Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems

Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers Jg. 38; H. Suppl 4; S. 3025 - 3056
Hauptverfasser: Naruei, Iraj, Keynia, Farshid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.10.2022
Springer Nature B.V
Schlagworte:
ISSN:0177-0667, 1435-5663
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer .
AbstractList Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer.
Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by the natural behaviour of an agent, which can be humans, animals, plants, or a physical or chemical agent. Most of the algorithms proposed in the last decade inspired by animal behaviour. In this article, we present a new optimizer algorithm called the wild horse optimizer (WHO), which is inspired by the social life behaviour of wild horses. Horses usually live in groups that include a stallion and several mares and foals. Horses exhibit many behaviours, such as grazing, chasing, dominating, leading, and mating. A fascinating behaviour that distinguishes horses from other animals is the decency of horses. Horse decency behaviour is such that the foals of the horse leave the group before reaching puberty and join other groups. This departure is to prevent the father from mating with the daughter or siblings. The main inspiration for the proposed algorithm is the decency behaviour of the horse. The proposed algorithm was tested on several sets of test functions such as CEC2017 and CEC2019 and compared with popular and new optimization methods. The results showed that the proposed algorithm presented very competitive results compared to other algorithms. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/90787-wild-horse-optimizer .
Author Keynia, Farshid
Naruei, Iraj
Author_xml – sequence: 1
  givenname: Iraj
  surname: Naruei
  fullname: Naruei, Iraj
  organization: Department Engineering, Kerman Branch, Islamic Azad University
– sequence: 2
  givenname: Farshid
  orcidid: 0000-0002-9027-7315
  surname: Keynia
  fullname: Keynia, Farshid
  email: f.keynia@kgut.ac.ir
  organization: Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9Fks0l2vUnxCwpeFI8hm51tU3Y3NUkV--vdtoLgoaeZwzzzvjwTNOp9DwhdMnrNKFU3kVIuJaEZI5TlvCDbEzQeFkGElHyExpQpRaiU6gxNYlxRyjil5RhV766t8dKHCNivk-vcFsItNriHL9xBMmQJm-BichabduGDS8sONz7g6NtP1y8w9AvXA4Td_vvBJOd7vA6-aqGL5-i0MW2Ei985RW8P96-zJzJ_eXye3c2JzfIyEcNyVlnJWM3qDGxRlkYK3giuFK95ZUvJOBdFXVbQSAElVU1dF1ZQZUUtbcWn6Orwdwj-2EBMeuU3oR8idaa4ymQhcjZcFYcrG3yMARptXdoXTsG4VjOqd0b1wagejOq9Ub0d0Owfug6uM-H7OMQPUFzvFEH4a3WE-gEse42N
CitedBy_id crossref_primary_10_1016_j_ast_2023_108541
crossref_primary_10_3390_biomimetics10050255
crossref_primary_10_1007_s13198_021_01388_1
crossref_primary_10_1016_j_enconman_2021_114847
crossref_primary_10_3390_math13182985
crossref_primary_10_1002_ett_70116
crossref_primary_10_1371_journal_pone_0267041
crossref_primary_10_3390_su15021524
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_3390_axioms12070693
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_isatra_2024_03_026
crossref_primary_10_1109_JSEN_2024_3365469
crossref_primary_10_1007_s00500_023_08205_w
crossref_primary_10_1007_s11709_024_1062_6
crossref_primary_10_7717_peerj_cs_2121
crossref_primary_10_3233_JAE_210206
crossref_primary_10_1007_s11600_025_01598_2
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_1088_1402_4896_adbfd6
crossref_primary_10_1016_j_epsr_2025_111488
crossref_primary_10_3390_s25144421
crossref_primary_10_1088_1402_4896_ad91ef
crossref_primary_10_3390_su15065111
crossref_primary_10_3390_electronics13071254
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1007_s13042_023_01897_4
crossref_primary_10_1016_j_procs_2025_04_541
crossref_primary_10_1080_02286203_2022_2139128
crossref_primary_10_1007_s13198_025_02813_5
crossref_primary_10_3390_math10081311
crossref_primary_10_1016_j_ijcce_2025_09_003
crossref_primary_10_1016_j_seta_2023_103551
crossref_primary_10_1177_00375497241253620
crossref_primary_10_33484_sinopfbd_1511204
crossref_primary_10_1007_s10586_025_05134_1
crossref_primary_10_1016_j_suscom_2024_101076
crossref_primary_10_1007_s13177_025_00504_w
crossref_primary_10_1038_s41598_025_96263_5
crossref_primary_10_1016_j_jwpe_2025_108013
crossref_primary_10_1016_j_rineng_2025_105519
crossref_primary_10_1080_03081079_2025_2525253
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1149_2162_8777_ad5588
crossref_primary_10_1007_s00366_021_01554_w
crossref_primary_10_1016_j_suscom_2023_100949
crossref_primary_10_3390_w16040545
crossref_primary_10_1007_s00500_021_06522_6
crossref_primary_10_1109_ACCESS_2022_3227510
crossref_primary_10_1051_meca_2022022
crossref_primary_10_1007_s10586_024_04922_5
crossref_primary_10_1007_s12530_024_09597_2
crossref_primary_10_1080_09540091_2023_2231171
crossref_primary_10_3390_s23229154
crossref_primary_10_1007_s10586_024_04730_x
crossref_primary_10_1007_s10586_024_04968_5
crossref_primary_10_3390_math10091584
crossref_primary_10_32604_cmc_2023_037433
crossref_primary_10_1016_j_apenergy_2023_121007
crossref_primary_10_1093_jcde_qwad017
crossref_primary_10_3233_JIFS_236043
crossref_primary_10_1007_s10462_024_10951_8
crossref_primary_10_3390_biomimetics9010021
crossref_primary_10_1007_s11227_025_07511_4
crossref_primary_10_1109_TII_2023_3334284
crossref_primary_10_1049_rpg2_12600
crossref_primary_10_1007_s10462_023_10653_7
crossref_primary_10_1016_j_rineng_2025_104603
crossref_primary_10_3390_e24111640
crossref_primary_10_1080_0954898X_2023_2293895
crossref_primary_10_1049_gtd2_12900
crossref_primary_10_3390_math10132329
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1016_j_eswa_2025_129357
crossref_primary_10_1109_ACCESS_2024_3453488
crossref_primary_10_3390_electronics13101930
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1016_j_aei_2024_103088
crossref_primary_10_1038_s41598_025_08894_3
crossref_primary_10_3390_fuels6020030
crossref_primary_10_1155_int_5054424
crossref_primary_10_1007_s10462_024_10723_4
crossref_primary_10_1080_02533839_2025_2517807
crossref_primary_10_7717_peerj_cs_2278
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_3390_electronics10182308
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_32604_cmes_2023_045170
crossref_primary_10_1007_s11227_024_06651_3
crossref_primary_10_1007_s42044_023_00163_8
crossref_primary_10_1002_cpe_70116
crossref_primary_10_1007_s12065_024_00962_3
crossref_primary_10_1007_s00521_025_11371_7
crossref_primary_10_1016_j_epsr_2024_111273
crossref_primary_10_1016_j_est_2025_115653
crossref_primary_10_1007_s00521_024_09681_3
crossref_primary_10_1371_journal_pone_0304971
crossref_primary_10_3103_S0146411625700129
crossref_primary_10_1007_s00202_024_02314_x
crossref_primary_10_1093_jcde_qwac135
crossref_primary_10_3390_biomimetics8020162
crossref_primary_10_1093_jcde_qwac133
crossref_primary_10_1177_0958305X231153933
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_3390_bdcc9080206
crossref_primary_10_1007_s00202_022_01636_y
crossref_primary_10_3390_lubricants13050221
crossref_primary_10_1109_ACCESS_2022_3211263
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_3390_buildings13061551
crossref_primary_10_1016_j_knosys_2024_112194
crossref_primary_10_1177_18724981251338136
crossref_primary_10_1007_s10586_024_04761_4
crossref_primary_10_1007_s10115_022_01825_y
crossref_primary_10_1049_rpg2_12640
crossref_primary_10_1109_ACCESS_2024_3491978
crossref_primary_10_3390_su16010094
crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_3390_app142311116
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_1007_s11071_023_08728_9
crossref_primary_10_7717_peerj_cs_2646
crossref_primary_10_1007_s12652_022_03765_5
crossref_primary_10_1109_ACCESS_2024_3367446
crossref_primary_10_3390_app15010396
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_1016_j_renene_2023_119379
crossref_primary_10_1109_TIM_2023_3291000
crossref_primary_10_1007_s00530_024_01305_z
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1109_JIOT_2023_3322197
crossref_primary_10_1007_s12065_025_01026_w
crossref_primary_10_1007_s10586_024_04625_x
crossref_primary_10_1016_j_cma_2024_116915
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_asoc_2024_111518
crossref_primary_10_1016_j_jksuci_2024_102068
crossref_primary_10_1080_0952813X_2023_2217831
crossref_primary_10_3390_electronics12132820
crossref_primary_10_1016_j_engappai_2023_107072
crossref_primary_10_3390_math11051231
crossref_primary_10_1016_j_compbiomed_2024_109011
crossref_primary_10_1016_j_measurement_2023_113032
crossref_primary_10_1177_17483026251315392
crossref_primary_10_1515_mt_2023_0015
crossref_primary_10_1016_j_eswa_2023_121413
crossref_primary_10_1007_s10489_021_03155_y
crossref_primary_10_1186_s42162_025_00519_3
crossref_primary_10_1007_s12597_025_00972_4
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_21595_jme_2025_24915
crossref_primary_10_1016_j_oceaneng_2023_115977
crossref_primary_10_3390_agriculture13122176
crossref_primary_10_1088_1402_4896_adb706
crossref_primary_10_3390_app13031497
crossref_primary_10_32604_cmc_2023_042183
crossref_primary_10_3390_su132313053
crossref_primary_10_1016_j_apenergy_2024_124497
crossref_primary_10_1109_ACCESS_2023_3258970
crossref_primary_10_1038_s41598_025_07534_0
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1007_s11760_025_04556_z
crossref_primary_10_1007_s10723_024_09787_x
crossref_primary_10_1007_s13369_025_10072_6
crossref_primary_10_3390_electronics10172057
crossref_primary_10_1007_s00500_024_10197_0
crossref_primary_10_1109_ACCESS_2023_3338160
crossref_primary_10_1038_s41598_023_37824_4
crossref_primary_10_3390_s22155659
crossref_primary_10_1002_est2_70127
crossref_primary_10_1007_s13198_024_02356_1
crossref_primary_10_1002_oca_3131
crossref_primary_10_1080_15325008_2024_2322669
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_3390_en18164280
crossref_primary_10_3390_math10142527
crossref_primary_10_3390_en17194833
crossref_primary_10_3390_su14138223
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_3390_biomimetics9120732
crossref_primary_10_1007_s00500_021_06401_0
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1109_ACCESS_2022_3176370
crossref_primary_10_3390_biomimetics8050395
crossref_primary_10_1016_j_ijhydene_2024_06_424
crossref_primary_10_1007_s10462_022_10201_9
crossref_primary_10_1177_09576509251318175
crossref_primary_10_1007_s10489_021_03037_3
crossref_primary_10_1016_j_ijepes_2023_109719
crossref_primary_10_3390_math11132891
crossref_primary_10_1007_s10586_024_04908_3
crossref_primary_10_1007_s43069_025_00524_y
crossref_primary_10_1002_ett_4708
crossref_primary_10_3390_pr11123374
crossref_primary_10_1007_s00339_023_07208_6
crossref_primary_10_1007_s13198_024_02609_z
crossref_primary_10_1038_s41598_025_87867_y
crossref_primary_10_1038_s41598_025_16128_9
crossref_primary_10_1109_ACCESS_2024_3372851
crossref_primary_10_3390_app12126249
crossref_primary_10_3390_electronics11030318
crossref_primary_10_1016_j_energy_2023_129005
crossref_primary_10_3390_a15050156
crossref_primary_10_1109_ACCESS_2022_3199001
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1007_s00500_023_09023_w
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1109_JSEN_2024_3479216
crossref_primary_10_1007_s11042_023_17867_5
crossref_primary_10_3389_fmars_2023_1126556
crossref_primary_10_1016_j_cej_2024_152428
crossref_primary_10_1016_j_ijmecsci_2023_108352
crossref_primary_10_3390_math11183861
crossref_primary_10_1080_01969722_2022_2157604
crossref_primary_10_1007_s13369_024_08861_6
crossref_primary_10_1007_s11220_025_00573_x
crossref_primary_10_3390_s25082438
crossref_primary_10_3390_biomimetics9080474
crossref_primary_10_1007_s11071_023_09246_4
crossref_primary_10_1038_s41598_024_72242_0
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_3233_JIFS_231114
crossref_primary_10_1016_j_aej_2024_08_021
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1007_s12083_024_01838_0
crossref_primary_10_1002_ett_4725
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_3390_math11194181
crossref_primary_10_1007_s10586_024_04606_0
crossref_primary_10_1016_j_eswa_2023_122792
Cites_doi 10.1016/j.eswa.2020.113308
10.1016/0304-3762(83)90139-6
10.1016/j.advengsoft.2017.01.004
10.1007/s00521-015-1870-7
10.1021/ie00080a013
10.1007/978-1-84882-983-1_15
10.1016/j.knosys.2017.12.037
10.1016/j.engappai.2020.103731
10.1109/4235.585893
10.1016/j.mechmachtheory.2006.10.002
10.1002/nme.1620210904
10.1016/j.knosys.2015.07.006
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2015.01.010
10.1016/j.asoc.2018.07.040
10.1016/0304-3762(75)90019-X
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2017.07.002
10.1016/0304-3762(83)90138-4
10.1111/j.1439-0310.1979.tb00670.x
10.1016/j.advengsoft.2016.01.008
10.1002/aic.690320215
10.1016/j.swevo.2020.100693
10.1109/ACCESS.2019.2907012
10.1111/j.1439-0310.1979.tb00299.x
10.1016/j.engappai.2019.08.025
10.1016/j.engappai.2020.103541
10.1016/j.future.2019.02.028
10.1016/j.knosys.2015.12.022
10.1016/0098-1354(89)85053-7
10.2307/24939139
10.1002/9781118033340
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-021-01438-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 3056
ExternalDocumentID 10_1007_s00366_021_01438_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-a141bc611d1d2ec899a653f53773d3bc9613358d9bef65e907fdd8c507c5d6cb3
IEDL.DBID M7S
ISICitedReferencesCount 329
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662909400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-0667
IngestDate Tue Dec 02 16:06:30 EST 2025
Sat Nov 29 06:25:20 EST 2025
Tue Nov 18 21:44:18 EST 2025
Fri Feb 21 02:44:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 4
Keywords Optimization techniques
Meta-heuristic algorithm
Horse algorithm
Wild horse optimizer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-a141bc611d1d2ec899a653f53773d3bc9613358d9bef65e907fdd8c507c5d6cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9027-7315
PQID 2737268541
PQPubID 326339
PageCount 32
ParticipantIDs proquest_journals_2737268541
crossref_citationtrail_10_1007_s00366_021_01438_z
crossref_primary_10_1007_s00366_021_01438_z
springer_journals_10_1007_s00366_021_01438_z
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006
ChongEKPŻakSHAn introduction to optimization2008HobokenWiley10.1002/97811180333401140.90041
KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541
DréoJMetaheuristics for hard optimization2006Berlin/HeidelbergSpringer-Verlag1118.90058
YangX-SFirefly algorithm, Lévy flights and global optimizationResearch and development in intelligent systems XXVI2010LondonSpringer20921810.1007/978-1-84882-983-1_15
MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl20162749551310.1007/s00521-015-1870-7
RaoSSEngineering optimization: theory and practice1996New Age International Publishers
HeidariAAMirjaliliSFarisHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028
RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci (NY)20091792232224810.1016/j.ins.2009.03.0041177.90378
AljarahIMafarjaMHeidariAAAsynchronous accelerating multi-leader salp chains for feature selectionAppl Soft Comput20187196497910.1016/j.asoc.2018.07.040
KocisGRGrossmannIEGlobal optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesisInd Eng Chem Res1988271407142110.1021/ie00080a013
MirjaliliSGandomiAHMirjaliliSZSalp Swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
AnitaYAKumarNArtificial electric field algorithm for engineering optimization problemsExpert Syst Appl202014911330810.1016/j.eswa.2020.113308
Nowacki H (1973) Optimization in pre-contract ship design. In: International Conference on Computer Applications in the Automation of Shipyard Operation and ShipDesign, pp 1–12
PriceKVAwadNHAliMZPNSThe 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization2018Sch Elect Electron Eng, Nanyang Technol Univ, Singapore, Tech Rep
HollandJHGenetic algorithms understand genetic algorithmsSurprise1967961121510.2307/24939139
MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
MillerRDennistoRHInterband dominance in feral horsesZ Tierpsychol201051414710.1111/j.1439-0310.1979.tb00670.x
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893
KumarAWuGAliMZA test-suite of non-convex constrained optimization problems from the real-world and some baseline resultsSwarm Evol Comput20205610069310.1016/j.swevo.2020.100693
BeightlerCSPDApplied geometric programming1976Wiley0344.90034
AbdullahJMAhmedTFitness dependent optimizer: inspired by the bee swarming reproductive processIEEE Access20197434734348610.1109/ACCESS.2019.2907012
SquiresVRDawsGTLeadership and dominance relationships in Merino and Border Leicester sheepAppl Anim Ethol1975126327410.1016/0304-3762(75)90019-X
Klingel H (1975) Social organization and reproduction in equids. J Reprod Fertil Suppl 7–11
SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: MHS’95. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp 39–43
Welsh DA, University D (1975) Population, behavioural and grazing ecology of the horses of Sable Island, Nova Scotia. PhD thesis, Dalhousie University
CarsonKWood-GushDGMEquine behaviour: I. A review of the literature on social and dam—Foal behaviourAppl Anim Ethol19831016517810.1016/0304-3762(83)90138-4
WellsSMGoldschmidt-RothschildBSocial behaviour and relationships in a herd of camargue horsesZ Tierpsychol20104936338010.1111/j.1439-0310.1979.tb00299.x
MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169612013310.1016/j.knosys.2015.12.022
Awad NH, MZ. Ali JJ, Liang BY, Qu PS (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep
MautnerDHApplied nonlinear programming1972McGraw-Hill Co
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC)
Samareh MoosaviSHBardsiriVKPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025
KocisGRGrossmannIEA modelling and decomposition strategy for the minlp optimization of process flowsheetsComput Chem Eng19891379781910.1016/0098-1354(89)85053-7
GuptaSTiwariRNairSBMulti-objective design optimisation of rolling bearings using genetic algorithmsMech Mach Theory2007421418144310.1016/j.mechmachtheory.2006.10.0021188.74082
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
CarsonKWood-GushDGMEquine behaviour: II. A review of the literature on feeding, eliminative and resting behaviourAppl Anim Ethol19831017919010.1016/0304-3762(83)90139-6
BelegunduADAroraJSA study of mathematical programming methods for structural optimization. Part I: theoryInt J Numer Methods Eng1985211583159910.1002/nme.16202109040585.73159
MafarjaMAljarahIHeidariAAEvolutionary population dynamics and grasshopper optimization approaches for feature selection problemsKnowl-Based Syst2018145254510.1016/j.knosys.2017.12.037
Feist JD, McCullough DR (1975) Reproduction in feral horses. J Reprod Fertil Suppl (23):13–18. PMID:1060766
HousseinEHSaadMRHashimFALévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell20209410373110.1016/j.engappai.2020.103731
FloudasCACiricARGrossmannIEAutomatic synthesis of optimum heat exchanger network configurationsAIChE J19863227629010.1002/aic.690320215
K Carson (1438_CR24) 1983; 10
YA Anita (1438_CR17) 2020; 149
EH Houssein (1438_CR18) 2020; 94
S Mirjalili (1438_CR21) 2015; 89
M Mafarja (1438_CR3) 2018; 145
S Mirjalili (1438_CR13) 2017; 114
R Miller (1438_CR28) 2010; 51
SH Samareh Moosavi (1438_CR14) 2019; 86
S Saremi (1438_CR31) 2017; 105
EKP Chong (1438_CR1) 2008
S Mirjalili (1438_CR8) 2014; 69
1438_CR25
1438_CR6
S Mirjalili (1438_CR32) 2016; 96
A Kumar (1438_CR35) 2020; 56
1438_CR26
CA Floudas (1438_CR36) 1986; 32
AD Belegundu (1438_CR39) 1985; 21
1438_CR20
SM Wells (1438_CR27) 2010; 49
J Dréo (1438_CR2) 2006
S Mirjalili (1438_CR11) 2016; 95
1438_CR40
S Kaur (1438_CR19) 2020; 90
DH Wolpert (1438_CR22) 1997; 1
AA Heidari (1438_CR15) 2019; 97
JM Abdullah (1438_CR16) 2019; 7
GR Kocis (1438_CR38) 1989; 13
I Aljarah (1438_CR4) 2018; 71
CSPD Beightler (1438_CR43) 1976
S Mirjalili (1438_CR12) 2016; 27
K Carson (1438_CR23) 1983; 10
KV Price (1438_CR34) 2018
S Mirjalili (1438_CR10) 2015; 83
S Gupta (1438_CR42) 2007; 42
VR Squires (1438_CR29) 1975; 1
DH Mautner (1438_CR44) 1972
X-S Yang (1438_CR7) 2010
SS Rao (1438_CR41) 1996
E Rashedi (1438_CR9) 2009; 179
1438_CR33
GR Kocis (1438_CR37) 1988; 27
1438_CR30
JH Holland (1438_CR5) 1967; 96
References_xml – reference: BelegunduADAroraJSA study of mathematical programming methods for structural optimization. Part I: theoryInt J Numer Methods Eng1985211583159910.1002/nme.16202109040585.73159
– reference: ChongEKPŻakSHAn introduction to optimization2008HobokenWiley10.1002/97811180333401140.90041
– reference: KocisGRGrossmannIEGlobal optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesisInd Eng Chem Res1988271407142110.1021/ie00080a013
– reference: Klingel H (1975) Social organization and reproduction in equids. J Reprod Fertil Suppl 7–11
– reference: KaurSAwasthiLKSangalALDhimanGTunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimizationEng Appl Artif Intell20209010354110.1016/j.engappai.2020.103541
– reference: MirjaliliSGandomiAHMirjaliliSZSalp Swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
– reference: Feist JD, McCullough DR (1975) Reproduction in feral horses. J Reprod Fertil Suppl (23):13–18. PMID:1060766
– reference: MillerRDennistoRHInterband dominance in feral horsesZ Tierpsychol201051414710.1111/j.1439-0310.1979.tb00670.x
– reference: FloudasCACiricARGrossmannIEAutomatic synthesis of optimum heat exchanger network configurationsAIChE J19863227629010.1002/aic.690320215
– reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci (NY)20091792232224810.1016/j.ins.2009.03.0041177.90378
– reference: MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
– reference: KumarAWuGAliMZA test-suite of non-convex constrained optimization problems from the real-world and some baseline resultsSwarm Evol Comput20205610069310.1016/j.swevo.2020.100693
– reference: AnitaYAKumarNArtificial electric field algorithm for engineering optimization problemsExpert Syst Appl202014911330810.1016/j.eswa.2020.113308
– reference: WellsSMGoldschmidt-RothschildBSocial behaviour and relationships in a herd of camargue horsesZ Tierpsychol20104936338010.1111/j.1439-0310.1979.tb00299.x
– reference: MafarjaMAljarahIHeidariAAEvolutionary population dynamics and grasshopper optimization approaches for feature selection problemsKnowl-Based Syst2018145254510.1016/j.knosys.2017.12.037
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: MHS’95. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp 39–43
– reference: Awad NH, MZ. Ali JJ, Liang BY, Qu PS (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep
– reference: CarsonKWood-GushDGMEquine behaviour: I. A review of the literature on social and dam—Foal behaviourAppl Anim Ethol19831016517810.1016/0304-3762(83)90138-4
– reference: HousseinEHSaadMRHashimFALévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng Appl Artif Intell20209410373110.1016/j.engappai.2020.103731
– reference: MautnerDHApplied nonlinear programming1972McGraw-Hill Co
– reference: SquiresVRDawsGTLeadership and dominance relationships in Merino and Border Leicester sheepAppl Anim Ethol1975126327410.1016/0304-3762(75)90019-X
– reference: PriceKVAwadNHAliMZPNSThe 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization2018Sch Elect Electron Eng, Nanyang Technol Univ, Singapore, Tech Rep
– reference: HeidariAAMirjaliliSFarisHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028
– reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
– reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl-Based Syst20169612013310.1016/j.knosys.2015.12.022
– reference: KocisGRGrossmannIEA modelling and decomposition strategy for the minlp optimization of process flowsheetsComput Chem Eng19891379781910.1016/0098-1354(89)85053-7
– reference: RaoSSEngineering optimization: theory and practice1996New Age International Publishers
– reference: AbdullahJMAhmedTFitness dependent optimizer: inspired by the bee swarming reproductive processIEEE Access20197434734348610.1109/ACCESS.2019.2907012
– reference: DréoJMetaheuristics for hard optimization2006Berlin/HeidelbergSpringer-Verlag1118.90058
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006
– reference: Nowacki H (1973) Optimization in pre-contract ship design. In: International Conference on Computer Applications in the Automation of Shipyard Operation and ShipDesign, pp 1–12
– reference: BeightlerCSPDApplied geometric programming1976Wiley0344.90034
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: CarsonKWood-GushDGMEquine behaviour: II. A review of the literature on feeding, eliminative and resting behaviourAppl Anim Ethol19831017919010.1016/0304-3762(83)90139-6
– reference: HollandJHGenetic algorithms understand genetic algorithmsSurprise1967961121510.2307/24939139
– reference: GuptaSTiwariRNairSBMulti-objective design optimisation of rolling bearings using genetic algorithmsMech Mach Theory2007421418144310.1016/j.mechmachtheory.2006.10.0021188.74082
– reference: AljarahIMafarjaMHeidariAAAsynchronous accelerating multi-leader salp chains for feature selectionAppl Soft Comput20187196497910.1016/j.asoc.2018.07.040
– reference: Welsh DA, University D (1975) Population, behavioural and grazing ecology of the horses of Sable Island, Nova Scotia. PhD thesis, Dalhousie University
– reference: Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC)
– reference: Samareh MoosaviSHBardsiriVKPoor and rich optimization algorithm: a new human-based and multi populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl20162749551310.1007/s00521-015-1870-7
– reference: YangX-SFirefly algorithm, Lévy flights and global optimizationResearch and development in intelligent systems XXVI2010LondonSpringer20921810.1007/978-1-84882-983-1_15
– volume: 149
  start-page: 113308
  year: 2020
  ident: 1438_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113308
– volume: 10
  start-page: 179
  year: 1983
  ident: 1438_CR24
  publication-title: Appl Anim Ethol
  doi: 10.1016/0304-3762(83)90139-6
– volume: 105
  start-page: 30
  year: 2017
  ident: 1438_CR31
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 27
  start-page: 495
  year: 2016
  ident: 1438_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– ident: 1438_CR30
– ident: 1438_CR26
– volume: 27
  start-page: 1407
  year: 1988
  ident: 1438_CR37
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00080a013
– start-page: 209
  volume-title: Research and development in intelligent systems XXVI
  year: 2010
  ident: 1438_CR7
  doi: 10.1007/978-1-84882-983-1_15
– volume: 145
  start-page: 25
  year: 2018
  ident: 1438_CR3
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.12.037
– volume: 94
  start-page: 103731
  year: 2020
  ident: 1438_CR18
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103731
– volume: 1
  start-page: 67
  year: 1997
  ident: 1438_CR22
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 42
  start-page: 1418
  year: 2007
  ident: 1438_CR42
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2006.10.002
– volume: 21
  start-page: 1583
  year: 1985
  ident: 1438_CR39
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620210904
– volume-title: The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization
  year: 2018
  ident: 1438_CR34
– ident: 1438_CR20
– volume-title: Metaheuristics for hard optimization
  year: 2006
  ident: 1438_CR2
– volume: 89
  start-page: 228
  year: 2015
  ident: 1438_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 179
  start-page: 2232
  year: 2009
  ident: 1438_CR9
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2009.03.004
– volume: 83
  start-page: 80
  year: 2015
  ident: 1438_CR10
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 71
  start-page: 964
  year: 2018
  ident: 1438_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.040
– volume: 1
  start-page: 263
  year: 1975
  ident: 1438_CR29
  publication-title: Appl Anim Ethol
  doi: 10.1016/0304-3762(75)90019-X
– volume: 69
  start-page: 46
  year: 2014
  ident: 1438_CR8
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 114
  start-page: 163
  year: 2017
  ident: 1438_CR13
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 10
  start-page: 165
  year: 1983
  ident: 1438_CR23
  publication-title: Appl Anim Ethol
  doi: 10.1016/0304-3762(83)90138-4
– volume: 51
  start-page: 41
  year: 2010
  ident: 1438_CR28
  publication-title: Z Tierpsychol
  doi: 10.1111/j.1439-0310.1979.tb00670.x
– volume: 95
  start-page: 51
  year: 2016
  ident: 1438_CR11
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 32
  start-page: 276
  year: 1986
  ident: 1438_CR36
  publication-title: AIChE J
  doi: 10.1002/aic.690320215
– volume: 56
  start-page: 100693
  year: 2020
  ident: 1438_CR35
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100693
– volume-title: Engineering optimization: theory and practice
  year: 1996
  ident: 1438_CR41
– volume: 7
  start-page: 43473
  year: 2019
  ident: 1438_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907012
– ident: 1438_CR25
– volume-title: Applied geometric programming
  year: 1976
  ident: 1438_CR43
– volume: 49
  start-page: 363
  year: 2010
  ident: 1438_CR27
  publication-title: Z Tierpsychol
  doi: 10.1111/j.1439-0310.1979.tb00299.x
– volume: 86
  start-page: 165
  year: 2019
  ident: 1438_CR14
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.08.025
– volume: 90
  start-page: 103541
  year: 2020
  ident: 1438_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103541
– volume-title: Applied nonlinear programming
  year: 1972
  ident: 1438_CR44
– volume: 97
  start-page: 849
  year: 2019
  ident: 1438_CR15
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 96
  start-page: 120
  year: 2016
  ident: 1438_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 13
  start-page: 797
  year: 1989
  ident: 1438_CR38
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(89)85053-7
– ident: 1438_CR40
– ident: 1438_CR33
– volume: 96
  start-page: 12
  issue: 1
  year: 1967
  ident: 1438_CR5
  publication-title: Surprise
  doi: 10.2307/24939139
– ident: 1438_CR6
– volume-title: An introduction to optimization
  year: 2008
  ident: 1438_CR1
  doi: 10.1002/9781118033340
SSID ssj0013009
Score 2.6755407
Snippet Nowadays, the design of optimization algorithms is very popular to solve problems in various scientific fields. The optimization algorithms usually inspired by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3025
SubjectTerms Algorithms
Animals
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Design optimization
Heuristic methods
Horses
Math. Applications in Chemistry
Mathematical and Computational Engineering
Optimization algorithms
Original Article
Source code
Systems Theory
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMBAoYAoFOSBDSLVeYcNISomhHipW2T7HFqpbVCSMvTXc06cBhAgwerYJ8s-29_lHh8hp34UgAqFtJwEFBoowrXCCMBSEYcAuCZGgZJsIri9DYfD6M4kheV1tHvtkixv6mWymy6dogNmtfnr4jFdrJI1fO5CTdhw__Dc-A76VWAHC3Rglx-YVJnvZXx-jhqM-cUtWr42g_b_5rlNtgy6pJeVOuyQFTXrkLZBmtSc4xybajKHuq1DNj9UJtwlAm8LoKM0yxVN8VaZjhcqu6CcIgqnU1Vwa6TmVZFnyicvaTYuRlOKAJiiLut_FFQ14moJpRJQQ2GT75GnwfXj1Y1l6BgsiTZaYXHmMiF9xoCBrSQaatz3nMRzgsABR8gIkYHjhRAJlfieQqs7AQglAk7pgS-Fs09as3SmDggVkZuAB5AgwHMFZzxMbFA84A5K9PqsS1i9K7E0tco1ZcYkXlZZLlc5xlWOy1WOF11ythzzWlXq-LV3r97s2JzaPLa1avqh5-IEzuvNbT7_LO3wb92PyIatsyjKmMAeaRXZXB2TdflWjPPspNTmdyz98ZE
  priority: 102
  providerName: Springer Nature
Title Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems
URI https://link.springer.com/article/10.1007/s00366-021-01438-z
https://www.proquest.com/docview/2737268541
Volume 38
WOSCitedRecordID wos000662909400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0V6KEcSktbsQVWPnBrreJNHCe9IECgSkirFbQV6iWyPU4Xid2FTeCwX9-x1yEtElx68SXxJNIbj994xjMAe1mh0OXG8qRCRw6KSXleIHJXaFSofWMUDM0m1HCYX14Wo3jgVse0ytYmBkONM-vPyL8M_LQsl6k4uLnlvmuUj67GFhorsOarJIiQunfRRRH2lykeQvkUr0zFSzPh6pwvxOLTb70zndKiX_y7MXVs81GANOw7pxv_-8dv4HVknOxwqSJv4YWbbsJGZJ8sru16E9b_Kk34DgyZC2Tj2bx2bEZmZXK1cPOvTDOi4WziGs3H7m5Z5Znp69_03WY8YcSAGSmzP6RgrhPXSghawGIPm_o9_Dg9-X78jcd-DNySk9ZwLVJhbCYEChw4S56azmRSyUSpBBNjC6IGicyxMK7KpCO3u0LMLTFOKzGzJvkAq9PZ1G0BM0VaoUSsiOGlRgudVwN0WumEJMp90QPRglHaWKzc98y4Lh_KLAcASwKwDACWix58ephzsyzV8ezbOy1qZVy2ddlB1oPPLe7d46elfXxe2ja8GvhrEyEJcAdWm_md24WX9r65qud9WDs6GY7O-7Bypng_qDCNI_mLxvOLn38A-o_5Hg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VFgk40FJAbGnBBziBRR0ncYKEEGqpWm274lCk3oLtcdhK3d2ySUHdj-IbGTtJA0j01gPn2CM5fjOesWfmAbxIc4UuM5bLEh0FKCbmWY7IXa5RofbEKBjIJtRolJ2c5J-W4GdXC-PTKjubGAw1zqy_I38T-WlplsTi_fk37lmj_OtqR6HRwGLoLn9QyFa9O9il_X0ZRXsfj3f2ecsqwC2FGjXXIhbGpkKgwMhZijd0msgykUpJlMbmdMDJJMPcuDJNHAWPJWJmyW-yCabWSJJ7C1ZimSmvV0PF-1eL7SalRCifUpaqtkgnlOr5xi8-3dcH7zSXL_48CHvv9q8H2XDO7a3-b39oDe63HjX70KjAA1hy03VYbb1r1tquah3u_dZ68SEYMofIxrN55diMzObkdOHmb5lmFGawias1H7uLpos102dfaZ31eMLIw2ekrP4ShrleXCchoJy1HD3VI_h8I-t-DMvT2dQ9AWbyuMQEsSQPNjZa6KyM0GmlJUlMtsUARLf5hW2bsXtOkLPiqo10AExBgCkCYIrFAF5dzTlvWpFcO3qzQ0nRmqWq6CEygNcdzvrP_5a2cb2053Bn__josDg8GA2fwt3Il4iEhMdNWK7nF24Lbtvv9Wk1fxYUhsGXm8bfL-v2UcU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VglA5UChUXSjgA5wgap3EcVIJIURZURWt9gBSxSXYHoet1N1tNymI_Wn8uo4dpwEkeuuBc-KRnDw_z7PnA-B5Vki0uTZRUqElgaLTKC8QI1solKhcYxT0zSbkaJQfHRXjFfjV5cK4sMqOEz1R49y4M_Kd2A3LcpHynSqERYz3h29OzyLXQcrdtHbtNFqIHNqfP0i-1a8P9ulfv4jj4ftP7z5EocNAZEh2NJHiKdcm4xw5xtaQ9lCZSCqRSJlgok1Bm10iciy0rTJhSUhWiLkhH8oIzIxOyO4NuClJY7pwwrH40t9g7LbhJVy68LJMhoQdn7bnisC40F8n5FMinOWfm2Lv6f51Oev3vOH6__y17sHd4Gmzt-3SuA8rdrYB68HrZoHT6g2481tJxgegiSaRTeaL2rI50en0eGkXe0wxkh9sahsVTex5W92aqZNvNM9mMmXk-TNaxO5whtneXGfBo5-F3j31Q_h8LfPehNXZfGa3gOkirVAgVuTZplpxlVcxWiVVQhbFLh8A74BQmlCk3fUKOSkvy0t78JQEntKDp1wO4OXlmNO2RMmVb293iCkDXdVlD5cBvOow1z_-t7VHV1t7BrcJduXHg9HhY1iLXeaIj4PchtVmcW6fwC3zvTmuF0_92mHw9brhdwG_EFrp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild+horse+optimizer%3A+a+new+meta-heuristic+algorithm+for+solving+engineering+optimization+problems&rft.jtitle=Engineering+with+computers&rft.au=Naruei%2C+Iraj&rft.au=Keynia%2C+Farshid&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.spage=3025&rft.epage=3056&rft_id=info:doi/10.1007%2Fs00366-021-01438-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon