Fast modular reduction and squaring in GF(2m)

We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed at any choice of low-weight irreducible polynomial. For a large class of irreducible polynomials it is more efficient than the previously bes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 132; s. 33 - 38
Hlavní autoři: Niehues, L. Boppre, Custódio, R., Panario, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2018
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed at any choice of low-weight irreducible polynomial. For a large class of irreducible polynomials it is more efficient than the previously best general squarer. In contrast, other efficient squarers often require a change of basis or are suitable for only a small number of irreducible polynomials. Additionally, we present a simple algorithm for modular reduction with equivalent cost to the state of the art for general irreducible polynomials. This fast reduction is used in our squaring method. •We propose a new algorithm for squaring elements in binary finite field extensions.•The algorithm is very efficient for squaring elements defined using any low weight polynomial.•A general efficient algorithm for polynomial modular reduction of any weight is described.•The square algorithm is extended to finite field extensions of any odd characteristic.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2017.12.002