr11123374 crossref_primary_10_1007_s00339_023_07208_6 crossref_primary_10_1007_s13198_024_02609_z crossref_primary_10_1038_s41598_025_87867_y crossref_primary_10_1038_s41598_025_16128_9 crossref_primary_10_1109_ACCESS_2024_3372851 crossref_primary_10_3390_app12126249 crossref_primary_10_3390_electronics11030318 crossref_primary_10_1016_j_energy_2023_129005 crossref_primary_10_3390_a15050156 crossref_primary_10_1109_ACCESS_2022_3199001 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1007_s00500_023_09023_w crossref_primary_10_1038_s41598_023_49754_2 crossref_primary_10_1109_JSEN_2024_3479216 crossref_primary_10_1007_s11042_023_17867_5 crossref_primary_10_3389_fmars_2023_1126556 crossref_primary_10_1016_j_cej_2024_152428 crossref_primary_10_1016_j_ijmecsci_2023_108352 crossref_primary_10_3390_math11183861 crossref_primary_10_1080_01969722_2022_2157604 crossref_primary_10_1007_s13369_024_08861_6 crossref_primary_10_1007_s11220_025_00573_x crossref_primary_10_3390_s25082438 crossref_primary_10_3390_biomimetics9080474 crossref_primary_10_1007_s11071_023_09246_4 crossref_primary_10_1038_s41598_024_72242_0 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_3233_JIFS_231114 crossref_primary_10_1016_j_aej_2024_08_021 crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_1007_s12083_024_01838_0 crossref_primary_10_1002_ett_4725 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_3390_math11194181 crossref_primary_10_1007_s10586_024_04606_0 crossref_primary_10_1016_j_eswa_2023_122792 |
| Cites_doi | 10.1016/j.eswa.2020.113308 10.1016/0304-3762(83)90139-6 10.1016/j.advengsoft.2017.01.004 10.1007/s00521-015-1870-7 10.1021/ie00080a013 10.1007/978-1-84882-983-1_15 10.1016/j.knosys.2017.12.037 10.1016/j.engappai.2020.103731 10.1109/4235.585893 10.1016/j.mechmachtheory.2006.10.002 10.1002/nme.1620210904 10.1016/j.knosys.2015.07.006 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2015.01.010 10.1016/j.asoc.2018.07.040 10.1016/0304-3762(75)90019-X 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2017.07.002 10.1016/0304-3762(83)90138-4 10.1111/j.1439-0310.1979.tb00670.x 10.1016/j.advengsoft.2016.01.008 10.1002/aic.690320215 10.1016/j.swevo.2020.100693 10.1109/ACCESS.2019.2907012 10.1111/j.1439-0310.1979.tb00299.x 10.1016/j.engappai.2019.08.025 10.1016/j.engappai.2020.103541 10.1016/j.future.2019.02.028 10.1016/j.knosys.2015.12.022 10.1016/0098-1354(89)85053-7 10.2307/24939139 10.1002/9781118033340 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00366-021-01438-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 3056 |
| ExternalDocumentID | 10_1007_s00366_021_01438_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c249t-a141bc611d1d2ec899a653f53773d3bc9613358d9bef65e907fdd8c507c5d6cb3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 329 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662909400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-0667 |
| IngestDate | Tue Dec 02 16:06:30 EST 2025 Sat Nov 29 06:25:20 EST 2025 Tue Nov 18 21:44:18 EST 2025 Fri Feb 21 02:44:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 4 |
| Keywords | Optimization techniques Meta-heuristic algorithm Horse algorithm Wild horse optimizer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-a141bc611d1d2ec899a653f53773d3bc9613358d9bef65e907fdd8c507c5d6cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9027-7315 |
| PQID | 2737268541 |
| PQPubID | 326339 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2737268541 crossref_citationtrail_10_1007_s00366_021_01438_z crossref_primary_10_1007_s00366_021_01438_z springer_journals_10_1007_s00366_021_01438_z |
| PublicationCentury | 2000 |
| PublicationDate | 20221000 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006 ChongEKPŻakSHAn introduction to optimization2008HobokenWiley10.1002/97811180333401140.90041 KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541 DréoJMetaheuristics for hard optimization2006Berlin/HeidelbergSpringer-Verlag1118.90058 YangX-SFirefly algorithm, Lévy flights and global optimizationResearch and development in intelligent systems XXVI2010LondonSpringer20921810.1007/978-1-84882-983-1_15 MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl20162749551310.1007/s00521-015-1870-7 RaoSSEngineering optimization: theory and practice1996New Age International Publishers HeidariAAMirjaliliSFarisHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028 RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci (NY)20091792232224810.1016/j.ins.2009.03.0041177.90378 AljarahIMafarjaMHeidariAAAsynchronous accelerating multi-leader salp chains for feature selectionAppl Soft Comput20187196497910.1016/j.asoc.2018.07.040 KocisGRGrossmannIEGlobal optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesisInd Eng Chem Res1988271407142110.1021/ie00080a013 MirjaliliSGandomiAHMirjaliliSZSalp Swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002 AnitaYAKumarNArtificial electric field algorithm for engineering optimization problemsExpert Syst Appl202014911330810.1016/j.eswa.2020.113308 Nowacki H (1973) Optimization in pre-contract ship design. In: International Conference on Computer Applications in the Automation of Shipyard Operation and ShipDesign, pp 1–12 PriceKVAwadNHAliMZPNSThe 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization2018Sch Elect Electron Eng, Nanyang Technol Univ, Singapore, Tech Rep HollandJHGenetic algorithms understand genetic algorithmsSurprise1967961121510.2307/24939139 MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010 MillerRDennistoRHInterband dominance in feral horsesZ Tierpsychol201051414710.1111/j.1439-0310.1979.tb00670.x WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893 KumarAWuGAliMZA test-suite of non-convex constrained optimization problems from the real-world and some baseline resultsSwarm Evol Comput20205610069310.1016/j.swevo.2020.100693 BeightlerCSPDApplied geometric programming1976Wiley0344.90034 AbdullahJMAhmedTFitness dependent optimizer: inspired by the bee swarming reproductive processIEEE Access20197434734348610.1109/ACCESS.2019.2907012 SquiresVRDawsGTLeadership and dominance relationships in Merino and Border Leicester sheepAppl Anim Ethol1975126327410.1016/0304-3762(75)90019-X Klingel H (1975) Social organization and reproduction in equids. J Reprod Fertil Suppl 7–11 SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: MHS’95. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp 39–43 Welsh DA, University D (1975) Population, behavioural and grazing ecology of the horses of Sable Island, Nova Scotia. PhD thesis, Dalhousie University CarsonKWood-GushDGMEquine behaviour: I. A review of the literature on social and dam—Foal behaviourAppl Anim Ethol19831016517810.1016/0304-3762(83)90138-4 WellsSMGoldschmidt-RothschildBSocial behaviour and relationships in a herd of camargue horsesZ Tierpsychol20104936338010.1111/j.1439-0310.1979.tb00299.x MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169612013310.1016/j.knosys.2015.12.022 Awad NH, MZ. Ali JJ, Liang BY, Qu PS (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep MautnerDHApplied nonlinear programming1972McGraw-Hill Co MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC) Samareh MoosaviSHBardsiriVKPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025 KocisGRGrossmannIEA modelling and decomposition strategy for the minlp optimization of process flowsheetsComput Chem Eng19891379781910.1016/0098-1354(89)85053-7 GuptaSTiwariRNairSBMulti-objective design optimisation of rolling bearings using genetic algorithmsMech Mach Theory2007421418144310.1016/j.mechmachtheory.2006.10.0021188.74082 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 CarsonKWood-GushDGMEquine behaviour: II. A review of the literature on feeding, eliminative and resting behaviourAppl Anim Ethol19831017919010.1016/0304-3762(83)90139-6 BelegunduADAroraJSA study of mathematical programming methods for structural optimization. Part I: theoryInt J Numer Methods Eng1985211583159910.1002/nme.16202109040585.73159 MafarjaMAljarahIHeidariAAEvolutionary population dynamics and grasshopper optimization approaches for feature selection problemsKnowl-Based Syst2018145254510.1016/j.knosys.2017.12.037 Feist JD, McCullough DR (1975) Reproduction in feral horses. J Reprod Fertil Suppl (23):13–18. PMID:1060766 HousseinEHSaadMRHashimFALévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell20209410373110.1016/j.engappai.2020.103731 FloudasCACiricARGrossmannIEAutomatic synthesis of optimum heat exchanger network configurationsAIChE J19863227629010.1002/aic.690320215 K Carson (1438_CR24) 1983; 10 YA Anita (1438_CR17) 2020; 149 EH Houssein (1438_CR18) 2020; 94 S Mirjalili (1438_CR21) 2015; 89 M Mafarja (1438_CR3) 2018; 145 S Mirjalili (1438_CR13) 2017; 114 R Miller (1438_CR28) 2010; 51 SH Samareh Moosavi (1438_CR14) 2019; 86 S Saremi (1438_CR31) 2017; 105 EKP Chong (1438_CR1) 2008 S Mirjalili (1438_CR8) 2014; 69 1438_CR25 1438_CR6 S Mirjalili (1438_CR32) 2016; 96 A Kumar (1438_CR35) 2020; 56 1438_CR26 CA Floudas (1438_CR36) 1986; 32 AD Belegundu (1438_CR39) 1985; 21 1438_CR20 SM Wells (1438_CR27) 2010; 49 J Dréo (1438_CR2) 2006 S Mirjalili (1438_CR11) 2016; 95 1438_CR40 S Kaur (1438_CR19) 2020; 90 DH Wolpert (1438_CR22) 1997; 1 AA Heidari (1438_CR15) 2019; 97 JM Abdullah (1438_CR16) 2019; 7 GR Kocis (1438_CR38) 1989; 13 I Aljarah (1438_CR4) 2018; 71 CSPD Beightler (1438_CR43) 1976 S Mirjalili (1438_CR12) 2016; 27 K Carson (1438_CR23) 1983; 10 KV Price (1438_CR34) 2018 S Mirjalili (1438_CR10) 2015; 83 S Gupta (1438_CR42) 2007; 42 VR Squires (1438_CR29) 1975; 1 DH Mautner (1438_CR44) 1972 X-S Yang (1438_CR7) 2010 SS Rao (1438_CR41) 1996 E Rashedi (1438_CR9) 2009; 179 1438_CR33 GR Kocis (1438_CR37) 1988; 27 1438_CR30 JH Holland (1438_CR5) 1967; 96 |
| References_xml | – reference: BelegunduADAroraJSA study of mathematical programming methods for structural optimization. Part I: theoryInt J Numer Methods Eng1985211583159910.1002/nme.16202109040585.73159 – reference: ChongEKPŻakSHAn introduction to optimization2008HobokenWiley10.1002/97811180333401140.90041 – reference: KocisGRGrossmannIEGlobal optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesisInd Eng Chem Res1988271407142110.1021/ie00080a013 – reference: Klingel H (1975) Social organization and reproduction in equids. J Reprod Fertil Suppl 7–11 – reference: KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541 – reference: MirjaliliSGandomiAHMirjaliliSZSalp Swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002 – reference: Feist JD, McCullough DR (1975) Reproduction in feral horses. J Reprod Fertil Suppl (23):13–18. PMID:1060766 – reference: MillerRDennistoRHInterband dominance in feral horsesZ Tierpsychol201051414710.1111/j.1439-0310.1979.tb00670.x – reference: FloudasCACiricARGrossmannIEAutomatic synthesis of optimum heat exchanger network configurationsAIChE J19863227629010.1002/aic.690320215 – reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci (NY)20091792232224810.1016/j.ins.2009.03.0041177.90378 – reference: MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010 – reference: KumarAWuGAliMZA test-suite of non-convex constrained optimization problems from the real-world and some baseline resultsSwarm Evol Comput20205610069310.1016/j.swevo.2020.100693 – reference: AnitaYAKumarNArtificial electric field algorithm for engineering optimization problemsExpert Syst Appl202014911330810.1016/j.eswa.2020.113308 – reference: WellsSMGoldschmidt-RothschildBSocial behaviour and relationships in a herd of camargue horsesZ Tierpsychol20104936338010.1111/j.1439-0310.1979.tb00299.x – reference: MafarjaMAljarahIHeidariAAEvolutionary population dynamics and grasshopper optimization approaches for feature selection problemsKnowl-Based Syst2018145254510.1016/j.knosys.2017.12.037 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 – reference: Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: MHS’95. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp 39–43 – reference: Awad NH, MZ. Ali JJ, Liang BY, Qu PS (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep – reference: CarsonKWood-GushDGMEquine behaviour: I. A review of the literature on social and dam—Foal behaviourAppl Anim Ethol19831016517810.1016/0304-3762(83)90138-4 – reference: HousseinEHSaadMRHashimFALévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell20209410373110.1016/j.engappai.2020.103731 – reference: MautnerDHApplied nonlinear programming1972McGraw-Hill Co – reference: SquiresVRDawsGTLeadership and dominance relationships in Merino and Border Leicester sheepAppl Anim Ethol1975126327410.1016/0304-3762(75)90019-X – reference: PriceKVAwadNHAliMZPNSThe 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization2018Sch Elect Electron Eng, Nanyang Technol Univ, Singapore, Tech Rep – reference: HeidariAAMirjaliliSFarisHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028 – reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 – reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169612013310.1016/j.knosys.2015.12.022 – reference: KocisGRGrossmannIEA modelling and decomposition strategy for the minlp optimization of process flowsheetsComput Chem Eng19891379781910.1016/0098-1354(89)85053-7 – reference: RaoSSEngineering optimization: theory and practice1996New Age International Publishers – reference: AbdullahJMAhmedTFitness dependent optimizer: inspired by the bee swarming reproductive processIEEE Access20197434734348610.1109/ACCESS.2019.2907012 – reference: DréoJMetaheuristics for hard optimization2006Berlin/HeidelbergSpringer-Verlag1118.90058 – reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006 – reference: Nowacki H (1973) Optimization in pre-contract ship design. In: International Conference on Computer Applications in the Automation of Shipyard Operation and ShipDesign, pp 1–12 – reference: BeightlerCSPDApplied geometric programming1976Wiley0344.90034 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 – reference: CarsonKWood-GushDGMEquine behaviour: II. A review of the literature on feeding, eliminative and resting behaviourAppl Anim Ethol19831017919010.1016/0304-3762(83)90139-6 – reference: HollandJHGenetic algorithms understand genetic algorithmsSurprise1967961121510.2307/24939139 – reference: GuptaSTiwariRNairSBMulti-objective design optimisation of rolling bearings using genetic algorithmsMech Mach Theory2007421418144310.1016/j.mechmachtheory.2006.10.0021188.74082 – reference: AljarahIMafarjaMHeidariAAAsynchronous accelerating multi-leader salp chains for feature selectionAppl Soft Comput20187196497910.1016/j.asoc.2018.07.040 – reference: Welsh DA, University D (1975) Population, behavioural and grazing ecology of the horses of Sable Island, Nova Scotia. PhD thesis, Dalhousie University – reference: Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC) – reference: Samareh MoosaviSHBardsiriVKPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025 – reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl20162749551310.1007/s00521-015-1870-7 – reference: YangX-SFirefly algorithm, Lévy flights and global optimizationResearch and development in intelligent systems XXVI2010LondonSpringer20921810.1007/978-1-84882-983-1_15 – volume: 149 start-page: 113308 year: 2020 ident: 1438_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113308 – volume: 10 start-page: 179 year: 1983 ident: 1438_CR24 publication-title: Appl Anim Ethol doi: 10.1016/0304-3762(83)90139-6 – volume: 105 start-page: 30 year: 2017 ident: 1438_CR31 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 27 start-page: 495 year: 2016 ident: 1438_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – ident: 1438_CR30 – ident: 1438_CR26 – volume: 27 start-page: 1407 year: 1988 ident: 1438_CR37 publication-title: Ind Eng Chem Res doi: 10.1021/ie00080a013 – start-page: 209 volume-title: Research and development in intelligent systems XXVI year: 2010 ident: 1438_CR7 doi: 10.1007/978-1-84882-983-1_15 – volume: 145 start-page: 25 year: 2018 ident: 1438_CR3 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.12.037 – volume: 94 start-page: 103731 year: 2020 ident: 1438_CR18 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103731 – volume: 1 start-page: 67 year: 1997 ident: 1438_CR22 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 42 start-page: 1418 year: 2007 ident: 1438_CR42 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2006.10.002 – volume: 21 start-page: 1583 year: 1985 ident: 1438_CR39 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620210904 – volume-title: The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization year: 2018 ident: 1438_CR34 – ident: 1438_CR20 – volume-title: Metaheuristics for hard optimization year: 2006 ident: 1438_CR2 – volume: 89 start-page: 228 year: 2015 ident: 1438_CR21 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 179 start-page: 2232 year: 2009 ident: 1438_CR9 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2009.03.004 – volume: 83 start-page: 80 year: 2015 ident: 1438_CR10 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 71 start-page: 964 year: 2018 ident: 1438_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.040 – volume: 1 start-page: 263 year: 1975 ident: 1438_CR29 publication-title: Appl Anim Ethol doi: 10.1016/0304-3762(75)90019-X – volume: 69 start-page: 46 year: 2014 ident: 1438_CR8 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 114 start-page: 163 year: 2017 ident: 1438_CR13 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 10 start-page: 165 year: 1983 ident: 1438_CR23 publication-title: Appl Anim Ethol doi: 10.1016/0304-3762(83)90138-4 – volume: 51 start-page: 41 year: 2010 ident: 1438_CR28 publication-title: Z Tierpsychol doi: 10.1111/j.1439-0310.1979.tb00670.x – volume: 95 start-page: 51 year: 2016 ident: 1438_CR11 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 32 start-page: 276 year: 1986 ident: 1438_CR36 publication-title: AIChE J doi: 10.1002/aic.690320215 – volume: 56 start-page: 100693 year: 2020 ident: 1438_CR35 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100693 – volume-title: Engineering optimization: theory and practice year: 1996 ident: 1438_CR41 – volume: 7 start-page: 43473 year: 2019 ident: 1438_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907012 – ident: 1438_CR25 – volume-title: Applied geometric programming year: 1976 ident: 1438_CR43 – volume: 49 start-page: 363 year: 2010 ident: 1438_CR27 publication-title: Z Tierpsychol doi: 10.1111/j.1439-0310.1979.tb00299.x – volume: 86 start-page: 165 year: 2019 ident: 1438_CR14 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.08.025 – volume: 90 start-page: 103541 year: 2020 ident: 1438_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103541 – volume-title: Applied nonlinear programming year: 1972 ident: 1438_CR44 – volume: 97 start-page: 849 year: 2019 ident: 1438_CR15 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 96 start-page: 120 year: 2016 ident: 1438_CR32 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 13 start-page: 797 year: 1989 ident: 1438_CR38 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(89)85053-7 – ident: 1438_CR40 – ident: 1438_CR33 – volume: 96 start-page: 12 issue: 1 year: 1967 ident: 1438_CR5 publication-title: Surprise doi: 10.2307/24939139 – ident: 1438_CR6 – volume-title: An introduction to optimization year: 2008 ident: 1438_CR1 doi: 10.1002/9781118033340 |
| SSID | ssj0013009 |
| Score | 2.675584 |
| Snippet | Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3025 |
| SubjectTerms | Algorithms Animals CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Design optimization Heuristic methods Horses Math. Applications in Chemistry Mathematical and Computational Engineering Optimization algorithms Original Article Source code Systems Theory |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYrbIHbxrI--FNxOJBiviit5DsTmyhbSRJPfTXO5tsGhUV9LqPIezM7nyTeQGcJkJH7lX-wUCzha1rEaLMRiP4SwqBG7zk9K03GPjDYXCnksLyOtq9dkmWL_Uy2U2WTpEBs9L8temaLlZhjdSdLxs23D88N74DvQrsMDwZ2OV6KlXmexqf1VGDMb-4RUtt02__7zu3YUuhS3ZZicMOrOCsA22FNJm6xzkN1c0c6rEObH6oTLgLMb0Wgo3SLEeW0qsyHS8wu2ARIxTOplhE2gjnVZFnFk1e0mxcjKaMADAjWZb_KBg25GoKpRAw1cIm34On_vXj1Y2m2jFonGy0QosM24g5MVEYwkROhlrkOlbiWJ5nCSvmASEDy_FFEGPiOkhWdyKEzwlwcke4PLb2oTVLZ3gAzI9jyzOjiDYiWWhG4HPbleE5FpJJrmMXjJorIVe1ymXLjEm4rLJcnnJIpxyWpxwuunC23PNaVer4dXWvZnaobm0emrJnj-s7ttGF85q5zfTP1A7_tvwINkyZRVHGBPagVWRzPIZ1_laM8-yklOZ3Ye_vgA priority: 102 providerName: Springer Nature |
| Title | Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems |
| URI | https://link.springer.com/article/10.1007/s00366-021-01438-z https://www.proquest.com/docview/2737268541 |
| Volume | 38 |
| WOSCitedRecordID | wos000662909400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCB8hTlUXlgg4i6ebMgQCAkUFXxUsUSJfaVVuoDmsDQX8_ZcQgg0YUlS-JLlO98_s6-B8BBVzZQ-Pn5YGg50mlYMaLKRiP6SwuC4EIjfeu3WkGnE7bNhltqwioLm6gNtRwLtUd-3FT9VLzAdfjp65ulukap01XTQmMeFlSVBK5D9-7LU4RGHuLBfRXi5fkmaUanzqlCLCr8VjnTDk366c-FqWSbvw5I9bpzVf3vF6_CimGc7CxXkTWYw9E6VA37ZGZup-uw_K004QYkZC4k640nKbIxmZVhf4qTExYzouFsiFls9fA9r_LM4sELvTfrDRkxYEbKrDYpGJbiCglaC5jpYZNuwuPV5cPFtWX6MViCnLTMirnDE0EoSi6bKMhTiz3X7rq279vSTkRI1MB2Axkm2PVcJLe7K2UgiHEKV3oisbegMhqPcBtYkCT0c-KYBiK5aDwMhOOp-BwbySdvYA14AUYkTLFy1TNjEH2VWdYARgRgpAGMpjU4_BrzmpfqmPn0XoFaZKZtGpWQ1eCowL28_be0ndnSdmGpqdImdBDgHlSyyTvuw6L4yPrppA4L55et9l0d5m98q65VmK5t95mud_dPnxmv9w0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RQGp7IJSHGh7tHsoJVsTPtZEQQlAESog4UImbsXcnBCmvxgZEfhS_kdm1HQNSuXHo2d6R1_PN7MzOC-BXRzVQijw-GHJXuQ0eI-pqNDJ_6UCQljScbol2O7i6Ci9m4KmshdFplaVONIpaDaW-I9-19TwVP_Bc62D0l-upUTq6Wo7QyGHRxMcHctnS_bNj4u-WbZ_8vjw65cVUAS7J1ch4bLlWIulblKVslORvxL7ndDxHCEc5iQzpgHO8QIUJdnwPyXnsKBVIspukp3yZOET3E8y5TiC0XDUFr6IWjTylxBI6pcwXRZGOKdXTjV90uq923mktn7w-CCvr9k1A1pxzJ7X_7Q8twkJhUbPDXAS-wQwOlqBWWNes0F3pEnx90XpxGRJSh4p1h-MU2ZDUZv92guM9FjNyM1gfs5h38S7vYs3i3g3tM-v2GVn4jIRVX8IwrMiVFAzKWTGjJ12BPx-y71WYHQwH-B1YkCTEjDimhUguqBUG0vV1_pGDgjQm1sEqmR_Johm7ngnSi6ZtpA1gIgJMZAATTeqwPV0zyluRvPv2RomSqFBLaVRBpA47Jc6qx_-mtvY-tZ_w-fTyvBW1ztrNdfhi6xIRk_C4AbPZ-A43YV7eZ7fp-IcRGAbXH42_Z0szT7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgBAceCMKhfWBPS1Rm3eChBACqkWgqgdWQlxCYk8oEm2hSUH0p_HrGDsOgZXgxmHPiUdx_Hk84_lmBmAnFU3kfhEfDA1HOE0jRpTZaGT-0oHATa5W-txvt4PLy7AzAS9lLoykVZY6USlqMeDyjrxhyX4qXuA6ZiPVtIjOcevg_sGQHaRkpLVsp1FA5Ayfn8h9y_ZPj2mtf1lW6-Ti6I-hOwwYnNyO3IhNx0w4fZcwhYWcfI_Yc-3UtX3fFnbCQzrsbDcQYYKp5yI5kqkQAScbirvC44lNcn_AlE8-pqQTdtyrKoLRLOglpi_pZZ6vE3ZU2p4sAiOpv9KRd0jhjD8eipWl-09wVp15rYX_-W8twry2tNlhsTWWYAL7y7CgrW6mdVq2DHPvSjKuQEJqUrDuYJghG5A67d2OcbjHYkbuB-thHhtdHBXVrVl8d0PzzLs9RpY_o00sL2cYVuJKCQr9TPfuyVbh77fMew0m-4M-rgMLkoQWJo5pIJJraoYBdzzJS7LRJ02KNTBLIERcF2mXvULuorfy0go8EYEnUuCJxjX4_TbmvihR8uXb9RIxkVZXWVTBpQa7Jeaqx59L2_ha2k-YIdhF56fts02YtWTmiOJB1mEyH45wC6b5Y36bDbfV3mFw_d3wewUDNljY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild+horse+optimizer%3A+a+new+meta-heuristic+algorithm+for+solving+engineering+optimization+problems&rft.jtitle=Engineering+with+computers&rft.au=Naruei%2C+Iraj&rft.au=Keynia%2C+Farshid&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.spage=3025&rft.epage=3056&rft_id=info:doi/10.1007%2Fs00366-021-01438-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |